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INTRODUCTION

u THE PRESENT WORK IS PART OF A TWO-FOLD PROJECT, 
CARRIED ON  IN COLLABORATION  WITH   S. A. FULLING 
(@ TEXAS A&M UNIV.) AND J.H. WILSON (@ CALTECH). 

u THE MAIN GOAL IS TO ANALYZE THE BEHAVIOUR OF A 
CASIMIR APPARATUS FALLING INTO A BH, TAKING INTO 
ACCOUNT

uTIDAL EFFECTS    

uNON-LOCAL EFFECTS
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u TIDAL EFFECTS, DUE TO THE SPATIAL EXTENSION OF THE 
CASIMIR APPARATUS, ARE RESPONSIBLE FOR A NON-
UNIFORM DISTRIBUTION OF THE VACUUM ENERGY 
DENSITY INSIDE THE CAVITY. 

u SUCH EFFECTS WILL BE CONSIDERED IN DETAIL IN A 
FORTHCOMING PAPER ( W, S & F), WHERE A 1+1D MODEL 
HAS BEEN TAKEN INTO ACCOUNT.
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INTRODUCTION (cont’d)



u NON-LOCAL (QUANTUM-MECHANICAL) EFFECTS ARE 
RELATED TO THE NON-LOCALITY OF THE THEORY 
DESCRIBING THE FIELD CONFINED TO THE CAVITY. IN SPITE 
OF THE INERTIAL FREELY FALLING MOTION, NON-LOCALITY 
ALLOWS FOR BOTH THE GLOBAL PROPERTIES OF THE 
BACKGROUND SPACETIME AND THE CAVITY MOTION TO 
INFLUENCE THE LOCAL MEASUREMENTS PERFORMED BY 
THE COMOVING OBSERVER. 

u IN THIS TALK WE WILL FOCUS ON THIS LATTER ISSUE BY 
MEANS OF  A 3+1D ANALYSIS  (S & W).

INTRODUCTION (cont’d)
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OUTLINE

u THE SCENARIO
u BASIC ASSUMPTIONS
u SCHWARZSCHILD SPACETIME IN LEMAITRE 

COORDINATES
u PROPER-TIME SCHWINGER APPROACH AND 

THE EFFECTIVE ACTION
u STATIC CASIMIR EFFECT 
u PARTICLE CREATION
u CONCLUSIONS
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uA SCHWARZSCHILD BH

uA CASIMIR APPARATUS, FREELY 
FALLING IN THE BH 
GRAVITATIONAL FIELD

uA COMOVING OBSERVER (W.R.T. 
THE CASIMIR CAVITY)

4

From (5) and (6) we immediately get

r(⌧, ⇢) = r1/3g


3

2
(⇢� ⌧)

�2/3
. (16)

As discussed above, for any admissible fixed value of the
radial coordinate ⇢, (16) describes the radial motion of
a test body freely falling from spatial infinity with zero
initial velocity (� = 1). Being interested in the behaviour
near the black hole horizon (where the Lemâıtre coordi-
nates are regular), we fix the proper time origin ⌧ = 0
just at the horizon crossing, r = rg. From (16) we get
the constant value of the radial coordinate ⇢ along the
corresponding geodesic

⇢0 =
2

3
rg (⌧ = 0). (17)

From (16) we obtain

r(⌧ ; ⇢0) = rg

✓
1� 3⌧

2rg

◆2/3

, (18)

representing a freely falling particle (in our case the
Casimir cavity) whose trajectory intersects the horizon
at ⌧ = 0. Notice, in passing, that the travel from the in-
finity to the horizon is described by negative values of the
proper time: �1 < ⌧  0. Also, reaching the singularity
from the horizon takes a finite proper time ⌧s =

2
3rg.

III. THE CASIMIR CAVITY AND THE
COMOVING FRAME

The measurement of Casimir energy inside the falling
cavity is performed by a comoving observer. Before to
proceed, we need some assumptions about the cavity and
the reference frame with respect to which the observer
makes her/his measurements. Concerning the cavity, we
take its geometry so that the plates (of area A and sepa-
rated by a distance L, such that L ⌧

p
A) are orthogo-

nal to the radial falling direction [31]. We further require
that:

• the cavity is taken to fall from spatial infinity with
zero initial velocity (� = 1) and zero angular mo-
mentum;

• the typical cavity size is much smaller than the
gravitational radius of the black hole, so that, in
particular, L ⌧ rg, with L being the plate separa-
tion

• the cavity is rigid; its dimensions and shape do
not su↵er any distortion, in spite of external tidal
forces. Such assumption holds true provided L ⌧
rg. Di↵erently stated, we neglect tidal e↵ects inside
the falling cavity.

• the cavity follows a true geodesic motion; hence
we neglect other non-gravitational external e↵ects,
including those possibly related to backreaction.

FIG. 1. Schematic picture of a Casimir cavity falling onto
a Schwarzschild black hole. We assume the cavity size to
be small with respect to the black hole gravitational radius,
(L/rg ⌧ 1). The cavity is assumed to fall from spatial infinity
with zero initial velocity (� = 1) and zero angular momentum.
The cavity is rigid, namely the plate separation L is constant
according to a comoving observer. In other words, we neglect
tidal forces, supposing that the center of mass (along with the
observer) of the whole physical ensemble is in geodesic motion
(see text for details).

We stress that the last two assumptions are rather subtle.
A deeper analysis of tidal e↵ects on Casimir energy in a
1+1D falling cavity has been extensively performed in
[21].
As a next step we choose a reference frame, defining a

tetrad adapted to the comoving observer. We will work
in the Lemâıtre coordinates. Being the metric (15) diag-
onal, the required tetrad {eµâ} can be readily obtained.
From (15) we have (using a, b, c, ... to label tetrad indices)

e⌧ = @⌧

ex =
r

r

rg
@⇢

ey =
1

r
@✓

ez =
1

r sin ✓
@�. (19)

So, the observer performs her/his measurements
in the (locally minkowskian) rectangular coordinates
{⌧, x, y, z}. In the following, exploiting spherical sym-
metry, we will put ✓ = ⇡/2. We also have e =

p
�g =

r2
q

rg
r . It is understood that in eqs.(19) r = r(⌧ ; ⇢0) is

THE SCENARIO
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BASIC ASSUMPTIONS

u CASIMIR CAVITY FALLING FROM SPATIAL INFINITY WITH 
ZERO INITIAL VELOCITY AND ANGULAR MOMENTUM 

u TYPICAL CAVITY SIZE MUCH SMALLER THAN THE  BH 
GRAVITATIONAL RADIUS:   L << rg (L = PLATE SEPARATION)

u RIGIDITY ASSUMPTION: CAVITY SIZE & SHAPE DO NOT 
SUFFER ANY  DISTORTION (i.e., NO TIDAL EFFECTS ARE 
TAKEN INTO ACCOUNT)  

u TRUE GEODESIC MOTION: OTHER NON-GRAVITATIONAL 
EFFECTS ARE NEGLECTED.
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SCHWARZSCHILD SPACETIME 
IN LEMAITRE COORDINATES

u SCHWARZSCHILD METRIC IN LEMAITRE 
COORDINATES                        IS:                                            
[G. Lemaıtre, Ann. Soc. Sci. I A53, 51 (1933)]

u
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1. Introduction

An observer comoving with a Casimir cavity1–3, freely falling in a Schwarzschild

black hole, measures a small reduction in the (absolute) value of the (negative)

Casimir energy4–12 as the black hole horizon is approached. At a first glance,

this may seem rather puzzling, as one would expect no change with respect to the

usual flat spacetime result h✏Casistat = � ⇡2

1440L4 , due to the Equivalence Principle.

Actually, the local measurements performed by the comoving observer, are related

to a non-local renormalized field stress-energy tensor T ren
µ⌫ . The latter is determined

(by means of some regularization technique) by the low-energy contribution of Tµ⌫ ,

thus probing the global structure of the surrounding spacetime geometry. This, in

turn, allows for a local measurement to be sensitive to the cavity fall.

2. Lemâıtre Coordinates

Consider a Casimir cavity, freely falling from spatial infinity. Adjust the cavity clock

so that the proper time ⌧ = 0 when the cavity is at the radial horizon coordinate

r0 = rg. Then the Schwarzschild metric in the Lemâıtre coordinates {⌧, ⇢, ✓,�}
reads13,14

ds2 = d⌧2 � rg
r(⌧)

d⇢2 � r2(⌧)d⌦2, r(⌧) = rg

✓
1� 3⌧

2rg

◆2/3

. (1)

Notice that the travel from the infinity to the horizon is described by negative values

of the proper time: �1 < ⌧  0.

WE ASSUME THE PROPER TIME 

May 22, 2018 17:57 WSPC Proceedings - 9.75in x 6.5in MGM15˙Casimir page 1

1

Casimir E↵ect and Free Fall in a Schwarzschild Black Hole

Francesco Sorge⇤

I.N.F.N. Naples
Naples, I-80126, Italy

⇤E-mail: sorge@na.infn.it

Justin H. Wilson†

Institute of Quantum Information and Matter

and Department of Physics
CALTECH, CA

†E-mail: jwilson@caltech.edu

Scalar field vacuum energy and particle creation in a 3D Casimir apparatus, freely falling

in the Schwarzschild spacetime, are considered in the reference frame of a comoving
observer. Following Schwinger’s proper time approach, Casimir energy is evaluated from

the e↵ective action, resulting in a small correction to the flat spacetime case. Besides, a

tiny amount of quanta excited out from the vacuum is found. Both e↵ects are discussed,
drawing attention to the role of the underlying spacetime dimensionality.

Keywords: Casimir e↵ect; quantum fields in curved space-times; particle creation.

1. Introduction

An observer comoving with a Casimir cavity1–3, freely falling in a Schwarzschild

black hole, measures a small reduction in the (absolute) value of the (negative)

Casimir energy4–12 as the black hole horizon is approached. At a first glance,

this may seem rather puzzling, as one would expect no change with respect to the

usual flat spacetime result h✏Casistat = � ⇡2

1440L4 , due to the Equivalence Principle.

Actually, the local measurements performed by the comoving observer, are related

to a non-local renormalized field stress-energy tensor T ren
µ⌫ . The latter is determined

(by means of some regularization technique) by the low-energy contribution of Tµ⌫ ,

thus probing the global structure of the surrounding spacetime geometry. This, in

turn, allows for a local measurement to be sensitive to the cavity fall.

2. Lemâıtre Coordinates

Consider a Casimir cavity, freely falling from spatial infinity. Adjust the cavity clock

so that the proper time ⌧ = 0 when the cavity is at the radial horizon coordinate

r0 = rg. Then the Schwarzschild metric in the Lemâıtre coordinates {⌧, ⇢, ✓,�}
reads13,14

ds2 = d⌧2 � rg
r(⌧)

d⇢2 � r2(⌧)d⌦2, r(⌧) = rg

✓
1� 3⌧

2rg

◆2/3

. (1)

Notice that the travel from the infinity to the horizon is described by negative values

of the proper time: �1 < ⌧  0.

WHEN THE CAVITY CROSSES THE BH HORIZON: 
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(by means of some regularization technique) by the low-energy contribution of Tµ⌫ ,

thus probing the global structure of the surrounding spacetime geometry. This, in

turn, allows for a local measurement to be sensitive to the cavity fall.

2. Lemâıtre Coordinates

Consider a Casimir cavity, freely falling from spatial infinity. Adjust the cavity clock

so that the proper time ⌧ = 0 when the cavity is at the radial horizon coordinate

r0 = rg. Then the Schwarzschild metric in the Lemâıtre coordinates {⌧, ⇢, ✓,�}
reads13,14

ds2 = d⌧2 � rg
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d⇢2 � r2(⌧)d⌦2, r(⌧) = rg
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Notice that the travel from the infinity to the horizon is described by negative values

of the proper time: �1 < ⌧  0.
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4

From (5) and (6) we immediately get

r(⌧, ⇢) = r1/3g


3

2
(⇢� ⌧)

�2/3
. (16)

As discussed above, for any admissible fixed value of the
radial coordinate ⇢, (16) describes the radial motion of
a test body freely falling from spatial infinity with zero
initial velocity (� = 1). Being interested in the behaviour
near the black hole horizon (where the Lemâıtre coordi-
nates are regular), we fix the proper time origin ⌧ = 0
just at the horizon crossing, r = rg. From (16) we get
the constant value of the radial coordinate ⇢ along the
corresponding geodesic

⇢0 =
2

3
rg (⌧ = 0). (17)

From (16) we obtain

r(⌧ ; ⇢0) = rg

✓
1� 3⌧

2rg

◆2/3

, (18)

representing a freely falling particle (in our case the
Casimir cavity) whose trajectory intersects the horizon
at ⌧ = 0. Notice, in passing, that the travel from the in-
finity to the horizon is described by negative values of the
proper time: �1 < ⌧  0. Also, reaching the singularity
from the horizon takes a finite proper time ⌧s =

2
3rg.

