Newtonian noise estimates with the Homestake Array

Andrew Matas (AEI-Potsdam) in collaboration with Jan Harms, Vuk Mandic, Pat Meyers

Vacuum Fluctuations at Nanoscale and Gravitation: theory and experiments 2 May 2019

Low frequency sensitivity for gravitational waves

Challenges to improving sensitivity

ET Design Document

ET design, optimized for low frequency

Low frequency sensitivity limited by seismic and Newtonian noise

Newtonian noise

Important to accurately characterize newtonian noise underground

Homestake mine

Mine in South Dakota, converted into physics research facility

Homestake array

Mandic et al, 2018

Array spans ~ cubic mile Broadband seismometers (STS-2, Gurlap) GPS-synchronized stations Data collected May 2015-September 2016

Collaboration

Collaboration with geophysicists and gravitational-wave scientists

University of Minnesota	CalTech	Indiana University	<u>Gran Sasso</u>
Vuk Mandic* Patrick Meyers (now at Melbourne) Tanner Prestegard (now at UWM) Andrew Matas (now at AEI)	Victor Tsai* Daniel Bowden (now at ETH-Zurich) Michael Coughlin	Gary Pavlis* Ross Caton	Jan Harms

SURF@Homestake

Papers covering a variety of topics

<u>A 3D Broadband Seismometer Array Experiment at the Homestake Mine, Mandic et al, Seismological Research Letters 2018</u> <u>Coherence-Based Approaches for Estimating the Composition of the Seismic Wavefield, Coughlin et al, JGR Solid Earth 20</u>19 R-wave eigenfunction paper in review at BSSN Future papers planned on surface wave measurements, newtonian noise, ...

Seismic environment at homestake

Depth comparison

Mandic et al, 2018

R wave eigenfunction measurements

Mandic et al, 2018 Meyers Thesis

Bi-exponential form

$$r_{H}(f,z;\vec{\theta}) = \left(e^{-2\pi f z \frac{a_{1}}{v_{R}(f)}} + c_{2}e^{-2\pi f z \frac{a_{2}}{v_{R}(f)}}\right) \times \frac{1}{1+c_{2}}$$
$$r_{V}(f,z;\vec{\theta}) = \left(e^{-2\pi f z \frac{a_{3}}{v_{R}(f)}} + c_{4}e^{-2\pi f z \frac{a_{4}}{v_{R}(f)}}\right) \times \frac{N_{vh}}{1+c_{4}}$$

$$v_{\rm R}(f) = v_{\rm 1Hz} f^c$$

Transient events

other velocity models considered in upcoming dedicated paper

R wave eigenfunction measurements

Meyers Thesis

Radiometer method

"Synergy": method inspired by GW applications, generalized to geophysics

Simple idea: to get sky map, invert the kernel In practice, this is an ill-conditioned matrix so this needs to be done with care

Meyers Thesis

Tradeoff

Better angular

resolution

Meyers Thesis

Less covariance between pixels

Verification: direction

Meyers Thesis

Can resolve point sources

Verification: Polarization

Meyers Thesis

Check both for false positives and false negatives

Angular resolution

Meyers Thesis

Polarization also provides direction information

Application to real data: Regular source

Meyers Thesis

Point source, originating from nearby town Radiometer direction agrees with location

Application to real data: Loud microseism

Application to real data: Quiet microseism

Newtonian noise: estimation method

Harms, 2015

Account for different mechanisms...

- * Different polarizations induce different NN perturbations
- * Interactions of seismic waves with surface
- * Reflection with cavity walls for underground masses (assume small cavity)

Expect radiometer to capture reflections from surface

$$h = \frac{\delta x - \delta y}{L} = \frac{\delta a_x - \delta a_y}{(2\pi f)^2 L}$$

$$h_{\rm NN} = \frac{\sqrt{2\left(\delta a_{x,\rm rms}^2 + \delta a_{y,\rm rms}^2\right)}}{(2\pi f)^2 L}$$

Newtonian noise, surface

Meyers Thesis

Newtonian noise results, depth

Not as much improvement as expected — Homestake is relatively quiet, leading to large body wave content

Summary

- Reducing the impact of seismic and Newtonian noise is crucial for improving low frequency sensitivity of future ground-based gravitational-wave detectors —> many benefits for astrophysics
- Homestake array is a unique seismic array allowing for interdisplinary studies in geophysics and gravitationalwave instrument science
- First estimates of Newtonian noise have been made with Homestake data

Extra slides

Phase coherent mapping

- Mathematically similar to radiometer method, but obtain maps of amplitude and phase (not just power)
- Example recovery

This example also shows recovery of reflection (P->P+SV)

Phase coherent mapping – P wave phase

Can use phase coherent mapping to coherently sum contributions to Newtonian noise