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Quantum noise in the current GW detectors

Interferometric GW detectors work in dark fringe condition: vacuum fluctuations entering the

dark port of an interferometer is responsable for quantum noise.
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Sensitivity improvement using Frequency Independent Squeezing
allGO: LLO 3.1 dB, LHO 2.2 dB

allGO Squeezing (as of early March 2019)
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Need for a Frequency Dependent Squeezing (FDS) in the
next generation detectors

Advanced Virgo Noise Curve: Pin = 125.0 W
J.P. Zendri

(VIR-0335A-19)
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Sideband representation of guantum noise
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Filter Cavity (FC) for a frequency dependent angle rotation

What does it happen if we inject a squeezed field in a cavity? A cavity has a frequency dependent response
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Filter Cavity state of the art 1

For a broadband QN reduction in GW detectors

case of a lossless cavity The crossover frequency Filter Cavity parameters
depends on ITF parameters we need
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FREQUENCY DEPENDENT RPN->SHN

ALREADY DEMONSTRATED

»2005: first demonstration in MHz region.

The cavity Iength was L=0.5m (Chelkowski et al. Phys. Rev. A 71 (Jan, 2005) 013806)
»2015: first demonstration in kHz region.

The cavity Iength was L=2 m (Oelker et al. Phys. Rev. Lett. 116 (Jan, 2016) 041102)
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Filter Cavity state of the art 2

Need to have a long cavity:

" minimize the ratio between the round trip losses (RTL) and the cavity length
(F. Ya. Khalili, Phys. Rev. D 81, 122002 (2010))

= |onger is the cavity less is the losses influence (vir-0660a-18) =2 lower finesse

IN PROGRESS
» TAMA National Astronomical Observatory of Japan (NAOJ):

plan for a FC 300m long and a rotation frequency 70 Hz. Plan
to have FDS in 2020 (uGo-G1900573)

PLANNED
» Advanced Virgo: design for a FC in progress, plan to use it in 04

»LIGOPlan to develop in LIGO a FC for a rotation angle at about 50Hz




Proposed alternative to Filter Cavity: Frequency Dependent
SQUEEZing Via EPR enta nglement Y. Ma et al. Nat Phys 13 no. 8, (Aug, 2017) 776-780
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Einstein-Podolsky-Rosen (EPR) entangled signal and idler
beams
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Comparison with Filter Cavity
Loss sources

* Loss due to arm cavities (90 ppm per

round trip, around~ 4%) » e Two Squeezed beams:

* Loss due to Signal Recycling Cavity double losses
(2000 ppm per RT)

* Input and Readout losses

* Need for two Homodyne Detectors and extra OMC

BUT

* Less expensive

* Avoids the 1ppm/m round trip losses for the FC

* Flexible vs Signal Recycling Cavity configuration
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Table-top demonstrator

Test of the EPR induced rotation angle by injecting the two entangled beams in a cavity
instead of the interferometer

TEST CAVITY
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A recent demonstration was performed by the Quantum Optics group of Prof. Schnabel at Institute for Laser
Physics and University of Hamburg, Germany, using a simplified setup.

(results shown at the LVC that took place in Geneve in March 2019. Talk: “Demonstration of Interferometer Enhancement
through EPR Entanglement”. Speaker: Jan Gniesmer)

We also propose a table-top demonstrator starting from a test facility
for FIS demonstration that we already develeped at the EGO site.

Our demonstrator will be tested on SIPS setup (INFN comm. 5

Romal) that is a RPN sensitive system. We expect to see noise
red UCtlon beIOW 2 kHZ Valeria Sequino - "Vacuum Fluctuations at Nanoscale and
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Starting point

Squeezing experiment already developed

Located at the EGO site, at half of the
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oposed optical layout
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Proposed optical layout
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Proposed optical layout
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Proposed optical layout
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Changes w.r.t. to the present setup
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Conclusions

* Present GW detectors: Frequency Independent Squeezing (FIS) already implemented
High frequency sensitivity improvement achieved for the present observative run (O3)

e Future detectors: Frequency Dependent Squeezing in order to achieve broadband
guantum noise reduction. Two solutions presented:

¢ Filter cavity: planned for the next observative run (04)

¢ EPR: experiment under construction (post O4, future detectors)



Thank youl!!
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Signal and Idler quadrature are EPR entangled

oy e +9) +af(wo — ©) () = b(wo + A+ Q)+ bt (wy + A - Q)
(€)= V2 W V2 Amplitude and phase quadrature
) ) . A for signal and idl
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We will have squeezing-antisqueezing for
_ oF2r combination of signal and idler quadratures

S(aziéz)/\/i "

Sar )/ vz =

These quadrature
combinations will be
both squeezed

Measuring the idler quadrature we can squeeze the signal with a squeezing angle v,

by = by cos b+ by sin 6 - a_p = a1 cosbf—aosinf
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Sensitivity detector improvement
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