III. THE CASIMIR CAVITY AND THE
COMOVING FRAME

The measurement of Casimir energy inside the falling
cavity is performed by a comoving observer. Before to
proceed, we need some assumptions about the cavity and
the reference frame with respect to which the observer
makes her/his measurements. Concerning the cavity, we
take its geometry so that the plates (of area A and sepa-
rated by a distance L, such that L ⌧

p
A) are orthogo-

nal to the radial falling direction [31]. We further require
that:

• the cavity is taken to fall from spatial infinity with
zero initial velocity (� = 1) and zero angular mo-
mentum;

• the typical cavity size is much smaller than the
gravitational radius of the black hole, so that, in
particular, L ⌧ rg, with L being the plate separa-
tion

• the cavity is rigid; its dimensions and shape do
not su↵er any distortion, in spite of external tidal
forces. Such assumption holds true provided L ⌧
rg. Di↵erently stated, we neglect tidal e↵ects inside
the falling cavity.

• the cavity follows a true geodesic motion; hence
we neglect other non-gravitational external e↵ects,
including those possibly related to backreaction.

FIG. 1. Schematic picture of a Casimir cavity falling onto
a Schwarzschild black hole. We assume the cavity size to
be small with respect to the black hole gravitational radius,
(L/rg ⌧ 1). The cavity is assumed to fall from spatial infinity
with zero initial velocity (� = 1) and zero angular momentum.
The cavity is rigid, namely the plate separation L is constant
according to a comoving observer. In other words, we neglect
tidal forces, supposing that the center of mass (along with the
observer) of the whole physical ensemble is in geodesic motion
(see text for details).

We stress that the last two assumptions are rather subtle.
A deeper analysis of tidal e↵ects on Casimir energy in a
1+1D falling cavity has been extensively performed in
[21].
As a next step we choose a reference frame, defining a

tetrad adapted to the comoving observer. We will work
in the Lemâıtre coordinates. Being the metric (15) diag-
onal, the required tetrad {eµâ} can be readily obtained.
From (15) we have (using a, b, c, ... to label tetrad indices)

e⌧ = @⌧

ex =
r

r

rg
@⇢

ey =
1

r
@✓

ez =
1

r sin ✓
@�. (19)

So, the observer performs her/his measurements
in the (locally minkowskian) rectangular coordinates
{⌧, x, y, z}. In the following, exploiting spherical sym-
metry, we will put ✓ = ⇡/2. We also have e =

p
�g =

r2
q

rg
r . It is understood that in eqs.(19) r = r(⌧ ; ⇢0) is

3

F (r; rg, �) =

8
>><

>>:

|�2 � 1|�1/2

s

r

✓
rg

�2�1 + r

◆
� rg

�2�1 ln

✓
p
r +

q
rg

�2�1 + r

◆�
, � 6= 1

2
3
r3/2p
rg
, � = 1.

(5)

In (4) c is an arbitrary integration constant. Notice that,
for any value of c, (4) describes (although implicitly) a
physically admissible time-like geodesic for an infalling
test body (recall that � = 1 means free fall from spatial
infinity with zero initial velocity). This suggests defining
a new radial coordinate ⇢, just putting ⇢ = c. So doing,
we attach to any freely falling body a constant value ⇢ of
its radial coordinate, hence writing

�⌧ + ⇢ = F (r; rg, �), (6)

In other words, we are defining a comoving coordinate,

adapted to time-like geodesics: a body moving along such
a geodesic has (at any proper time ⌧) a constant value of
the coordinate ⇢.

From (6) we also get the following relationship between
the coordinate di↵erentials

dr =

r
�2 � 1 +

rg
r
(d⇢� d⌧). (7)

We now search for a similar relation involving the
Schwarzschild time t. We guess

dt = Ad⇢+Bd⌧, (8)

with A and B unknowns to be determined requiring
that the Schwarzschild metric in the new coordinates
{⌧, ⇢, ✓,�} is adapted to the falling body, namely g⌧⌧ = 1
(syncronous coordinate system) and g⌧⇢ = 0 (diagonal
metric). Substituting (7) and (8) in (1) we have

g⌧⌧ =

✓
1� rg

r

◆
B2 �

✓
1� rg

r

◆�1�
�2 � 1 +

rg
r

�
= 1,

g⌧⇢ =

✓
1� rg

r

◆
AB +

✓
1� rg

r

◆�1�
�2 � 1 +

rg
r

�
= 0,

(9)

from which we obtain A = 1
��

�r
r�rg

and B = �r
r�rg

. Thus,

the full required coordinate transformation reads

8
><

>:

dt = �r
r�rg

d⌧ +

✓
1
� � �r

r�rg

◆
d⇢

dr =
q

�2 � 1 + rg
r (�d⌧ + d⇢),

(10)

or, in matrix form

d~xS = Q(�)d~xL, (11)

where Q(�) is the matrix of (10) and d~xS = (dt, dr)T ,
d~xL = (d⌧, d⇢)T are the coordinate 1-forms in the

Schwarzschild and Lemâıtre coordinates, respectively.
The inverse transformation is, after some algebra
8
>>><

>>>:

d⌧ = �dt+ �2

✓
1� rg

r

◆�1✓
�2 � 1 + rg

r

◆�1/2
rg
r dr,

d⇢ = �dt+ �2

✓
1� rg

r

◆�1✓
�2 � 1 + rg

r

◆�1/2

dr.

(12)
Using (10) in (1) yields the Schwarzschild metric in
the so-called generalized Lemâıtre coordinates {⌧, ⇢, ✓,�}
(see, e.g., [23])

ds2 = d⌧2� 1

�2

✓
�2�1+

rg
r(⌧, ⇢)

◆
d⇢2�r2(⌧, ⇢)d⌦2, (13)

where r(⌧, ⇢) is implicitly given by (6). The existence
of the inverse function r(⌧, ⇢) is assured, since the Ja-
cobian J of the transformation (10) is J = det Q(�) =
1
�

q
�2 � 1 + rg

r > 0 [recall the constraint (3)].

Let us briefly comment about the spacetime symme-
tries. Inspcection of (1) immediately tell us that ~X = @t
is a Killing vector for the Schwarzschild spacetime (in the
Schwarzschild coordinates), as the metric is independent
of t. To such Killing vector is related the energy conser-
vation in the Schwarzschild spacetime. Although not ex-
plicitly visible, such symmetry is obviously preserved also
in the Lemâıtre coordinates. The corresponding form
of the Killing vector can be obtained from the transfor-
mation (10), by means of the relationship between the
canonical basis vectors @S = (@t, @r)T and @L = (@⌧ , @⇢)T

@S = [Q(�)�1]T@L. (14)

From (14) we immediately get @t = @⌧ + @⇢. So, in the
Lemâıtre coordinates energy conservation is related to
the Killing vector ~X = @⌧ + @⇢.
Consider now a freely falling test body, with total spe-

cific energy �. Reset the test body clock so that the
proper time ⌧ = 0 when the body is at a given radial
Schwarzschild coordinate r0. Putting r = r0 and ⌧ = 0
into (6) we get the corresponding value of the comov-
ing radial Lemâıtre coordinate ⇢0 = ⇢(0, r0) at the initial
proper time ⌧ = 0. Replacing again the constant value
⇢ = ⇢0 = ⇢(0, r0) in (6) we implicitly get the radial co-
ordinate r as a function of the proper time ⌧ , namely
r = r(⌧ ; ⇢0).

The above procedure can be straightforwardly carried
on when the test body has � = 1. In this case, the
Schwarzschild metric in the Lemâıtre coordinates reduces
to

ds2 = d⌧2 � rg
r(⌧, ⇢)

d⇢2 � r2(⌧, ⇢)d⌦2. (15)

Coordinate grid
comoving with a 
freely falling test 
body
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the constant value of the radial coordinate ⇢ along the
corresponding geodesic

⇢0 =
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rg (⌧ = 0). (17)

From (16) we obtain
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representing a freely falling particle (in our case the
Casimir cavity) whose trajectory intersects the horizon
at ⌧ = 0. Notice, in passing, that the travel from the in-
finity to the horizon is described by negative values of the
proper time: �1 < ⌧  0. Also, reaching the singularity
from the horizon takes a finite proper time ⌧s =

2
3rg.

III. THE CASIMIR CAVITY AND THE
COMOVING FRAME

The measurement of Casimir energy inside the falling
cavity is performed by a comoving observer. Before to
proceed, we need some assumptions about the cavity and
the reference frame with respect to which the observer
makes her/his measurements. Concerning the cavity, we
take its geometry so that the plates (of area A and sepa-
rated by a distance L, such that L ⌧

p
A) are orthogo-

nal to the radial falling direction [31]. We further require
that:

• the cavity is taken to fall from spatial infinity with
zero initial velocity (� = 1) and zero angular mo-
mentum;

• the typical cavity size is much smaller than the
gravitational radius of the black hole, so that, in
particular, L ⌧ rg, with L being the plate separa-
tion

• the cavity is rigid; its dimensions and shape do
not su↵er any distortion, in spite of external tidal
forces. Such assumption holds true provided L ⌧
rg. Di↵erently stated, we neglect tidal e↵ects inside
the falling cavity.

• the cavity follows a true geodesic motion; hence
we neglect other non-gravitational external e↵ects,
including those possibly related to backreaction.

FIG. 1. Schematic picture of a Casimir cavity falling onto
a Schwarzschild black hole. We assume the cavity size to
be small with respect to the black hole gravitational radius,
(L/rg ⌧ 1). The cavity is assumed to fall from spatial infinity
with zero initial velocity (� = 1) and zero angular momentum.
The cavity is rigid, namely the plate separation L is constant
according to a comoving observer. In other words, we neglect
tidal forces, supposing that the center of mass (along with the
observer) of the whole physical ensemble is in geodesic motion
(see text for details).

We stress that the last two assumptions are rather subtle.
A deeper analysis of tidal e↵ects on Casimir energy in a
1+1D falling cavity has been extensively performed in
[21].
As a next step we choose a reference frame, defining a

tetrad adapted to the comoving observer. We will work
in the Lemâıtre coordinates. Being the metric (15) diag-
onal, the required tetrad {eµâ} can be readily obtained.
From (15) we have (using a, b, c, ... to label tetrad indices)

e⌧ = @⌧

ex =
r

r

rg
@⇢

ey =
1

r
@✓

ez =
1
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So, the observer performs her/his measurements
in the (locally minkowskian) rectangular coordinates
{⌧, x, y, z}. In the following, exploiting spherical sym-
metry, we will put ✓ = ⇡/2. We also have e =
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�g =

r2
q

rg
r . It is understood that in eqs.(19) r = r(⌧ ; ⇢0) is
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1. Introduction

An observer comoving with a Casimir cavity1–3, freely falling in a Schwarzschild

black hole, measures a small reduction in the (absolute) value of the (negative)

Casimir energy4–12 as the black hole horizon is approached. At a first glance,

this may seem rather puzzling, as one would expect no change with respect to the

usual flat spacetime result h✏Casistat = � ⇡2

1440L4 , due to the Equivalence Principle.

Actually, the local measurements performed by the comoving observer, are related

to a non-local renormalized field stress-energy tensor T ren
µ⌫ . The latter is determined

(by means of some regularization technique) by the low-energy contribution of Tµ⌫ ,

thus probing the global structure of the surrounding spacetime geometry. This, in

turn, allows for a local measurement to be sensitive to the cavity fall.

2. Lemâıtre Coordinates

Consider a Casimir cavity, freely falling from spatial infinity. Adjust the cavity clock

so that the proper time ⌧ = 0 when the cavity is at the radial horizon coordinate

r0 = rg. Then the Schwarzschild metric in the Lemâıtre coordinates {⌧, ⇢, ✓,�}
reads13,14

ds2 = d⌧2 � rg
r(⌧)

d⇢2 � r2(⌧)d⌦2, r(⌧) = rg

✓
1� 3⌧

2rg

◆2/3

. (1)

Notice that the travel from the infinity to the horizon is described by negative values

of the proper time: �1 < ⌧  0.

