

Run: 367321 Event: 755541675 2018-12-01 08:30:26 CEST

Observation of Light-by-Light Scattering in ATLAS

Vacuum fluctuations & Gravity, 30 April 2019

Kristof Schmieden, on behalf of the ATLAS collaboration

ΕK

• The story starts with in the **early 30ies**:

• Dirac's theory developed and positrons discovered • Evident that light could scatter off light via pair-production (Halpern & Heisenberg)

• Heisenberg, Euler, Kockel

• Using effective Lagrangian to calculate cross section $(E_{\gamma} \ll m_e)$

• ~ 10^{-70} cm² for visible light, 10^{-30} cm² for γ -radiation [Naturwissensch. 23, 246, 1935], [Z. Phys. 98 (1936) 714]

• Exact calculation: loop calculation needed

• Box diagram involving charged fermions and W-Boson

- Early experimental approach:
 - Search for scattering of visible photons using focused sunlight

[Hughes and Jauncey, Phys. Rev. (36 1930), 773]

Apparatus for a light-light scattering experiment: Figure 3 The two lenses C and D focus sun light on the same spot O in a light-tight box AB. The dark-adapted eye of an observer at the point P serves as the detector for scattered light.

- "Calculations show that if the photon has a cross" section, its area must be less than 3x10⁻²⁰ cm²."
- Cross section for visible light actually is:
 - 10⁻⁶⁰cm²!

Overview of Light-by-Light scattering

- Several names known for Light-by-Light scattering
 Depending on number of virtual photons
 - Photon Photon scattering: 4 real photons
 - Pseudo-scalar meson production in S-channel
 - Photons splitting : 1 virtual, 3 real photons
 - Delbrück scattering [1933]: 2 virtual, 2 real photons
 - Electron / Muon g-2: 3 virtual, 1 real photon

Cross section box-diagram

- Broken down by particle type in loop
- Cross section of elementary process: ~10 pb
- Source of photons?

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴
 - PbPb collisions at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2800 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴
 - PbPb collisions at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2800 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

- Various types of photon interactions possible
 - Photon-Pomeron: e.g. exclusive J/Phi production
 - Photons Gluon: photo production of jets
 - Photon Photon: Light by Light scattering
 - QED interaction
 - Mediated via box-diagram
 - Beam particles stay intact

The LHC

- CERN's accelerator complex
- LHC:
 - Usually operates with **proton** @ 6.5 TeV beam energy
 - ~1 month / per year:
 - Lead ions instead of protons

Vacuum Fluctuations at Nanoscale and Gravitation

The LHC

- LHC:
 - Usually operates with **proton** @ 6.5 GeV beam energy

• Proton operation:

- Bunch crossings every 25ns (40 MHz)
- ~60 simultaneous pp collision per bunch crossing • 'Pileup'

- ~1 month / per year:
 - Lead ions instead of protons

- Bunch crossings every 75ns (13 MHz)
- ~0.004 simultaneous PbPb collision per bunch crossing • Essentially no pileup at all

The ATLAS Detector

- Size of a 6 story building
- 100M readout channels
- 2 staged trigger system
 - L1: hardware based
 40MHz -> 100kHz
 - L2: software based
 100kHz -> 1kHz
- 100 kHz readout
- 1 kHz to disk (~1.5 MB/event)

The ATLAS Detector

- ~100M readout channels
- 100kHz readout (~1.5 MB/event)
 - 1 kHz to disk
- 'Textbook' like multi purpose detector
- ATLAS coordinate system:
 - $\eta = -\ln \tan(\theta/2), \phi$

- Experimental signature:
 - 2 exclusive photons in the final state
 - \bullet Photons are back to back in ϕ
 - $A_{\phi} = 1 |\Delta \phi| / \pi < 0.01$
- Cross section steeply falling with increasing energy
 - Looking for low energy photons: E > 3 GeV
 - Challenging!
- Very **unusual topology** and **energy range** for a high energy collider experiment
 - Interesting challenge :-)

2016: <u>Nature Physics 13 (2017) 852</u>

2018: <u>arXiv:1904.03536</u>

• Common pp collision

• Common PbPb collision

Kristof Schmieden

• Light-by-Light scattering candidate event

Vacuum Fluctuations at Nanoscale and Gravitation

- ATLAS uses a 2-staged trigger system
 - 1st Stage: Hardware Based, 40MHz input, 100kHz output
 - Requirements (OR):
 - >= 1 EM cluster with E_T > 1 GeV && 4 GeV < total E_T < 200 GeV
 - >= 2 EM clusters with $E_T > 1$ GeV && total $E_T < 50 \text{ GeV}$
 - 2nd Stage: PC-farm, 100kHz input, 1kHz output
 - Requirements (AND):
 - ΣE_T (forward calorimeter) < 3 GeV on both sides
 - <= 15 hits in pixel detector
 - Tagging of exclusive photon final state

