A numerical solution method for noise calculations

R. Kovács, T. Fülöp, M. Szücs, P. Ván

Department of Energy Engineering, BME Department of Theoretical Physics, Wigner RCP, and Montavid Thermodynamic Research Group Budapest, Hungary

May 2, 2019

Noise

• Disturbances in the environment.

• Various sources: wind, seismic events, etc.

• Underground specificity: behavior of rocks.

• Rheology of rocks \Rightarrow newtonian noise?

• Space and time evolution of these effects?

Wave propagation in solids

Elastic: Hamiltonian structure, Hooke + small deformations + momentum balance.

$$\rho \partial_t \mathbf{v} + \nabla \cdot \boldsymbol{\sigma} = \mathbf{0},\tag{1}$$

$$\boldsymbol{\sigma} = 2\mu\boldsymbol{\varepsilon} + \lambda\boldsymbol{\varepsilon}^{sph},\tag{2}$$

$$\boldsymbol{\varepsilon} = (\nabla \mathbf{u})_{\text{sym}},$$

$$\partial_t \mathbf{u} = \mathbf{v}, \Rightarrow \partial_t \boldsymbol{\varepsilon} = (\nabla \mathbf{v})_{\text{sym}}$$
(3)

Rheological: modified constitutive relation between σ and ε , e.g. Poynting-Thomson (in 1D):

$$\sigma + \tau \partial_t \sigma = E\varepsilon + E_1 \partial_t \varepsilon \tag{4}$$

1D setting: elastic waves in a rod

Initial and boundary conditions? \Rightarrow Staggered discretization.

$$\rho \partial_t \mathbf{v} = -E \partial_x \varepsilon,$$
$$\partial_t \varepsilon = \partial_x \mathbf{v}$$

$$\varepsilon_{j}^{n+1} = \varepsilon_{j}^{n} + \frac{\Delta t}{\Delta x} \left(v_{j+1}^{n} - v_{j}^{n} \right),$$
$$v_{j}^{n+1} = v_{j}^{n} - \frac{\Delta t}{\Delta x} \frac{E}{\rho} \left(\varepsilon_{j}^{n+1} - \varepsilon_{j-1}^{n+1} \right)$$

Symplectic in time

- Staggered discretization: for spatial derivatives due to the BC's.
- What about the time integration?
 - \rightarrow Hamiltonian system: conservative. \rightarrow **SYMPLECTIC**

Semi-implicit Euler: simplest method, first order.

$$\varepsilon_{j}^{n+1} = \varepsilon_{j}^{n} + \frac{\Delta t}{\Delta x} \left(\mathbf{v}_{j+1}^{n} - \mathbf{v}_{j}^{n} \right),$$
$$\mathbf{v}_{j}^{n+1} = \mathbf{v}_{j}^{n} - \frac{\Delta t}{\Delta x} \frac{E}{\rho} \left(\varepsilon_{j}^{n+1} - \varepsilon_{j-1}^{n+1} \right)$$

Others: Störmer-Verlet (second order), Symplectic-RK, etc.

Stability analysis: Neumann + Jury

There is an explicit part: stability is a key question.

$$\varepsilon_j^n = \xi^n e^{ikj\Delta x},\tag{5}$$

and the same for v_j^n . Condition: $|\xi| \leq 1$.

$$p(\xi) = \xi^2 - \xi \left(2 + \frac{\Delta t^2}{\Delta x^2} \frac{E}{\rho} (2\cos(k\Delta x) - 2) \right) + 1.$$
 (6)

•
$$p(\xi=1) \ge 0 \rightarrow p(\xi=1) = 4 \frac{\Delta t^2}{\Delta x^2} \frac{E}{\rho} > 0.$$

•
$$p(\xi = -1) \ge 0 \rightarrow \frac{\Delta x}{\Delta t} \ge v_0, \ v_0 = \sqrt{\frac{E}{\rho}}.$$

• $|a_2| \ge |a_0|$, trivially fulfilled.

Solution I.

Preserved amplitude and width = preserved energy.

Solution II.

On a large interval...

Rheology in 1D: Kelvin body

Damped wave like relaxation. Eq. (7) is NOT the time evolution of ε !

$$\begin{aligned}
\rho \partial_t \mathbf{v} &= -E \partial_x \varepsilon - E_1 \partial_{xx} \mathbf{v}, \\
\sigma &= E \varepsilon + E_1 \partial_t \varepsilon, \\
\partial_t \varepsilon &= \partial_x \mathbf{v}
\end{aligned} \tag{7}$$

$$\begin{split} \varepsilon_j^{n+1} &= \varepsilon_j^n + \frac{\Delta t}{\Delta x} \left(v_{j+1}^n - v_j^n \right), \\ v_j^{n+1} &= v_j^n + \frac{\Delta t}{\Delta x} \frac{E}{\rho} \left(\varepsilon_j^{n+1} - \varepsilon_{j-1}^{n+1} \right) + \frac{\Delta t}{\Delta x^2} \frac{E_1}{\rho} \left(v_{j+1}^n - 2v_j^n + v_{j-1}^n \right) \end{split}$$

+ Stability analysis in the same way...