=

9/29

tetrad as a “rigid” frame



PROPER-TIME 
SCHWINGER APPROACH – step 1

u WE FOCUS ON A MASSLESS SCALAR FIELD       CONFINED 
TO THE CAVITY.

u IN THE COMOVING TETRAD FRAME, THE K-G EQUATION 
READS: 

u AS USUAL, REQUIRE DIRICHLET B.C. AT THE CAVITY 
PLATES.
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3. The Casimir Cavity and the Comoving Frame

The measurement of Casimir energy inside the falling cavity is performed by a

comoving observer. The cavity plates (of area A and separated by a distance L, such
that L ⌧

p
A) are taken orthogonal to the radial falling direction a. Furthermore

• the cavity is taken to fall from spatial infinity with zero initial velocity and

zero angular momentum;

• the typical cavity size is much smaller than the gravitational radius of the

black hole, so that, in particular, L ⌧ rg, with L being the plate separation

• the cavity is rigid; its dimensions and shape do not su↵er any distortion, in

spite of external tidal forces. Such assumption holds true provided L ⌧ rg.
Di↵erently stated, we neglect tidal e↵ects15 inside the falling cavity.

• the cavity follows a true geodesic motion; hence we neglect other non-

gravitational external e↵ects.

4. Proper-time Schwinger’s approach

For the sake of simplicity we will consider a massless scalar field. We also assume

the field to obey the Dirichlet boundary conditions at the plates. In the tetrad

frame adapted to the Lemâıtre chart the Klein-Gordon equation reads16


⇤+

1

4

⇠2

(1� ⇠⌧)2

�
' = 0, ⇠ =

3

2rg
. (2)

From (2), the proper-time Hamiltonian Ĥ reads Ĥ = Ĥ0+V̂ , where Ĥ0 = @2
⌧�~r2 ⌘

�p̂20 + ~̂p2. As usual, we write the e↵ective action W = lim⌫!0 W (⌫), where17,18

W (⌫) = � i

2

Z 1

0
ds s⌫�1Tr e�isĤ , (3)

and the limit ⌫ ! 0 has to be taken at the end of calculations. The trace has to be

evaluated all over the continuous as well the discrete degrees of freedom, including

those of spacetime. After a quite long algebra we get

W (⌫) = � iA

32⇡5/2

Z 1

0
ds

Z T

�1
d⌧

X

n

s⌫�3/2�1

�1/2
e�is(n⇡/L)2

⇥

⇡3/2e�i/(2�)H(1)

0

�
1/(2�)

�
+ 2G31

23

✓
� i

�

����
0 1/2
0 0 0

◆�
,

(4)

with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.
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u K-G  EQUATION CAN BE SOLVED. WE FIND

u WHERE THE FIELD MODES ARE

5

given by (18).

IV. THE SCALAR FIELD

For the sake of simplicity we will consider a massless
scalar field  (x↵) inside the cavity. We also assume the
cavity walls to be perfectly reflecting, so that the field
obeys the Dirichlet boundary conditions at the plates.
The generally covariant Klein-Gordon equation is [20]

1p
�g

@µ
⇥p

�ggµ⌫@⌫ (x
↵)
⇤
+ R(x�) (x↵) = 0, (20)

where  is a numerical parameter describing the coupling
between the matter field and the background gravita-
tional field and R(x�) is the scalar curvature. In what
follows we will suppose minimal coupling, so that  = 0.

A. Tetrad form of the field equation

The Klein-Gordon equation in the tetrad frame (19)
reads [27] [32]

(2+ V̂ ) = 0, (21)

where 2 = ⌘bc@b@c is the flat d’Alembertian in the ob-
server’s Minkowski local frame and

V̂ =
1

e
@µ(ee

µ
â)@

â = � ⇠

1� ⇠⌧
@⌧ = b(⌧)@⌧ , (22)

along with

⇠ =
3

2rg
, b(⌧) = � ⇠

1� ⇠⌧
. (23)

In the local frame we search for a solution obeying the
Dirichlet boundary conditions at the plates

 (⌧, x, ~x?)|x=0 =  (⌧, x, ~x?)|x=L = 0. (24)

Let us introduce, for convenience, the auxiliary field ' =

e
1
2

R
d⌧b(⌧) , whose dynamics is the same as that of  .

Notice that ' obeys the same boundary conditions (24).
From (21) we get


2+

1

4

⇠2

(1� ⇠⌧)2

�
' = 0. (25)

We guess the following solution, obeying (24)

'(xa) ⇠ ei
~k?·~x? sin

✓
n⇡

L
x

◆
�(⌧), n 2 N (26)

where ~k? ⌘ (ky, kz) and ~x? ⌘ (y, z). We point out that
the same spatial dependence as in the flat spacetime case
has been assumed, since we have supposed no relevant

tidal e↵ects inside the cavity (L ⌧ rg). �(⌧) is a func-
tion of the proper (local) time, to be evaluated below.
Plugging (26) in (25) we get the following equation for
�(⌧)


@2⌧ + !2

k +
1

4

⇠2

(1� ⇠⌧)2

�
� = 0, (27)

where ~k ⌘ (n⇡/L,~k?) and

!2
k = k2? +

✓
n⇡

L

◆2

. (28)

The adimensional quantity 1
1�⇠⌧ can be used to get an

estimate of the typical rate of change of the space-time
geometry surrounding the falling cavity. If we put as a
time-scale

�⌧ =


@⌧

✓
1

1� ⇠⌧

◆��1

, (29)

then the field modes can be considered almost stationary
by the observer if the following condition holds true

�⌧ � 1

min{!n}
' L. (30)

On the other hand, if �⌧  L, the rate of change of
the surrounding geometry is too high to assume a steady
state for the field modes, and a rather di↵erent approach
must be taken into account to handle a scenario in which
the dynamical e↵ects (particle creation out of the quan-
tum vacuum) are expected to play a dominant rôle.
It is straightforward to check that (30) is satisfied in

the whole time range �1 < ⌧ < 0, describing the free
fall from infinity to the black hole horizon. Actually, in
that range we have �⌧ � 1

⇠ ' rg � L.

Eq.(27) can be formally solved in terms of Bessel fun-
cions over the whole time domain �1 < ⌧ < 1

⇠ (from

spatial infinity up to the singularity; see below). How-
ever, beyond the horizon, the solution would become
meaningless as the cavity approaches the singularity:
eventually the cavity size (L) would become compara-
ble with the spacetime curvature and the construction of
a local frame would fail, as well as the assumptions listed
in section III. To avoid such complications we will confine
our analysis to the black hole exterior.

B. Field mode solutions in a falling Casimir cavity

We now need to evaluate �(⌧). Define ⌘ = 1�⇠⌧ . Then

@2�

@⌘2
+

✓
!2
k

⇠2
+

1

4⌘2

◆
� = 0, (31)

whose general solution, in terms of Bessel functions J0
and Y0, is

�k(⌘) = Ap
⌘J0

�
!k⌘/⇠

�
+ Bp⌘Y0

�
!k⌘/⇠

�
. (32)
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The choice

A =
1

2

r
⇡

⇠
, B =

i

2

r
⇡

⇠
, (33)

yields, in terms of Hankel functions of second kind,

�k(⌧) =
1

2

r
⇡

⇠
(1� ⇠⌧)H(1)

0

✓
!k

⇠
(1� ⇠⌧)

◆
, (34)

which has the required minkowskian (plane wave) be-
haviour at ⌧ ! �1, when the cavity is at the spatial
infinity with respect to the black hole

�k(⌧) ⇠
1p
2!k

e�i!⌧ , ⌧ ! �1. (35)

The above normalized field modes (34) will be used in
section VII-B, when discussing particle creation inside
the cavity.

V. PROPER-TIME SCHWINGER’S APPROACH

In this section we will follow Schwinger’s proper time
approach [24–26] in order to derive an expression of the
(one loop) e↵ective actionW for the scalar field inside the
Casimir cavity. In presence of a nonstationary gravita-
tional background, the e↵ective action may become com-

plex. In such case the real part of W describes phenom-
ena related to the vacuum polarization, as the (static)
Casimir e↵ect, meanwhile the imaginary part, is respon-
sible for particle production. Actually, in the so-called
in-out formalism the imaginary part of the e↵ective ac-
tion is related to the vacuum persistence amplitude

h0 out|0 ini = eiW , (36)
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e↵ective action.

A. Computing the E↵ective Action
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Ĥ = Ĥ0 + V̂ , (37)
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Ĥ0 = @2
⌧ � ~r2 ⌘ �p̂20 + ~̂p2. (38)
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W = lim
⌫!0

W (⌫), (39)

where

W (⌫) = � i

2

Z 1

0
ds s⌫�1Tr e�isĤ , (40)

and the limit ⌫ ! 0 has to be taken at the end of calcu-
lations. In (40) the trace

Tr e�isĤ =
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d4xhx|e�isĤ |xi, (41)
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⇥hp0, p?, n|e�isĤ0+V̂ |p00, p0?, n0ihp00, p0?, n0|⌧, x?, xi,
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X
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dp0 dp

0
0 dp?dp

0
?. (43)

Since [~̂p, V̂ ] = 0, (42) can be factorized as
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(44)

where

X(~x) = hx?, x|p?, ni (45)

T (⌧) = h⌧ |p0i, (46)

are, respectively, the eigenfunctions of �~r2 and
�
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�
, namely [see (34)]
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◆
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(47)

(notice that in what follows the states |↵i are normalized
according to the standard Dirac prescription: h↵|↵0i =
�(↵,↵0), where �(↵,↵0) is the Kronecker symbol if is a
discrete set, and the Dirac delta if it is continuous).
Using (47) in (44) and performing the x-integration we

have
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where |H(1)
0 |2 = H(1)

0
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H(1)

0 . After a
R
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integration we get
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5

given by (18).

IV. THE SCALAR FIELD

For the sake of simplicity we will consider a massless
scalar field  (x↵) inside the cavity. We also assume the
cavity walls to be perfectly reflecting, so that the field
obeys the Dirichlet boundary conditions at the plates.
The generally covariant Klein-Gordon equation is [20]

1p
�g

@µ
⇥p

�ggµ⌫@⌫ (x
↵)
⇤
+ R(x�) (x↵) = 0, (20)

where  is a numerical parameter describing the coupling
between the matter field and the background gravita-
tional field and R(x�) is the scalar curvature. In what
follows we will suppose minimal coupling, so that  = 0.

A. Tetrad form of the field equation

The Klein-Gordon equation in the tetrad frame (19)
reads [27] [32]

(2+ V̂ ) = 0, (21)

where 2 = ⌘bc@b@c is the flat d’Alembertian in the ob-
server’s Minkowski local frame and

V̂ =
1

e
@µ(ee

µ
â)@

â = � ⇠

1� ⇠⌧
@⌧ = b(⌧)@⌧ , (22)

along with

⇠ =
3

2rg
, b(⌧) = � ⇠

1� ⇠⌧
. (23)

In the local frame we search for a solution obeying the
Dirichlet boundary conditions at the plates

 (⌧, x, ~x?)|x=0 =  (⌧, x, ~x?)|x=L = 0. (24)

Let us introduce, for convenience, the auxiliary field ' =

e
1
2

R
d⌧b(⌧) , whose dynamics is the same as that of  .

Notice that ' obeys the same boundary conditions (24).
From (21) we get


2+

1

4

⇠2

(1� ⇠⌧)2

�
' = 0. (25)

We guess the following solution, obeying (24)

'(xa) ⇠ ei
~k?·~x? sin

✓
n⇡

L
x

◆
�(⌧), n 2 N (26)

where ~k? ⌘ (ky, kz) and ~x? ⌘ (y, z). We point out that
the same spatial dependence as in the flat spacetime case
has been assumed, since we have supposed no relevant

tidal e↵ects inside the cavity (L ⌧ rg). �(⌧) is a func-
tion of the proper (local) time, to be evaluated below.
Plugging (26) in (25) we get the following equation for
�(⌧)


@2⌧ + !2

k +
1

4

⇠2

(1� ⇠⌧)2

�
� = 0, (27)

where ~k ⌘ (n⇡/L,~k?) and

!2
k = k2? +

✓
n⇡

L

◆2

. (28)

The adimensional quantity 1
1�⇠⌧ can be used to get an

estimate of the typical rate of change of the space-time
geometry surrounding the falling cavity. If we put as a
time-scale

�⌧ =


@⌧

✓
1

1� ⇠⌧

◆��1

, (29)

then the field modes can be considered almost stationary
by the observer if the following condition holds true

�⌧ � 1

min{!n}
' L. (30)

On the other hand, if �⌧  L, the rate of change of
the surrounding geometry is too high to assume a steady
state for the field modes, and a rather di↵erent approach
must be taken into account to handle a scenario in which
the dynamical e↵ects (particle creation out of the quan-
tum vacuum) are expected to play a dominant rôle.
It is straightforward to check that (30) is satisfied in

the whole time range �1 < ⌧ < 0, describing the free
fall from infinity to the black hole horizon. Actually, in
that range we have �⌧ � 1

⇠ ' rg � L.