Triggering

• Trigger efficiency determined using e+e- final states

• Triggered by independent support triggers

• Applied to simulated events to correct yield

2018: <u>arXiv:1904.03536</u>

• Photon reconstruction:

- Using default photon reconstruction algorithm
 - Entries in calorimeter cells are grouped to clusters
 - Track matching performed
 - Electrons / Photons
 - Some overlap allowed

- Photon identification:
 - Uses neural net, optimised for low ET photons
 - Combination of EM calorimeter shower shape variables Discrimination between photons, pions, electrons, noise

Photon reconstruction and identification

2018: <u>arXiv:1904.03536</u>

Vacuum Fluctuations at Nanoscale and Gravitation

• Photon reconstruction:

- Using default photon reconstruction algorithm
 - Entries in calorimeter cells are grouped to clusters
 - Track matching performed
 - Electrons / Photons
 - Some overlap allowed

- Photon identification:
 - Uses neural net, optimised for low ET photons
 - Combination of EM calorimeter shower shape variables
 - Discrimination between photons, pions, electrons, noise

- Efficiency measurement:
 - Using e+e- events where a hard bremsstrahlung photon was radiated
 - $ee\gamma$ final state selection:
 - Exactly 1 electron $p_T > 4$ GeV && 1 additional track
 - Track $p_T < 1.5 \text{ GeV}$
 - Photon with $E_T > 2.5$ GeV must be present in Event!

- Detector must be in physics conditions
- Trigger
- Exactly 2 photons with $E_T > 3 \text{ GeV } \& |\eta| < 2.37$
 - Excluding $1.37 < |\eta| < 1.52$
- Invariant di-photon mass $M_{\gamma\gamma} > 6 \text{ GeV}$
- Veto any extra particle activity within $|\eta| < 2.5$
 - No reconstructed tracks ($p_T > 100 \text{ MeV}$)
 - No reconstructed pixel tracks ($p_T > 50$ MeV, $|\Delta \eta (\gamma, \text{track})| < 0.5$)
- Back-to-Back topology
 - $p_T(\gamma\gamma) < 2 \text{ GeV}$ (rejects cosmic muons)
 - Reduced acoplanarity < 0.01 ($A_{\phi} = 1 |\Delta \phi| / \pi$)

Event Selection

$\eta\eta \rightarrow e^+e^- \rightarrow e\gamma e\gamma$ candidate event:

Vacuum Fluctuations at Nanoscale and Gravitation

- What else has a similar signature?
- Central Exclusive Production of 2 photons (**CEP**): $gg \rightarrow \gamma\gamma$
 - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of A_{ϕ} distribution
 - Control region defined to study CEP: aco > 0.01
- Shape of A_{ϕ} distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)
- Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)
- Overall uncertainty of CEP background in signal region: 25%
- Expected events in signal region: 4 ± 1

Background processes

- What else has a similar signature?
- Central Exclusive Production of 2 photons (**CEP**): $gg \rightarrow \gamma\gamma$
 - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of A_{ϕ} distribution
 - Control region defined to study CEP: aco > 0.01
- Shape of A_{ϕ} distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)
- Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)
- Overall uncertainty of CEP background in signal region: 25%
- Expected events in signal region: 4 ± 1

• Pb* dissociates, releasing neutrons detectable in the Zero Degree Calorimeter

- Cross check of ZDC information for events in CEP control region:
 - Good agreement with expectations :)

Background processes

Vacuum Fluctuations at Nanoscale and Gravitation

• ± 140m from ATLAS IP • 8.3 < $|\eta|$ < inf

- What else has a similar signature?
- Exclusive production of e⁺e⁻ electron pairs
 - Both electrons misidentified as photons
- Electrons bent in magnetic field
 - Broader A_{ϕ} distribution compared to signal
- Background rate estimated from data
 - 2 control regions:
 - Signal region + requiring 1 or 2 associated pixel tracks
 - Event yield from control regions extrapolated to signal region • using probability to miss pixel track if full track not reconstructed pemistag
 - pemistag measured requiring 1 full track and exactly 2 signal photons: $(47 \pm 9)\%$

Background processes

Vacuum Fluctuations at Nanoscale and Gravitation

- What else has a similar signature?
- Other potential backgrounds found to be negligible:
 - $\gamma\gamma \rightarrow qq$
 - Exclusive di-meson production (pi0, eta, eta')
 Also charged mesons considered
 - Bottomonia: $\gamma \gamma \rightarrow \eta_b \rightarrow \gamma \gamma$ (sigma ~1pb)
 - Fake photons: Cosmic rays, calorimeter noise

• Total background + signal:

Results on 2015 data

- Very similar analysis, some optimisations missing
 - 480µb of PbPb data recorded in 2015
 - First Evidence of Light-by-Light scattering released in 2016 by ATLAS
 - Compatible result by CMS