Solution

Rheology in 1D: Poynting-Thomson model

Eq. (8) is NOT the time evolution of ε !

$$\rho \partial_t \mathbf{v} = -\partial_x \sigma,$$

$$\sigma + \tau \partial_t \sigma = E\varepsilon + E_1 \partial_t \varepsilon,$$

$$\partial_t \varepsilon = \partial_x \mathbf{v}$$
(8)

Derivatives on a lattice: (h could be n or j)

 $\Rightarrow \sigma \text{ and } \varepsilon \text{ are at the wrong place to calculate } \partial_t \sigma$ $\Rightarrow \text{ convex combination of the terms } n \text{ and } n+1$

Rheology in 1D: Poynting-Thomson model

Discrete time evolution equations:

$$\begin{split} \varepsilon_{j}^{n+1} &= \varepsilon_{j}^{n} + \frac{\Delta t}{\Delta x} \left(v_{j+1}^{n} - v_{j}^{n} \right), \\ \left(1 + (1-\alpha) \frac{\Delta t}{\tau} \right) \sigma_{j}^{n+1} &= \sigma_{j}^{n} \left(1 - \frac{\alpha \Delta t}{\tau} \right) + E \alpha \frac{\Delta t}{\tau} \varepsilon_{j}^{n} + \\ &+ E (1-\alpha) \frac{\Delta t}{\tau} \varepsilon_{j}^{n+1} + \frac{E_{1}}{\tau} \left(\varepsilon_{j}^{n+1} - \varepsilon_{j}^{n} \right), \\ v_{j}^{n+1} &= v_{j}^{n} - \frac{\Delta t}{\Delta x \rho} (\sigma_{j+1}^{n+1} - \sigma_{j}^{n+1}). \end{split}$$

Stability analysis

Goes a bit inconvenient for higher order systems...

$$p(\xi) = a_3\xi^3 + a_2\xi^2 + a_1\xi + a_0$$

with

$$\begin{aligned} a_0 &= \frac{\Delta t \alpha}{\tau} - 1, \\ a_1 &= 3 + \frac{\Delta t}{\tau} (1 - \alpha) + 2 \left(\cos(k\Delta x) - 1 \right) \left(\frac{\Delta t^2 E_1}{\Delta x^2 \rho \tau} - \frac{\Delta t^3 E \alpha}{\Delta x^2 \rho \tau} - \frac{2\Delta t \alpha}{\tau} \right) \\ a_2 &= -2 \left(\cos(k\Delta x) - 1 \right) \left(\frac{\Delta t^2 E_1}{\Delta x^2 \rho \tau} + \frac{\Delta t^3 E (1 - \alpha)}{\Delta x^2 \rho \tau} \right) + \frac{\Delta t}{\tau} (3\alpha - 2) - 3, \\ a_3 &= 1 + \frac{\Delta t}{\tau} (1 - \alpha), \end{aligned}$$

 $\alpha=1/2$ is the best...

•
$$p(\xi = 1) = \frac{4\Delta t^3 E}{\Delta x^2 \rho \tau} > 0$$
, \checkmark
• $p(\xi = -1) < 0$, $\rightarrow \frac{E_1}{\rho \tau} < \frac{\Delta x^2}{\Delta t^2}$ when $\alpha = 1/2$.
Presence of rheological time scale! \checkmark
• $|a_0| \le |a_3| \rightarrow \alpha < 1/2 + \tau/\Delta t$. \checkmark
• $|b_0| > |b_2|$ where $b_0 = \begin{vmatrix} a_0 & a_3 \\ a_3 & a_0 \end{vmatrix}$ and $b_2 = \begin{vmatrix} a_0 & a_1 \\ a_3 & a_2 \end{vmatrix}$.
 $\rightarrow b_0 = \frac{\Delta t}{\tau^2} (\Delta t(2\alpha - 1) - 2\tau)$ and
 $b_2 = \frac{\Delta t}{\Delta x^2 \rho \tau^2} (\Delta t \Delta x^2 (2\alpha - 1) \rho - 2\Delta x^2 \rho \tau + 4\Delta t^2 (E_1 - E\tau))$.
 $\rightarrow \alpha = 1/2 \rightarrow \frac{\Delta x^2}{\Delta t^2} > \frac{E_1}{\rho \tau} - \frac{E}{\rho} \checkmark$
Moreover: $E_1/E > \tau$ thermodynamic requirement!

Static vs. dynamic parameters

Depends on the material...but still remarkably differs.

Solution

Newtonian noise calculations in 1D

Based on the local density variations of the conducting medium.

$$\begin{split} \partial_t \rho &= -\rho \partial_x v = -\rho \partial_t \varepsilon, \\ \rho \partial_t v &= \partial_x P, \\ \partial_t \varepsilon &= \partial_x v, \\ \rho \partial_t \phi &= L_1 (\partial_{xx} \phi - 4\pi G \rho). \end{split}$$

P: total pressure $= -E\varepsilon + (\partial_x \phi)^2/(4\pi G)$. Boundary for $\partial_x \phi$! Let it be a new variable γ and...

$$\rho \partial_t \gamma = L_1 (\partial_{xx} \gamma - 4\pi G \partial_x \rho). \tag{9}$$

... and applying the same discretization as previously.

Solution I.

Solution II.

with γ being dimensionless by the factor $\tilde{\gamma} = \sqrt{2\pi G v_0^2 \rho_0} \approx 10^0$, with $v_0^2 = E/\rho_0$, $E = 10^{11}$ Pa, $\rho_0 = 8000$ kg/m³.

Solution III.

A numerical solution method for noise calculations

2D simulations

Spatial discretization in 2D

Summary

• Effective treatment of boundary conditions.

• Role of symplectic integration in time is essential.

• Further developments are on the horizion: 2D rheology, cylindrical and spherical problems, etc.

 Role of thermodynamics: structure of PDEs, stability, numerical method. A numerical solution method for noise calculations

Thank you for your kind attention!