Eq.(27) can be formally solved in terms of Bessel fun-
cions over the whole time domain �1 < ⌧ < 1

⇠ (from

spatial infinity up to the singularity; see below). How-
ever, beyond the horizon, the solution would become
meaningless as the cavity approaches the singularity:
eventually the cavity size (L) would become compara-
ble with the spacetime curvature and the construction of
a local frame would fail, as well as the assumptions listed
in section III. To avoid such complications we will confine
our analysis to the black hole exterior.

B. Field mode solutions in a falling Casimir cavity

We now need to evaluate �(⌧). Define ⌘ = 1�⇠⌧ . Then

@2�

@⌘2
+

✓
!2
k

⇠2
+

1

4⌘2

◆
� = 0, (31)

whose general solution, in terms of Bessel functions J0
and Y0, is

�k(⌘) = Ap
⌘J0

�
!k⌘/⇠

�
+ Bp⌘Y0

�
!k⌘/⇠

�
. (32)

,
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3. The Casimir Cavity and the Comoving Frame

The measurement of Casimir energy inside the falling cavity is performed by a

comoving observer. The cavity plates (of area A and separated by a distance L, such
that L ⌧

p
A) are taken orthogonal to the radial falling direction a. Furthermore

• the cavity is taken to fall from spatial infinity with zero initial velocity and

zero angular momentum;

• the typical cavity size is much smaller than the gravitational radius of the

black hole, so that, in particular, L ⌧ rg, with L being the plate separation

• the cavity is rigid; its dimensions and shape do not su↵er any distortion, in

spite of external tidal forces. Such assumption holds true provided L ⌧ rg.
Di↵erently stated, we neglect tidal e↵ects15 inside the falling cavity.

• the cavity follows a true geodesic motion; hence we neglect other non-

gravitational external e↵ects.

4. Proper-time Schwinger’s approach

For the sake of simplicity we will consider a massless scalar field. We also assume

the field to obey the Dirichlet boundary conditions at the plates. In the tetrad

frame adapted to the Lemâıtre chart the Klein-Gordon equation reads16
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3
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. (2)

From (2), the proper-time Hamiltonian Ĥ reads Ĥ = Ĥ0+V̂ , where Ĥ0 = @2
⌧�~r2 ⌘

�p̂20 + ~̂p2. As usual, we write the e↵ective action W = lim⌫!0 W (⌫), where17,18

W (⌫) = � i

2

Z 1

0
ds s⌫�1Tr e�isĤ , (3)

and the limit ⌫ ! 0 has to be taken at the end of calculations. The trace has to be

evaluated all over the continuous as well the discrete degrees of freedom, including

those of spacetime. After a quite long algebra we get

W (⌫) = � iA
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,

(4)

with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.
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with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.
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with H(1)
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23 being a Hankel and a Meijer G-function, respectively. The
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0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).
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with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.
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[see, e.g.,   J. Schwinger, Lett. Math. Phys. 24, 59 (1992)].
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static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.
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3. The Casimir Cavity and the Comoving Frame

The measurement of Casimir energy inside the falling cavity is performed by a

comoving observer. The cavity plates (of area A and separated by a distance L, such
that L ⌧

p
A) are taken orthogonal to the radial falling direction a. Furthermore

• the cavity is taken to fall from spatial infinity with zero initial velocity and

zero angular momentum;

• the typical cavity size is much smaller than the gravitational radius of the

black hole, so that, in particular, L ⌧ rg, with L being the plate separation

• the cavity is rigid; its dimensions and shape do not su↵er any distortion, in

spite of external tidal forces. Such assumption holds true provided L ⌧ rg.
Di↵erently stated, we neglect tidal e↵ects15 inside the falling cavity.

• the cavity follows a true geodesic motion; hence we neglect other non-

gravitational external e↵ects.

4. Proper-time Schwinger’s approach

For the sake of simplicity we will consider a massless scalar field. We also assume

the field to obey the Dirichlet boundary conditions at the plates. In the tetrad

frame adapted to the Lemâıtre chart the Klein-Gordon equation reads16


⇤+

1

4

⇠2

(1� ⇠⌧)2

�
' = 0, ⇠ =

3

2rg
. (2)

From (2), the proper-time Hamiltonian Ĥ reads Ĥ = Ĥ0+V̂ , where Ĥ0 = @2
⌧�~r2 ⌘

�p̂20 + ~̂p2. As usual, we write the e↵ective action W = lim⌫!0 W (⌫), where17,18

W (⌫) = � i

2

Z 1

0
ds s⌫�1Tr e�isĤ , (3)

and the limit ⌫ ! 0 has to be taken at the end of calculations. The trace has to be

evaluated all over the continuous as well the discrete degrees of freedom, including

those of spacetime. After a quite long algebra we get

W (⌫) = � iA
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with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.
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THE EFFECTIVE ACTION – step 1

u USING THE FIELD MODES FOUND ABOVE  WE FIND, AFTER A 
QUITE LONG ALGEBRA (involving a lot of special function
properties):
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• the cavity is rigid; its dimensions and shape do not su↵er any distortion, in

spite of external tidal forces. Such assumption holds true provided L ⌧ rg.
Di↵erently stated, we neglect tidal e↵ects15 inside the falling cavity.

• the cavity follows a true geodesic motion; hence we neglect other non-

gravitational external e↵ects.

4. Proper-time Schwinger’s approach

For the sake of simplicity we will consider a massless scalar field. We also assume

the field to obey the Dirichlet boundary conditions at the plates. In the tetrad

frame adapted to the Lemâıtre chart the Klein-Gordon equation reads16
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From (2), the proper-time Hamiltonian Ĥ reads Ĥ = Ĥ0+V̂ , where Ĥ0 = @2
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�p̂20 + ~̂p2. As usual, we write the e↵ective action W = lim⌫!0 W (⌫), where17,18
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ds s⌫�1Tr e�isĤ , (3)

and the limit ⌫ ! 0 has to be taken at the end of calculations. The trace has to be

evaluated all over the continuous as well the discrete degrees of freedom, including

those of spacetime. After a quite long algebra we get
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with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.

Hankel function Meijer G-function

7

At any fixed ⌧ , define q = p0(1� ⇠⌧)/⇠. Then

Tr e�isĤ =
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(51)

Rewriting |H(1)
0 (q)|2 = H(1)

0 (q)H(2)
0 (q) = J2

0 (q) + Y 2
0 (q)

and using the integral representation involving the Bessel
functions J0, Y0 and K0 [28, 29]

J0(a)J0(b) + Y0(a)Y0(b)

=
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we obtain
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Performing the q-integration we get
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where Ei(z) is the exponential integral function and

� =
s⇠2

(1� ⇠⌧)2
. (55)

Performing the y-integration and substituting in (40) fi-
nally yields

W (⌫) = � iA
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with G31
23 being a Meijer G-function. We see that (56) is

made of two contributions, due to the two terms in the
square brackets. Let us consider each of them separately.

B. Vacuum polarization

The first term in (56) reads

WH(⌫)
def
= � iA
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Expanding H(1)
0 in powers of the adimensional parameter

� we obtain, after some algebra and use of the Euler
Gamma function �(z) =

R1
0 tz�1e�tdt and the Riemann

Zeta function ⇣(z) =
P1
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where [30]

a0 = 1,

ak =
1

k!8k
[(�12)(�32) · · · (�(2k � 1)2)], k � 1.

(59)

Taking the limit ⌫ ! 0 in (58) we get a real quantity.

C. Vacuum persistence amplitude

Consider now the contribution to W (⌫) due to the sec-
ond term in the square brackets of (56). Let us define
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(60)

Putting z = is(n⇡/L)2, � = sn2⇡2

�L2 =
�
n⇡
⇠L

�2
(1�⇠⌧)2, and

appealing to some well-known properties of the Mejier G
functions, we rewrite iWG(⌫) as

iWG(⌫)= �A(�i)⌫�3
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THE EFFECTIVE ACTION – step 2

u CAREFUL INSPECTION OF              SHOWS US TWO 
CONTRIBUTIONS, ONE REAL :

8

(61)

Inspection of (61) shows that iWG = lim⌫!0 iWG(⌫) is an
imaginary quantity. Hence, as anticipated, we obtained
a complex e↵ective action W . The real part

<eW = lim
⌫!0

WH(⌫). (62)

is responsible for vacuum polarization and related phe-
nomena, as the static Casimir e↵ect, as we will see in the
next section.

The imaginary part reads

=mW = lim
⌫!0

WG(⌫), (63)

implying dynamical e↵ects, as field quanta creation inside
the cavity. We will discuss particle creation in sect. VII.

VI. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
Following Schwinger, we have from (58)

h✏Casi = � lim
⌫!0

1
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(64)

Consider now the leading term (k = 0) in (64). We find

h✏Casi(0) = � ⇡3/2

16L4
a0�(�3/2)⇣(�3) = � ⇡2

1440L4
, (65)

namely the usual flat result for the Casimir energy den-
sity. We now move to the first order correction (k = 1)
to the Casimir energy, thus obtaining

h✏Casi(1) = �⇡3/2⇠2

8L2
(�1/8)

1

(1� ⇠⌧)2
�(�1/2)⇣(�1)

=
⇠2

384L2

1

(1� ⇠⌧)2
. (66)

The Casimir energy density is then

h✏Casi = � ⇡2

1440L4
+

1

384L2

⇠2

(1� ⇠⌧)2
+O(⇠4). (67)

At the horizon crossing (⌧ ! 0�), we have (recall that
⇠ = 3/(2rg))

h✏Casihor = � ⇡2

1440L4


1� 135

(4⇡)2

✓
L

rg

◆2�
. (68)

Eq.(67) tells us how the corrections to the Casimir en-
ergy density change with the proper time as the cavity
approaches the black hole horizon. (67) holds true as

far as the adiabatic regime is taken into account, namely
provided that the condition (30) is fulfilled.
The above result shows that the comoving observer

measures a small reduction in the (absolute) value of the
(negative) Casimir energy near the black hole horizon.
At a first glance, this may seem rather puzzling, as one
would expect no change with respect to the usual flat
spacetime result h✏Casistat = � ⇡2

1440L4 for a freely falling

Casimir cavity, due to the Equivalence Principle.
We would like to suggest a possible answer to such

issue. Casimir e↵ect can be defined as the stress on the
bounding surfaces due to quantum field confinement. On
the other hand, when spacetime geometry is taken into
account, the latter contributes as well in defining the field
confinement. Generally speaking, the boundaries (what-
ever their origin may be) restrict the modes of the in-
volved quantum field, giving rise to a change in the field
vacuum energy. When evaluating the Casimir energy, the
encountered divergences are usually cured by means of
various techniques, as those based upon the zeta-function
renormalization we used in the present paper. Any renor-
malization procedure implies - more or less explicitly - a
mode cuto↵, so that the renormalized stress-energy ten-
sor T ren

µ⌫ is determined by the low-energy contribution
of Tµ⌫ , thus probing the global structure of the space-
time. Hence, the local measurements performed by the
comoving geodesic observer, are related to a non-local

field stress-energy tensor Tµ⌫ . The renormalized stress-
energy tensor carries information about the background
spacetime metric. The latter, in turn, encodes both grav-
itational and inertial contributions. So, the global nature
of the stress-energy tensor allows for a local measurement
to be sensitive to the cavity fall.

VII. DYNAMICAL EFFECTS: PARTICLE
CREATION

We now move to explore the counterpart of the static
Casimir e↵ect, namely the dynamical e↵ects induced by a
time-varying background experienced by the falling cav-
ity. As discussed above, we are basically working in the
adiabiatic limit; this will help us in evaluating the con-
tribution to the vacuum energy in terms of created field
quanta inside the cavity. Again, the excitation of quanta
from vacuum can be explained as a local manifestation of
a non-local field Tµ⌫ probing the whole spacetime struc-
ture.

A. Persistence Amplitude and particle creation

Particle creation is related to the vacuum persistence
amplitude, i.e., the imaginary part of the e↵ective action
W . In the in-out formalism we have

|h0 out|0 ini|2 = e2i=mW , (69)

7

At any fixed ⌧ , define q = p0(1� ⇠⌧)/⇠. Then
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and using the integral representation involving the Bessel
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=
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we obtain
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Performing the q-integration we get
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where Ei(z) is the exponential integral function and
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. (55)

Performing the y-integration and substituting in (40) fi-
nally yields
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with G31
23 being a Meijer G-function. We see that (56) is

made of two contributions, due to the two terms in the
square brackets. Let us consider each of them separately.