- 13 Events observed, Background: 2.6 ± 0.7
- Cross section:
 - Measured: $70 \pm 20 \text{ (stat)} \pm 17 \text{ (sys)} \text{ nb}$
 - SM expectations: 49 ± 5 nb
- Significance: **4.4** σ (3.8 σ expected)

2016: <u>Nature Physics 13 (2017) 852</u>

Results on 2018 data

- 2018 Data: 1.7 nb⁻¹ of PbPb data analysed
 - **59 Events observed**, Background: 12 ± 3
 - Cross section:
 - Measured: 78 ± 13 (stat) ± 8 (sys) nb
 - SM expectations: 49 ± 5 nb
 - Significance: 8.2 σ (6.2 σ expected)

• Light-by-Light scattering of GeV photons observed

• Compatibility with prediction within 1.8 standard deviations

2018: <u>arXiv:1904.03536</u>

Interpretation - Search for new Axion Like Particles

- Being interesting in it's own right, there's more to learn from this result:
 - Measurement can transformed into limit on specific models beyond the standard model
- Axion like particles:
 - (pseudo-) scalar particles that are too heavy to solve strong CP problem • Will couple to photons, may couple to anything else
 - Identical signature as Light-by-Light scattering
 - Resonant behaviour

Active field:

- Phenomenological work: <u>arxiv:1607.06083</u>,
- Latest CMS result: arXiv:1810.04602

Interpretation - Search for new Axion Like Particles

- Being interesting in it's own right, there's more to learn from this result:
 - Measurement can transformed into limit on specific models beyond the standard model
- Born Infeld theory
 - Nonlinear extension to QED
 - Imposing an upper limit of the EM field strength [Born and Infeld, Proc. R. Soc. A 144, 425 (1934)]
 - More recently: connection to string theory [Fradkin and Tseytlin, Infeld, Phys. Lett. 163B, 123 (1985)]

• Differential Light-by-Light scattering cross section can be turned into limit on mass scale appearing in B-I theory

Conclusions

- First direct observation of Light-by-Light scattering at the ATLAS experiment
 - Hi collisions from the LHC used as photon collider

• Challenging measurement, very different from usual high energy analyses:

- Low energy objects
- Very little activity in detector
 - Difficult to trigger

• 59 Events observed (12 background events expected)

• Measured fid. cross section for $m_{\gamma\gamma} > 6$ GeV: $\sigma = 78 \pm 15$ nb

Compatible with SM prediction

• Useful to constrain several models beyond the standard model, e.g.

- Axion like particles
- Born-Infeld theory

Conclusions

- First direct observation of Light-by-Light scattering at the ATLAS experiment
 - Hi collisions from the LHC used as photon collider

• Challenging measurement, very different from usual high energy analyses:

- Low energy objects
- Very little activity in detector
 - Difficult to trigger

59 Events observed (12 background events expected)

• Measured fid. cross section for $m_{\gamma\gamma} > 6$ GeV: $\sigma = 78 \pm 15$ nb

Compatible with SM prediction

• Useful to constrain several models beyond the standard model, e.g.

- Axion like particles
- Born-Infeld theory

What's left to do?

- Refined measurement of differential distributions
- Derivation of improved limits on some BSM models
- Interpretations in the framework of effective couplings

Additional Kinematic Distributions

2018: arXiv:1904.03536

2018: arXiv:1904.03536

Vacuum Fluctuations at Nanoscale and Gravitation

ZDC cross check on CEP background

- CEP control region: $A_{\phi} > 0.01$
 - Additionally require energy deposit in ZDC corresponding to at least 1 neutron
- Simulation normalised from control region compatible with data
 - But very limited statistics

• ZDC energy deposits

• Single neutron peaks clearly visible

Vacuum Fluctuations at Nanoscale and Gravitation

Di-Photon spectrum at low energies => Mesons exchange

$(\mathbf{q})^{10^{7}}$	$\gamma \gamma \rightarrow \gamma \gamma$ fermionic contributions leptons quarks mesonic contributions scalars			
10 ³	L Phys. Le	ett. B 772	cz et al. (2017) 3	30-33
10				
10 ⁻¹				
10 ⁻³ 0	1	2	3	4
	$\gamma(p_1) \qquad \qquad$	$- \sum_{\gamma(p_4)}^{\gamma(p_3)}$	$\gamma(p_1)$	P_t

 10^{7} σ (pb) $|\cos\theta| < 0.6$ $\gamma\gamma \rightarrow \gamma\gamma$, fermionic contributions leptons 10^{5} -- quarks mesonic contributions scalars ---- pseudoscalars 10^{3} tensors 35 10 10⁻¹ 10^{-3} 2 3 4 vs (GeV) $\bigwedge \gamma(p_3) \qquad \gamma(p_1) \bigwedge \gamma(p_4)$ $\wedge \gamma(p_4) \qquad \gamma(p_2) \wedge \gamma(p_3)$

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴
 - PbPb collisions at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2800 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴
 - PbPb collisions at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2800 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