B. Vacuum polarization

The first term in (56) reads

WH(⌫)
def
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Expanding H(1)
0 in powers of the adimensional parameter

� we obtain, after some algebra and use of the Euler
Gamma function �(z) =

R1
0 tz�1e�tdt and the Riemann

Zeta function ⇣(z) =
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where [30]

a0 = 1,
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(59)

Taking the limit ⌫ ! 0 in (58) we get a real quantity.

C. Vacuum persistence amplitude

Consider now the contribution to W (⌫) due to the sec-
ond term in the square brackets of (56). Let us define
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(60)

Putting z = is(n⇡/L)2, � = sn2⇡2
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appealing to some well-known properties of the Mejier G
functions, we rewrite iWG(⌫) as
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3. The Casimir Cavity and the Comoving Frame

The measurement of Casimir energy inside the falling cavity is performed by a

comoving observer. The cavity plates (of area A and separated by a distance L, such
that L ⌧

p
A) are taken orthogonal to the radial falling direction a. Furthermore

• the cavity is taken to fall from spatial infinity with zero initial velocity and

zero angular momentum;

• the typical cavity size is much smaller than the gravitational radius of the

black hole, so that, in particular, L ⌧ rg, with L being the plate separation

• the cavity is rigid; its dimensions and shape do not su↵er any distortion, in

spite of external tidal forces. Such assumption holds true provided L ⌧ rg.
Di↵erently stated, we neglect tidal e↵ects15 inside the falling cavity.

• the cavity follows a true geodesic motion; hence we neglect other non-

gravitational external e↵ects.

4. Proper-time Schwinger’s approach

For the sake of simplicity we will consider a massless scalar field. We also assume

the field to obey the Dirichlet boundary conditions at the plates. In the tetrad

frame adapted to the Lemâıtre chart the Klein-Gordon equation reads16


⇤+

1

4

⇠2

(1� ⇠⌧)2

�
' = 0, ⇠ =

3

2rg
. (2)
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those of spacetime. After a quite long algebra we get
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with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.
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THE EFFECTIVE ACTION – step 3

u THE OTHER CONTRIBUTION IS IMAGINARY:

8

(61)

Inspection of (61) shows that iWG = lim⌫!0 iWG(⌫) is an
imaginary quantity. Hence, as anticipated, we obtained
a complex e↵ective action W . The real part

<eW = lim
⌫!0

WH(⌫). (62)

is responsible for vacuum polarization and related phe-
nomena, as the static Casimir e↵ect, as we will see in the
next section.

The imaginary part reads

=mW = lim
⌫!0

WG(⌫), (63)

implying dynamical e↵ects, as field quanta creation inside
the cavity. We will discuss particle creation in sect. VII.

VI. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
Following Schwinger, we have from (58)
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Consider now the leading term (k = 0) in (64). We find

h✏Casi(0) = � ⇡3/2

16L4
a0�(�3/2)⇣(�3) = � ⇡2

1440L4
, (65)

namely the usual flat result for the Casimir energy den-
sity. We now move to the first order correction (k = 1)
to the Casimir energy, thus obtaining

h✏Casi(1) = �⇡3/2⇠2
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The Casimir energy density is then

h✏Casi = � ⇡2
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+
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At the horizon crossing (⌧ ! 0�), we have (recall that
⇠ = 3/(2rg))
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Eq.(67) tells us how the corrections to the Casimir en-
ergy density change with the proper time as the cavity
approaches the black hole horizon. (67) holds true as

far as the adiabatic regime is taken into account, namely
provided that the condition (30) is fulfilled.
The above result shows that the comoving observer

measures a small reduction in the (absolute) value of the
(negative) Casimir energy near the black hole horizon.
At a first glance, this may seem rather puzzling, as one
would expect no change with respect to the usual flat
spacetime result h✏Casistat = � ⇡2

1440L4 for a freely falling

Casimir cavity, due to the Equivalence Principle.
We would like to suggest a possible answer to such

issue. Casimir e↵ect can be defined as the stress on the
bounding surfaces due to quantum field confinement. On
the other hand, when spacetime geometry is taken into
account, the latter contributes as well in defining the field
confinement. Generally speaking, the boundaries (what-
ever their origin may be) restrict the modes of the in-
volved quantum field, giving rise to a change in the field
vacuum energy. When evaluating the Casimir energy, the
encountered divergences are usually cured by means of
various techniques, as those based upon the zeta-function
renormalization we used in the present paper. Any renor-
malization procedure implies - more or less explicitly - a
mode cuto↵, so that the renormalized stress-energy ten-
sor T ren

µ⌫ is determined by the low-energy contribution
of Tµ⌫ , thus probing the global structure of the space-
time. Hence, the local measurements performed by the
comoving geodesic observer, are related to a non-local

field stress-energy tensor Tµ⌫ . The renormalized stress-
energy tensor carries information about the background
spacetime metric. The latter, in turn, encodes both grav-
itational and inertial contributions. So, the global nature
of the stress-energy tensor allows for a local measurement
to be sensitive to the cavity fall.

VII. DYNAMICAL EFFECTS: PARTICLE
CREATION

We now move to explore the counterpart of the static
Casimir e↵ect, namely the dynamical e↵ects induced by a
time-varying background experienced by the falling cav-
ity. As discussed above, we are basically working in the
adiabiatic limit; this will help us in evaluating the con-
tribution to the vacuum energy in terms of created field
quanta inside the cavity. Again, the excitation of quanta
from vacuum can be explained as a local manifestation of
a non-local field Tµ⌫ probing the whole spacetime struc-
ture.

A. Persistence Amplitude and particle creation

Particle creation is related to the vacuum persistence
amplitude, i.e., the imaginary part of the e↵ective action
W . In the in-out formalism we have

|h0 out|0 ini|2 = e2i=mW , (69)
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where Ei(z) is the exponential integral function and
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with G31
23 being a Meijer G-function. We see that (56) is

made of two contributions, due to the two terms in the
square brackets. Let us consider each of them separately.

B. Vacuum polarization

The first term in (56) reads

WH(⌫)
def
= � iA

32⇡5/2

Z 1

0
ds

Z T

�1
d⌧

X

n

s⌫�3/2�1

�1/2

⇥e�is(n⇡/L)2

⇡3/2e�i/(2�)H(1)

0

�
1/(2�)

��
. (57)
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Taking the limit ⌫ ! 0 in (58) we get a real quantity.

C. Vacuum persistence amplitude
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appealing to some well-known properties of the Mejier G
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(61)

Inspection of (61) shows that iWG = lim⌫!0 iWG(⌫) is an
imaginary quantity. Hence, as anticipated, we obtained
a complex e↵ective action W . The real part

<eW = lim
⌫!0

WH(⌫). (62)

is responsible for vacuum polarization and related phe-
nomena, as the static Casimir e↵ect, as we will see in the
next section.

The imaginary part reads

=mW = lim
⌫!0

WG(⌫), (63)

implying dynamical e↵ects, as field quanta creation inside
the cavity. We will discuss particle creation in sect. VII.

VI. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
Following Schwinger, we have from (58)
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Consider now the leading term (k = 0) in (64). We find

h✏Casi(0) = � ⇡3/2
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1440L4
, (65)

namely the usual flat result for the Casimir energy den-
sity. We now move to the first order correction (k = 1)
to the Casimir energy, thus obtaining

h✏Casi(1) = �⇡3/2⇠2
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The Casimir energy density is then

h✏Casi = � ⇡2
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At the horizon crossing (⌧ ! 0�), we have (recall that
⇠ = 3/(2rg))
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Eq.(67) tells us how the corrections to the Casimir en-
ergy density change with the proper time as the cavity
approaches the black hole horizon. (67) holds true as

far as the adiabatic regime is taken into account, namely
provided that the condition (30) is fulfilled.
The above result shows that the comoving observer

measures a small reduction in the (absolute) value of the
(negative) Casimir energy near the black hole horizon.
At a first glance, this may seem rather puzzling, as one
would expect no change with respect to the usual flat
spacetime result h✏Casistat = � ⇡2

1440L4 for a freely falling

Casimir cavity, due to the Equivalence Principle.
We would like to suggest a possible answer to such

issue. Casimir e↵ect can be defined as the stress on the
bounding surfaces due to quantum field confinement. On
the other hand, when spacetime geometry is taken into
account, the latter contributes as well in defining the field
confinement. Generally speaking, the boundaries (what-
ever their origin may be) restrict the modes of the in-
volved quantum field, giving rise to a change in the field
vacuum energy. When evaluating the Casimir energy, the
encountered divergences are usually cured by means of
various techniques, as those based upon the zeta-function
renormalization we used in the present paper. Any renor-
malization procedure implies - more or less explicitly - a
mode cuto↵, so that the renormalized stress-energy ten-
sor T ren

µ⌫ is determined by the low-energy contribution
of Tµ⌫ , thus probing the global structure of the space-
time. Hence, the local measurements performed by the
comoving geodesic observer, are related to a non-local

field stress-energy tensor Tµ⌫ . The renormalized stress-
energy tensor carries information about the background
spacetime metric. The latter, in turn, encodes both grav-
itational and inertial contributions. So, the global nature
of the stress-energy tensor allows for a local measurement
to be sensitive to the cavity fall.

VII. DYNAMICAL EFFECTS: PARTICLE
CREATION

We now move to explore the counterpart of the static
Casimir e↵ect, namely the dynamical e↵ects induced by a
time-varying background experienced by the falling cav-
ity. As discussed above, we are basically working in the
adiabiatic limit; this will help us in evaluating the con-
tribution to the vacuum energy in terms of created field
quanta inside the cavity. Again, the excitation of quanta
from vacuum can be explained as a local manifestation of
a non-local field Tµ⌫ probing the whole spacetime struc-
ture.

A. Persistence Amplitude and particle creation

Particle creation is related to the vacuum persistence
amplitude, i.e., the imaginary part of the e↵ective action
W . In the in-out formalism we have

|h0 out|0 ini|2 = e2i=mW , (69)
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5. The Static Casimir E↵ect

From the real part of (4) we obtain h✏Casi = � lim⌫!0
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Taking the leading (k = 0) and the next to leading order (k = 1) term, we get

h✏Casi = � ⇡2
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+
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The first term is the (expected) usual flat Casimir energy density. At the horizon

crossing (⌧ ! 0�), we have (recall that ⇠ = 3/(2rg))

h✏Casihor = � ⇡2
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Eq.(6) tells us how the corrections to the Casimir energy density change with the

proper time as the cavity approaches the black hole horizon.

6. Bunch-Davies Vacuum and Particle Creation

The field modes related to (2) are proportional to
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which have the required minkowskian (plane wave) behaviour at ⌘ ! 1 (i.e. ⌧ !
�1), when the cavity is at the spatial infinity with respect to the black hole.

The above modes satisfy the Bunch-Davies vacuum requirements19–21. From these

modes we easily compute the Bogolubov coe�cients b
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, |�k|2 =
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related to particle creation. Note

that, as ⌧ ! �1, |↵k|2 ⇠ 1 and |�k|2 ⇠ 0, i.e., we have no particle creation

in the far past, as expected, meanwhile at the horizon crossing (⌧ = 0) we have

|�k|2 = ⇠2

16!2
k
. Although the number of created quanta is a divergent quantity, we

can get a finite result for the energy density h✏dyni of the created quanta, writing
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Comparing the above result with (6), describing the vacuum energy density per-

taining to the Casimir e↵ect, we see, quite interestingly, that the small reduction

b(An interesting approach, requiring no detailed knowledge of state normalization, based upon

the paper by Hamilton et al. (A. Hamilton, D. Kabat and M. Parikh, JHEP 0407, 024 (2004)),

may be used as well to obtain the same result).
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k(1� ⇠⌧)2

, (9)

satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related to particle creation. Note

that, as ⌧ ! �1, |↵k|2 ⇠ 1 and |�k|2 ⇠ 0, i.e., we have no particle creation

in the far past, as expected, meanwhile at the horizon crossing (⌧ = 0) we have

|�k|2 = ⇠2

16!2
k
. Although the number of created quanta is a divergent quantity, we

can get a finite result for the energy density h✏dyni of the created quanta, writing

h✏dyni =
1

AL


A

(2⇡)2

X

n

Z
d2k?

⇠2

16!2
k⌘

2
!k

�
=

⇠2

384L2(1� ⇠⌧)2
. (10)

Comparing the above result with (6), describing the vacuum energy density per-

taining to the Casimir e↵ect, we see, quite interestingly, that the small reduction

b(An interesting approach, requiring no detailed knowledge of state normalization, based upon

the paper by Hamilton et al. (A. Hamilton, D. Kabat and M. Parikh, JHEP 0407, 024 (2004)),

may be used as well to obtain the same result).
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3. The Casimir Cavity and the Comoving Frame

The measurement of Casimir energy inside the falling cavity is performed by a

comoving observer. The cavity plates (of area A and separated by a distance L, such
that L ⌧

p
A) are taken orthogonal to the radial falling direction a. Furthermore

• the cavity is taken to fall from spatial infinity with zero initial velocity and

zero angular momentum;

• the typical cavity size is much smaller than the gravitational radius of the

black hole, so that, in particular, L ⌧ rg, with L being the plate separation

• the cavity is rigid; its dimensions and shape do not su↵er any distortion, in

spite of external tidal forces. Such assumption holds true provided L ⌧ rg.
Di↵erently stated, we neglect tidal e↵ects15 inside the falling cavity.

• the cavity follows a true geodesic motion; hence we neglect other non-

gravitational external e↵ects.

4. Proper-time Schwinger’s approach

For the sake of simplicity we will consider a massless scalar field. We also assume

the field to obey the Dirichlet boundary conditions at the plates. In the tetrad

frame adapted to the Lemâıtre chart the Klein-Gordon equation reads16


⇤+

1

4

⇠2

(1� ⇠⌧)2

�
' = 0, ⇠ =

3

2rg
. (2)

From (2), the proper-time Hamiltonian Ĥ reads Ĥ = Ĥ0+V̂ , where Ĥ0 = @2
⌧�~r2 ⌘

�p̂20 + ~̂p2. As usual, we write the e↵ective action W = lim⌫!0 W (⌫), where17,18

W (⌫) = � i

2

Z 1

0
ds s⌫�1Tr e�isĤ , (3)

and the limit ⌫ ! 0 has to be taken at the end of calculations. The trace has to be

evaluated all over the continuous as well the discrete degrees of freedom, including

those of spacetime. After a quite long algebra we get

W (⌫) = � iA

32⇡5/2

Z 1

0
ds

Z T

�1
d⌧

X

n

s⌫�3/2�1

�1/2
e�is(n⇡/L)2

⇥

⇡3/2e�i/(2�)H(1)

0

�
1/(2�)

�
+ 2G31

23

✓
� i

�

����
0 1/2
0 0 0

◆�
,

(4)

with H(1)
0 and G31

23 being a Hankel and a Meijer G-function, respectively. The

H(1)
0 -dependent (real) part is responsible for the vacuum polarization (namely, the

static Casimir e↵ect), while the G-dependent (imaginary) part is responsible of the

vacuum persistence amplitude (i.e., particle creation).

aSuch a choice has been made only for the sake of definiteness.

8

(61)

Inspection of (61) shows that iWG = lim⌫!0 iWG(⌫) is an
imaginary quantity. Hence, as anticipated, we obtained
a complex e↵ective action W . The real part

<eW = lim
⌫!0

WH(⌫). (62)

is responsible for vacuum polarization and related phe-
nomena, as the static Casimir e↵ect, as we will see in the
next section.

The imaginary part reads

=mW = lim
⌫!0

WG(⌫), (63)

implying dynamical e↵ects, as field quanta creation inside
the cavity. We will discuss particle creation in sect. VII.

VI. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
Following Schwinger, we have from (58)

h✏Casi = � lim
⌫!0

1
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(64)

Consider now the leading term (k = 0) in (64). We find

h✏Casi(0) = � ⇡3/2

16L4
a0�(�3/2)⇣(�3) = � ⇡2

1440L4
, (65)

namely the usual flat result for the Casimir energy den-
sity. We now move to the first order correction (k = 1)
to the Casimir energy, thus obtaining

h✏Casi(1) = �⇡3/2⇠2

8L2
(�1/8)

1

(1� ⇠⌧)2
�(�1/2)⇣(�1)

=
⇠2

384L2

1

(1� ⇠⌧)2
. (66)

The Casimir energy density is then

h✏Casi = � ⇡2

1440L4
+

1

384L2

⇠2

(1� ⇠⌧)2
+O(⇠4). (67)

At the horizon crossing (⌧ ! 0�), we have (recall that
⇠ = 3/(2rg))

h✏Casihor = � ⇡2

1440L4


1� 135

(4⇡)2

✓
L

rg

◆2�
. (68)

Eq.(67) tells us how the corrections to the Casimir en-
ergy density change with the proper time as the cavity
approaches the black hole horizon. (67) holds true as

far as the adiabatic regime is taken into account, namely
provided that the condition (30) is fulfilled.
The above result shows that the comoving observer

measures a small reduction in the (absolute) value of the
(negative) Casimir energy near the black hole horizon.
At a first glance, this may seem rather puzzling, as one
would expect no change with respect to the usual flat
spacetime result h✏Casistat = � ⇡2

1440L4 for a freely falling

Casimir cavity, due to the Equivalence Principle.
We would like to suggest a possible answer to such

issue. Casimir e↵ect can be defined as the stress on the
bounding surfaces due to quantum field confinement. On
the other hand, when spacetime geometry is taken into
account, the latter contributes as well in defining the field
confinement. Generally speaking, the boundaries (what-
ever their origin may be) restrict the modes of the in-
volved quantum field, giving rise to a change in the field
vacuum energy. When evaluating the Casimir energy, the
encountered divergences are usually cured by means of
various techniques, as those based upon the zeta-function
renormalization we used in the present paper. Any renor-
malization procedure implies - more or less explicitly - a
mode cuto↵, so that the renormalized stress-energy ten-
sor T ren

µ⌫ is determined by the low-energy contribution
of Tµ⌫ , thus probing the global structure of the space-
time. Hence, the local measurements performed by the
comoving geodesic observer, are related to a non-local

field stress-energy tensor Tµ⌫ . The renormalized stress-
energy tensor carries information about the background
spacetime metric. The latter, in turn, encodes both grav-
itational and inertial contributions. So, the global nature
of the stress-energy tensor allows for a local measurement
to be sensitive to the cavity fall.

VII. DYNAMICAL EFFECTS: PARTICLE
CREATION

We now move to explore the counterpart of the static
Casimir e↵ect, namely the dynamical e↵ects induced by a
time-varying background experienced by the falling cav-
ity. As discussed above, we are basically working in the
adiabiatic limit; this will help us in evaluating the con-
tribution to the vacuum energy in terms of created field
quanta inside the cavity. Again, the excitation of quanta
from vacuum can be explained as a local manifestation of
a non-local field Tµ⌫ probing the whole spacetime struc-
ture.

A. Persistence Amplitude and particle creation

Particle creation is related to the vacuum persistence
amplitude, i.e., the imaginary part of the e↵ective action
W . In the in-out formalism we have

|h0 out|0 ini|2 = e2i=mW , (69)
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so that the (usually small) number density of created
particles inside the falling cavity is

hni ' 2=mW

AL
. (70)

Consider the imaginary part (61) of W and define � =
(1� ⇠⌧)2. We get

WG(⌫)=
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where µ =
�
⇠L
n⇡

�2
is a small adimensional parameter.

Upon integration we get
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(72)

The above expression is ill-defined, as the Meijer G func-
tion does not exist. However we may render it definite
introducing a small quantity ✏ > 0, hence writing

WG(⌫; ✏)=
A(�i)⌫
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(73)

Expanding (73) in powers of the small parameter µ =�
⇠L
n⇡

�2
we obtain

WG(⌫; ✏) =
A(�i)⌫
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We know that in the limit (⇠L) ! 0 we have to recover
the flat spacetime result, implying an e↵ective action
without the imaginary part, responsible for particle cre-
ation, hence WG(⌫) = 0. This allows us to renormalize
(74), subtracting the divergent contribution

lim
(⇠L)!0

WG(⌫; ✏) =
A(�i)⌫

16⇡3

X

n

✓
L

n⇡
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(75)
Thus the renormalized part reads

WG(⌫) = lim
✏!0
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⇤
. (76)

Recalling the relation z�(z) = �(z + 1) we have

WG(⌫) =
A(�i)⌫
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(77)

Introducing the Riemann Zeta function ⇣(z) we recast
(77) as

WG(⌫) =
A(�i)⌫

24⇡2⌫+1L2�2⌫


� ⇠2L2

⇡2�
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Using the reflection property
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2

◆
⇣(1� z)⇡(z�1)/2, (79)

we write

WG(⌫) =
A(�i)⌫
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(80)

Taking the limit ⌫ ! 0 and restoring � = (1�⇠⌧)2 finally
yields the imaginary part of the e↵ective action W

=mW =
A

24⇡3L2


� ⇠2L2

(1� ⇠⌧)2
⇣(1) +

2⇠4L4

15(1� ⇠⌧)4
+ · · ·

�
.

(81)

Inspection of (81) reveals that the first term in the square
brackets is still divergent.
In spite of the divergent term, when the small adimen-

sional quantity ⇠L = 3L
2rg

is vanishing =mW ! 0, hence

implying no particle creation inside the falling cavity, as
expected. Actually, when the gravitational radius of the
black hole is much greater than the plate separation, the
cavity does not experience any relevant e↵ect due to the
free fall. The presence of divergences in (70) precludes a
direct evaluation of the number of created particles from
the imaginary part of the e↵ective action, unless some

DIVERGENT !
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We know that in the limit (⇠L) ! 0 we have to recover
the flat spacetime result, implying an e↵ective action
without the imaginary part, responsible for particle cre-
ation, hence WG(⌫) = 0. This allows us to renormalize
(74), subtracting the divergent contribution
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Thus the renormalized part reads
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expected. Actually, when the gravitational radius of the
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Taking the limit ⌫ ! 0 and restoring � = (1�⇠⌧)2 finally
yields the imaginary part of the e↵ective action W
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Inspection of (81) reveals that the first term in the square
brackets is still divergent.
In spite of the divergent term, when the small adimen-

sional quantity ⇠L = 3L
2rg

is vanishing =mW ! 0, hence

implying no particle creation inside the falling cavity, as
expected. Actually, when the gravitational radius of the
black hole is much greater than the plate separation, the
cavity does not experience any relevant e↵ect due to the
free fall. The presence of divergences in (70) precludes a
direct evaluation of the number of created particles from
the imaginary part of the e↵ective action, unless some

9

so that the (usually small) number density of created
particles inside the falling cavity is
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The above expression is ill-defined, as the Meijer G func-
tion does not exist. However we may render it definite
introducing a small quantity ✏ > 0, hence writing
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We know that in the limit (⇠L) ! 0 we have to recover
the flat spacetime result, implying an e↵ective action
without the imaginary part, responsible for particle cre-
ation, hence WG(⌫) = 0. This allows us to renormalize
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Inspection of (81) reveals that the first term in the square
brackets is still divergent.
In spite of the divergent term, when the small adimen-

sional quantity ⇠L = 3L
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is vanishing =mW ! 0, hence

implying no particle creation inside the falling cavity, as
expected. Actually, when the gravitational radius of the
black hole is much greater than the plate separation, the
cavity does not experience any relevant e↵ect due to the
free fall. The presence of divergences in (70) precludes a
direct evaluation of the number of created particles from
the imaginary part of the e↵ective action, unless some
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We know that in the limit (⇠L) ! 0 we have to recover
the flat spacetime result, implying an e↵ective action
without the imaginary part, responsible for particle cre-
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Inspection of (81) reveals that the first term in the square
brackets is still divergent.
In spite of the divergent term, when the small adimen-

sional quantity ⇠L = 3L
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is vanishing =mW ! 0, hence

implying no particle creation inside the falling cavity, as
expected. Actually, when the gravitational radius of the
black hole is much greater than the plate separation, the
cavity does not experience any relevant e↵ect due to the
free fall. The presence of divergences in (70) precludes a
direct evaluation of the number of created particles from
the imaginary part of the e↵ective action, unless some
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PARTICLE CREATION – step 1

u WE TRY TO GET RID OF THE ABOVE DIVERGENCE 
FOLLOWING THE BOGOLUBOV APPROACH.

u WRITE THE FIELD MODES AS

u THE ABOVE MODES HAVE THE REQUIRED MINKOWSKIAN
BEHAVIOUR AT                                                WHEN THE CAVITY 
IS AT THE SPATIAL INFINITY (à FLAT SPACETIME REGION)
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV

�k(⌘) =
1

2

r
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⇠
⌘H(1)

0

✓
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⇠
⌘

◆
, ⌘ = 1� ⇠⌧, (82)

which have the required minkowskian (plane wave) be-
haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
ments, namely
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Also, we see that as far as
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so, in the far past (85) admits a plane wave solution
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From (84) we get
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2!k
=

3

4!krg
. (87)

Since !2
k = k2?+(n⇡/L)2, we have min(!k) = ⇡/L. So, if

⌘ � ⇠L
2⇡ , then (84) is undoubtedly fulfilled. Obviously, at

the horizon crossing ⌘ = 1 � ⇠L
2⇡ , so any point near the

horizon, characterized by ⌘ � 1, can be used to match the
solutions (34) and (86) by demanding that both �k and
@�k/@⌧ are continuous at the chosen boundary ⌘ � 1,
namely
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After some algebra, we get the Bogolubov coe�cients[33]

|↵k|2 = 1 +
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|�k|2 =
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16!2
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing

(⌧ = 0) we have |�k|2 = ⇠2

16!2
k
. We evaluate the density

of created quanta as
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we obtain
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
quanta, writing

h✏dyni =
1
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n
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�
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
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PARTICLE CREATION – step 2

u THE ABOVE MODES SATISFY THE BUNCH-DAVIES 
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u IN THE FAR PAST, MODE SOLUTIONS HAVE THE  USUAL 
PLANE WAVE FORM
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
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far past, as expected, meanwhile at the horizon crossing
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
ments, namely

�k(⌘) ! 1p
2!k

ei
!k
⇠ ⌘ ⇠ 1p

2!k
e�i!k⌧

�̇k(⌘)
�k(⌘)

! i!k
⇠

)
⌘ ! 1.

(83)

Also, we see that as far as

⌘ � ⇠

2!k
, (84)

(31) reduces to

@2�

@⌘2
+

✓
!2
k

⇠2

◆
� = 0, (85)

so, in the far past (85) admits a plane wave solution

�k(⌧) =
↵p
2!k

e�i!k⌧ +
�p
2!k

ei!k⌧ . (86)

From (84) we get

⌘ � ⇠

2!k
=

3

4!krg
. (87)

Since !2
k = k2?+(n⇡/L)2, we have min(!k) = ⇡/L. So, if

⌘ � ⇠L
2⇡ , then (84) is undoubtedly fulfilled. Obviously, at

the horizon crossing ⌘ = 1 � ⇠L
2⇡ , so any point near the

horizon, characterized by ⌘ � 1, can be used to match the
solutions (34) and (86) by demanding that both �k and
@�k/@⌧ are continuous at the chosen boundary ⌘ � 1,
namely

↵p
2!k

e�i!k⌧ +
�p
2!k

ei!k⌧ =
1

2

r
⇡

⇠
(1� ⇠⌧)H(1)

0

✓
!k

⇠
(1� ⇠⌧)

◆
,

�i!k↵p
2!k

e�i!k⌧ +
i!k�p
2!k

ei!k⌧ =
1

2

r
⇡

⇠


�⇠

2
p
(1� ⇠⌧)

H(1)
0

✓
!k

⇠
(1� ⇠⌧)

◆
+

p
1� ⇠⌧!kH

(1)
1

✓
!k

⇠
(1� ⇠⌧)

◆�
. (88)
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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which have the required minkowskian (plane wave) be-
haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
ments, namely
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Since !2
k = k2?+(n⇡/L)2, we have min(!k) = ⇡/L. So, if
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2⇡ , then (84) is undoubtedly fulfilled. Obviously, at

the horizon crossing ⌘ = 1 � ⇠L
2⇡ , so any point near the

horizon, characterized by ⌘ � 1, can be used to match the
solutions (34) and (86) by demanding that both �k and
@�k/@⌧ are continuous at the chosen boundary ⌘ � 1,
namely
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After some algebra, we get the Bogolubov coe�cients[33]
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing

(⌧ = 0) we have |�k|2 = ⇠2

16!2
k
. We evaluate the density

of created quanta as

hni = 1

AL


A

(2⇡)2

X

n

Z
d2k?

⇠2

16!2
k|⌘|2

�

=
⇠2

64⇡2L|⌘|2
X

n

Z
d2k?

k2? + (n⇡/L)2
.

(91)

Using
Z

d2k?
(k2? + �)↵

= ⇡
�(↵� 1)

�(↵)

1

�↵�1
, (92)

we obtain

hni = ⇠2�(3/2� ↵)⇣(3� 2↵)
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
quanta, writing
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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which have the required minkowskian (plane wave) be-
haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
ments, namely
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2⇡ , then (84) is undoubtedly fulfilled. Obviously, at

the horizon crossing ⌘ = 1 � ⇠L
2⇡ , so any point near the
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solutions (34) and (86) by demanding that both �k and
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After some algebra, we get the Bogolubov coe�cients[33]
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing

(⌧ = 0) we have |�k|2 = ⇠2
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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which have the required minkowskian (plane wave) be-
haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
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After some algebra, we get the Bogolubov coe�cients[33]
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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After some algebra, we get the Bogolubov coe�cients[33]
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to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
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far past, as expected, meanwhile at the horizon crossing
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.
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to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
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far past, as expected, meanwhile at the horizon crossing
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divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
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In spite of the above divergent result, we can get a
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.
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Recall the field modes (34) we found in section IV
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far past, as expected, meanwhile at the horizon crossing

(⌧ = 0) we have |�k|2 = ⇠2

16!2
k
. We evaluate the density

of created quanta as

hni = 1

AL


A

(2⇡)2

X

n

Z
d2k?

⇠2

16!2
k|⌘|2

�

=
⇠2

64⇡2L|⌘|2
X

n

Z
d2k?

k2? + (n⇡/L)2
.

(91)

Using
Z

d2k?
(k2? + �)↵

= ⇡
�(↵� 1)

�(↵)

1

�↵�1
, (92)

we obtain

hni = ⇠2�(3/2� ↵)⇣(3� 2↵)

64⇡3/2L3�2↵

↵=1�! ⇠2

64⇡L
⇣(1), (93)

namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
quanta, writing

h✏dyni =
1
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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which have the required minkowskian (plane wave) be-
haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
ments, namely
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Since !2
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2⇡ , then (84) is undoubtedly fulfilled. Obviously, at

the horizon crossing ⌘ = 1 � ⇠L
2⇡ , so any point near the

horizon, characterized by ⌘ � 1, can be used to match the
solutions (34) and (86) by demanding that both �k and
@�k/@⌧ are continuous at the chosen boundary ⌘ � 1,
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After some algebra, we get the Bogolubov coe�cients[33]
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing

(⌧ = 0) we have |�k|2 = ⇠2
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. We evaluate the density
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
quanta, writing
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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which have the required minkowskian (plane wave) be-
haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
ments, namely
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Since !2
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2⇡ , then (84) is undoubtedly fulfilled. Obviously, at

the horizon crossing ⌘ = 1 � ⇠L
2⇡ , so any point near the

horizon, characterized by ⌘ � 1, can be used to match the
solutions (34) and (86) by demanding that both �k and
@�k/@⌧ are continuous at the chosen boundary ⌘ � 1,
namely
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After some algebra, we get the Bogolubov coe�cients[33]
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing

(⌧ = 0) we have |�k|2 = ⇠2
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. We evaluate the density
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
quanta, writing
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specific assumptions are made about the above cited in-
finities. The origin of such divergence is likely to be re-
lated to the implicitly assumed infinite extension of the
plates, as we will see below. We will avoid the di�cul-
ties stemming from the appearance of infinities in the
imaginary part of the e↵ective action exploiting the re-
lationship between the Schwinger theory and the in-out
formalism, based upon the Bogolubov approach.

B. Bunch-Davies vacuum and particle creation

Recall the field modes (34) we found in section IV
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which have the required minkowskian (plane wave) be-
haviour at ⌘ ! 1 (i.e. ⌧ ! �1), when the cavity is at
the spatial infinity with respect to the black hole. The
above modes satisfy the Bunch-Davies vacuum require-
ments, namely
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Since !2
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2⇡ , then (84) is undoubtedly fulfilled. Obviously, at

the horizon crossing ⌘ = 1 � ⇠L
2⇡ , so any point near the

horizon, characterized by ⌘ � 1, can be used to match the
solutions (34) and (86) by demanding that both �k and
@�k/@⌧ are continuous at the chosen boundary ⌘ � 1,
namely
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After some algebra, we get the Bogolubov coe�cients[33]
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satisfying |↵k|2 � |�k|2 = 1. The � coe�cient is related
to particle creation. Note that, as ⌧ ! �1, |↵k|2 ⇠ 1
and |�k|2 ⇠ 0, i.e., we have no particle creation in the
far past, as expected, meanwhile at the horizon crossing

(⌧ = 0) we have |�k|2 = ⇠2
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. We evaluate the density

of created quanta as
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we obtain
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namely a divergent result. This basically agrees with the
divergent quantity we found in the imaginary part of the
e↵ective action. Now we see that the divergence appears
as a consequence of the k?-integration over the trans-
verse modes of the quantum field. This implicitly involves
an infinite transverse (hence unphysical) extension of the
cavity.
In spite of the above divergent result, we can get a

finite result for the energy density h✏dyni of the created
quanta, writing
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Using again (92) we obtain

h✏dyni = � ⇠2

32L2|⌘|2 ⇣(�1) =
⇠2

384L2(1� ⇠⌧)2
.

(95)

If we compare the above result with (67), describing the
vacuum energy density pertaining to the Casimir e↵ect,
namely

h✏Casi = � ⇡2

1440L4
+

1

384L2

⇠2

(1� ⇠⌧)2
. (96)

we see, quite interestingly, that the small reduction ob-
served in the static Casimir energy value just corresponds
to the amount of energy of created field particles. This
could suggest a relationship between the two considered
e↵ects. Nevertheless, some care is required when specu-
lating about such coincidence, as both the results have
been obtained as first-order approximations.

VIII. DISCUSSION

We are now in a position to draw some conclusions
about Casimir e↵ect inside a small cavity, freely falling
into a Schwarzschild black hole, with particular concern
in the late stages of the fall.

Comparison of (95) and (96) shows that the overall
energy density (as measured by the comoving observer)
can be considered as made of two contributions

• The first one, related to the vacuum polarization, is
the static Casimir e↵ect contribution, h✏Casi, whose
minkowskian value h✏Casi0 = � ⇡2

1440L4 has been
modified by a small (positive) term, due to the cav-
ity fall.

• The second one, h✏dyni = 1
384L2

⇠2

(1�⇠⌧)2 , is related
to the vacuum persistence. It represents a dynam-

ical contribution, due to the time dependent back-
ground experienced by the quantum field, leading
to particle creation inside the Casimir cavity.

At a first glance, one could wonder that corrections
to the static Casimir e↵ect as well as particle creation
are detected by an observer in a freely falling inertial

frame. However, as anticipated at the end of section V,
this is not so surprising. The Equivalence Principle (EP),
deeply rooted in the theory of General Relativity (GR),
applies well in the context of a local theory, just as GR
is. On the other hand, when quantum fields are taken
into account, the non-local character of of the underlying
quantum theory conflicts with the EP, causing the latter
to be not straightforwardly applicable.

In the present scenario, the quantum field stress-energy
tensor Tµ⌫ behaves as a non-local object, thus probing
the global spacetime structure, through the long wave-
length field modes. The adopted renormalization proce-
dure (whatever it may be) does transfer the spacetime
details into the renormalized T ren

µ⌫ , which is basically the
locally measured object. In such a way, information con-
tained in the spacetime geometry surrounding the cavity
bypasses - so to say - the EP, appearing both in the form
of a small correction to the expected static Casimir en-
ergy and a tiny flux of created field quanta.

IX. CONCLUDING REMARKS

In this paper we have considered the Casimir energy
density corrections in a small cavity freely falling from
the spatial infinity into a Schwarzschild black hole. The
main results of the present work are equations (96) and
(95), representing, respectively, the (static) Casimir en-
ergy density and the energy density due to creation of
field quanta inside the cavity.
As discussed above, particle creation in an inertial

(freely falling) physical system could be justified recall-
ing the non-local character of the field stress-energy ten-
sor Tµ⌫ , whose renormalized part is ultimately the object
which is measured by the comoving observer.
In deriving the above results several assumptions have

been made (see section III). In particular, we have ne-
glected other possible contributions deriving from the
cavity extension. Ttidal e↵ects, e.g., are expected to give
rise to anisotropies in the energy density distribution in-
side the cavity; such aspect has been considered in detail
in paper [21], working out a 1+1D model.
Also, the finiteness of the Casimir plates has been not

taken into account, assuming L ⌧
p
A ⌧ rg. Such as-

sumption is obviously fulfilled in any realistic scenario,
where the gravitational radius of a black hole is undoubt-
edly many order of magnitude greater than the cavity
size. One could think as well of a micro-black hole, hav-
ing a gravitational radius rg ⇠ L. But, in such a case
the above equations would become meaningless (the con-
dition L/rg ⌧ 1 is violated), as in that limit the local
frame couldn’t be considered almost minkowskian (con-
sider, e.g., the tidal e↵ects, now surely dominant).
Another drawback stemming from the (in)finiteness of

the Casimir plates appears in the divergences we met
in evaluating the number density of the created quanta
(both working with the e↵ective action and the in-out
formalism). In that respect, it seems likely that a more
physically consistent analysis, requiring a cavity of finite
3D-size should lead to remove the residual infinites en-
countered in the present approach.
We wish to point out that, exploiting the Lemâıtre co-

ordinates (well-behaved up to the singularity), it could
be interesting (although not so straightforward), to ex-
plore the dynamics of the Casimir energy (according to
the comoving observer) in the region 0 < ⌧ < 2rg
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If we compare the above result with (67), describing the
vacuum energy density pertaining to the Casimir e↵ect,
namely
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we see, quite interestingly, that the small reduction ob-
served in the static Casimir energy value just corresponds
to the amount of energy of created field particles. This
could suggest a relationship between the two considered
e↵ects. Nevertheless, some care is required when specu-
lating about such coincidence, as both the results have
been obtained as first-order approximations.

VIII. DISCUSSION

We are now in a position to draw some conclusions
about Casimir e↵ect inside a small cavity, freely falling
into a Schwarzschild black hole, with particular concern
in the late stages of the fall.

Comparison of (95) and (96) shows that the overall
energy density (as measured by the comoving observer)
can be considered as made of two contributions

• The first one, related to the vacuum polarization, is
the static Casimir e↵ect contribution, h✏Casi, whose
minkowskian value h✏Casi0 = � ⇡2

1440L4 has been
modified by a small (positive) term, due to the cav-
ity fall.

• The second one, h✏dyni = 1
384L2
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(1�⇠⌧)2 , is related
to the vacuum persistence. It represents a dynam-

ical contribution, due to the time dependent back-
ground experienced by the quantum field, leading
to particle creation inside the Casimir cavity.

At a first glance, one could wonder that corrections
to the static Casimir e↵ect as well as particle creation
are detected by an observer in a freely falling inertial

frame. However, as anticipated at the end of section V,
this is not so surprising. The Equivalence Principle (EP),
deeply rooted in the theory of General Relativity (GR),
applies well in the context of a local theory, just as GR
is. On the other hand, when quantum fields are taken
into account, the non-local character of of the underlying
quantum theory conflicts with the EP, causing the latter
to be not straightforwardly applicable.

In the present scenario, the quantum field stress-energy
tensor Tµ⌫ behaves as a non-local object, thus probing
the global spacetime structure, through the long wave-
length field modes. The adopted renormalization proce-
dure (whatever it may be) does transfer the spacetime
details into the renormalized T ren

µ⌫ , which is basically the
locally measured object. In such a way, information con-
tained in the spacetime geometry surrounding the cavity
bypasses - so to say - the EP, appearing both in the form
of a small correction to the expected static Casimir en-
ergy and a tiny flux of created field quanta.

IX. CONCLUDING REMARKS

In this paper we have considered the Casimir energy
density corrections in a small cavity freely falling from
the spatial infinity into a Schwarzschild black hole. The
main results of the present work are equations (96) and
(95), representing, respectively, the (static) Casimir en-
ergy density and the energy density due to creation of
field quanta inside the cavity.
As discussed above, particle creation in an inertial

(freely falling) physical system could be justified recall-
ing the non-local character of the field stress-energy ten-
sor Tµ⌫ , whose renormalized part is ultimately the object
which is measured by the comoving observer.
In deriving the above results several assumptions have

been made (see section III). In particular, we have ne-
glected other possible contributions deriving from the
cavity extension. Ttidal e↵ects, e.g., are expected to give
rise to anisotropies in the energy density distribution in-
side the cavity; such aspect has been considered in detail
in paper [21], working out a 1+1D model.
Also, the finiteness of the Casimir plates has been not

taken into account, assuming L ⌧
p
A ⌧ rg. Such as-

sumption is obviously fulfilled in any realistic scenario,
where the gravitational radius of a black hole is undoubt-
edly many order of magnitude greater than the cavity
size. One could think as well of a micro-black hole, hav-
ing a gravitational radius rg ⇠ L. But, in such a case
the above equations would become meaningless (the con-
dition L/rg ⌧ 1 is violated), as in that limit the local
frame couldn’t be considered almost minkowskian (con-
sider, e.g., the tidal e↵ects, now surely dominant).
Another drawback stemming from the (in)finiteness of

the Casimir plates appears in the divergences we met
in evaluating the number density of the created quanta
(both working with the e↵ective action and the in-out
formalism). In that respect, it seems likely that a more
physically consistent analysis, requiring a cavity of finite
3D-size should lead to remove the residual infinites en-
countered in the present approach.
We wish to point out that, exploiting the Lemâıtre co-

ordinates (well-behaved up to the singularity), it could
be interesting (although not so straightforward), to ex-
plore the dynamics of the Casimir energy (according to
the comoving observer) in the region 0 < ⌧ < 2rg

3 , corre-



CONCLUSIONS

u ONE COULD WONDER THAT CORRECTIONS TO THE STATIC 
CASIMIR EFFECT AS WELL AS PARTICLE CREATION ARE 
DETECTED BY AN OBSERVER IN A FREELY FALLING INERTIAL 
FRAME (where has the Equivalence Principle gone?)

u ACTUALLY, WHEN QUANTUM FIELDS ARE TAKEN INTO 
ACCOUNT, THE NON-LOCAL CHARACTER OF OF THE 
UNDERLYING QUANTUM THEORY CONFLICTS WITH THE EP, 
CAUSING THE LATTER TO BE NOT STRAIGHTFORWARDLY 
APPLICABLE
[see, e.g., M.O. Scully, S.A. Fulling, D. Lee, D. Page,  W.  Schleich & 
A. Svidzinsky, arXiv: quant-ph 1709.00481v2 (2017)].

26/29



u WHEN EVALUATING THE CASIMIR ENERGY, THE 
ENCOUNTERED DIVERGENCES ARE USUALLY CURED BY 
MEANS OF VARIOUS TECHNIQUES.

u ANY RENORMALIZATION PROCEDURE IMPLIES - MORE OR 
LESS EXPLICITLY - A MODE CUTOFF, SO THAT THE 
RENORMALIZED STRESS-ENERGY TENSOR IS 
DETERMINED BY THE LOW-ENERGY CONTRIBUTION  OF THE 
FULL ,  THUS PROBING THE GLOBAL STRUCTURE OF 
THE BACKGROUND GEOMETRY(àGRAVITO-INERTIAL 
CONTRIBUTIONS) – [see, e.g., Birrell & Davies, QFCS].
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CONCLUSIONS (cont’d)

8

(61)

Inspection of (61) shows that iWG = lim⌫!0 iWG(⌫) is an
imaginary quantity. Hence, as anticipated, we obtained
a complex e↵ective action W . The real part

<eW = lim
⌫!0

WH(⌫). (62)

is responsible for vacuum polarization and related phe-
nomena, as the static Casimir e↵ect, as we will see in the
next section.

The imaginary part reads

=mW = lim
⌫!0

WG(⌫), (63)

implying dynamical e↵ects, as field quanta creation inside
the cavity. We will discuss particle creation in sect. VII.

VI. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir e↵ect,
deriving it from the real part of the e↵ective action W .
Following Schwinger, we have from (58)

h✏Casi = � lim
⌫!0
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Consider now the leading term (k = 0) in (64). We find

h✏Casi(0) = � ⇡3/2

16L4
a0�(�3/2)⇣(�3) = � ⇡2

1440L4
, (65)

namely the usual flat result for the Casimir energy den-
sity. We now move to the first order correction (k = 1)
to the Casimir energy, thus obtaining
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The Casimir energy density is then

h✏Casi = � ⇡2

1440L4
+

1

384L2

⇠2

(1� ⇠⌧)2
+O(⇠4). (67)

At the horizon crossing (⌧ ! 0�), we have (recall that
⇠ = 3/(2rg))

h✏Casihor = � ⇡2

1440L4
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✓
L

rg

◆2�
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Eq.(67) tells us how the corrections to the Casimir en-
ergy density change with the proper time as the cavity
approaches the black hole horizon. (67) holds true as

far as the adiabatic regime is taken into account, namely
provided that the condition (30) is fulfilled.
The above result shows that the comoving observer

measures a small reduction in the (absolute) value of the
(negative) Casimir energy near the black hole horizon.
At a first glance, this may seem rather puzzling, as one
would expect no change with respect to the usual flat
spacetime result h✏Casistat = � ⇡2

1440L4 for a freely falling

Casimir cavity, due to the Equivalence Principle.
We would like to suggest a possible answer to such

issue. Casimir e↵ect can be defined as the stress on the
bounding surfaces due to quantum field confinement. On
the other hand, when spacetime geometry is taken into
account, the latter contributes as well in defining the field
confinement. Generally speaking, the boundaries (what-
ever their origin may be) restrict the modes of the in-
volved quantum field, giving rise to a change in the field
vacuum energy. When evaluating the Casimir energy, the
encountered divergences are usually cured by means of
various techniques, as those based upon the zeta-function
renormalization we used in the present paper. Any renor-
malization procedure implies - more or less explicitly - a
mode cuto↵, so that the renormalized stress-energy ten-
sor T ren

µ⌫ is determined by the low-energy contribution
of Tµ⌫ , thus probing the global structure of the space-
time. Hence, the local measurements performed by the
comoving geodesic observer, are related to a non-local

field stress-energy tensor Tµ⌫ . The renormalized stress-
energy tensor carries information about the background
spacetime metric. The latter, in turn, encodes both grav-
itational and inertial contributions. So, the global nature
of the stress-energy tensor allows for a local measurement
to be sensitive to the cavity fall.

VII. DYNAMICAL EFFECTS: PARTICLE
CREATION

We now move to explore the counterpart of the static
Casimir e↵ect, namely the dynamical e↵ects induced by a
time-varying background experienced by the falling cav-
ity. As discussed above, we are basically working in the
adiabiatic limit; this will help us in evaluating the con-
tribution to the vacuum energy in terms of created field
quanta inside the cavity. Again, the excitation of quanta
from vacuum can be explained as a local manifestation of
a non-local field Tµ⌫ probing the whole spacetime struc-
ture.

A. Persistence Amplitude and particle creation

Particle creation is related to the vacuum persistence
amplitude, i.e., the imaginary part of the e↵ective action
W . In the in-out formalism we have

|h0 out|0 ini|2 = e2i=mW , (69)
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issue. Casimir e↵ect can be defined as the stress on the
bounding surfaces due to quantum field confinement. On
the other hand, when spacetime geometry is taken into
account, the latter contributes as well in defining the field
confinement. Generally speaking, the boundaries (what-
ever their origin may be) restrict the modes of the in-
volved quantum field, giving rise to a change in the field
vacuum energy. When evaluating the Casimir energy, the
encountered divergences are usually cured by means of
various techniques, as those based upon the zeta-function
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malization procedure implies - more or less explicitly - a
mode cuto↵, so that the renormalized stress-energy ten-
sor T ren

µ⌫ is determined by the low-energy contribution
of Tµ⌫ , thus probing the global structure of the space-
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comoving geodesic observer, are related to a non-local

field stress-energy tensor Tµ⌫ . The renormalized stress-
energy tensor carries information about the background
spacetime metric. The latter, in turn, encodes both grav-
itational and inertial contributions. So, the global nature
of the stress-energy tensor allows for a local measurement
to be sensitive to the cavity fall.

VII. DYNAMICAL EFFECTS: PARTICLE
CREATION

We now move to explore the counterpart of the static
Casimir e↵ect, namely the dynamical e↵ects induced by a
time-varying background experienced by the falling cav-
ity. As discussed above, we are basically working in the
adiabiatic limit; this will help us in evaluating the con-
tribution to the vacuum energy in terms of created field
quanta inside the cavity. Again, the excitation of quanta
from vacuum can be explained as a local manifestation of
a non-local field Tµ⌫ probing the whole spacetime struc-
ture.
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Particle creation is related to the vacuum persistence
amplitude, i.e., the imaginary part of the e↵ective action
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u THE ABOVE RESULTS SEEM CLOSELY RELATED TO THE 
NUMBER OF INVOLVED SPATIAL DIMENSIONS. ACTUALLY, WE 
FOUND NO EFFECT IN A 1+1D CASIMIR CAVITY (priv. Comm.).

u IS MAY BE THAT SOME (UNPHYSICAL) DIVERGENCES FOUND 
IN THE ABOVE ANALYSIS DO DISAPPEAR WHEN CONSIDERING 
A MORE PHYSICAL FINITE 3D APPARATUS.

u FINALLY, THE NEXT STEP WILL BE TO CONSIDER ALSO TIDAL 
EFFECTS IN A FULL 3D MODEL (WORK IN PROGRESS WITH H. J. 
WILSON  &  S. A. FULLING).

CONCLUSIONS (cont’d)
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