KAGRA STATUS

-GRAVITATIONAL-WAVE TELESCOPE IN JAPAN-

29, Apr., 2019

© VACUUM FLUCTUATION AT NANOSCALE AND GRAVITATION CONFERENCE TAKAYUKI TOMARU on BEHALF OF KAGRA NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN

Observation Network for Gravitational Wave

Why do we need KAGRA?

Antenna Pattern of Interferometric Gravitational Wave Detector

Identified Localization of GW Events

Why do we need KAGRA?

Antenna Pattern of Interferometric Gravitational Wave Detector

KAGRA + LIGO x2 + VIRGO

Cryogenic Mirror System

2.5nd Generation GW detector in Japan

Underground

Why Underground? Why Cryogenic?

7

KAGRA LOCATION

200m underground

Kamioka Underground

Seismic Vibration

We found that underground where is deeper than 100m from surface has drastically smaller seismic vibration level.

In Kamioka underground, seismic vibration level is about 2 or three orders of magnitude Smaller than that at typical urban area.

And seismic vibration level in Kamioka underground is about one order of magnitude smaller than LIGO site.

Water!!!

Water!!!!

Cryogenic Sapphire Mirror and Suspension

(1) Thermal Noise Reduction

Thermal Noise Amplitude

Moreover Sapphire @ 20K

Typical Φ of sapphire at room temperature is ~10⁻⁶

(2) Thermal Lensing

Wave-front distortion at input mirror at 20K

 $\phi = 5 \times 10^{-9}$ $\phi = 1 \times 10^{-7}$

(bulk)

(fiber)

KAGRA Cryogenic System

Upper Floor

2

Main Cryostat

Arm tunnel

14m 4-stage GAS filters @ room temperature.

Cryogenic park

Bottom Floor

Duct Shield

Ultra-small Vibration Cryocooler & Duct Shield

Cryogenic Payload

Wide-Angle Baffle

Heat-Link Vibration Islatior

Sapphire Crystal Bonding

These bonding studies were carried on the Basis of collaboration work btw Japan and Europe (ELiTES program)

Y-end **Cryogenic** Payload Installed ! Nov. 30th, 2017

やまた

かいい日

うえだ

TEAM KAGRA Cryogenics High Energy Accelerator **Research Organization** SOKENDAI

Institute for Cosmic Ray Research, Univ. of Tokyo Institute for Cosmic Ray Research

University of Perugia

Sapienza University of Rome

はぎわら

15

Full Configulation in Cryostat

Heat Link Vibration Isolation System

Wide-Angle Baffle

- Payload

Type-A VIS

ZYGO high quality mirror

Cooling Curve of ITMY

bKAGRA phase-2 (full configuration)

Interferometer Commissioning

(1) X-arm Commissioning: Dec. 2018 (Done, at room temperature)

- Success full cavity lock <- fine beam alignment was done.
- Cavity length: 2999.992(3) m
- Mode matching: 91%
- Round-trip optical loss: 86ppm

X-arm commissioning with full cryogenic systems was started, and auxiliary green lase lock was done in 17th Apr. KAGRA

(2) Y-arm Commissioning: from Apr. 2019 (on going, at cryogenic temperatu

> Y-arm cavity lock was achieved or using auxiliary green laser and on 2 ITMY was stable temperature of 22 transient state of cooling down of Good Trans.

21

NOW

NAB

ITMX, I/ETMY cooling

Major Schedule

- May, 2019: Y-arm lock by IR laser
- End of May: Fabry-Perot Michelson interferometer
- June: Dual-Recycled Michelson
 Start Dual-Recycled Fabry-Perot Michelson interferometer
 Engineering Runs
- Summer: DRFPMI lock
- Early Winter: Join O3 with >10 Mpc sensitivity for NS-NS event

KAGRA will join O3 in 2019.

From LIGO Gallery

advanced LIGO detected Gravitational Wave

GW150914

Primary Mass: 36.2 (+5.2 - 3.8) M_{sun} Secondary Mass: 29.1 (+3.7 - 4.4) M_{sun} Radiated Energy: 3.0 (+0.5 - 0.4) M_{sun} Luminosity Distance: 420 (+150 - 180) Mpc

amplitude

Normalized

26

First observed binary neutron star

GW170817

Primary Mass: $1.36 - 2.26 M_{sun}$ Secondary Mass: $0.86 - 1.36 M_{sun}$ Radiated Energy: $> 0.025 M_{sun}$ Luminosity Distance:40 (+8 - 14) Mpc

Fermi-GBM detected short gamma -ray burst GRB170817A 1.7s after GW170817.

This is first evidence to connect between binary neutron star merger and short gamma-ray burst Inclination Angle of Binary System can be derived from GW Polarization \leftarrow To obtain both localization and Polarization, we need four detectors at least.

Jet for Gamma-Ray Burst

Hubble Tension

Vacuum System

To have sufficiently small laser-beam fluctuation by residual gas, we need ultra-high vacuum of 10⁻⁷ Pa.

- 3km x 2 Beam Tubes, Φ800mm x L12m, 500 tubes
- 10 Major Vacuum Tanks
- 4⊐ Main Cryostats

Inner Volume : $\sim 3000 \text{ m}^3$ Surface Area : $\sim 15,000 \text{ m}^2$

Largest Vacuum System in Japan (3rd Largest in the World)

<u>Ultra-Small Outgas Vacuum Tubes</u>

Outgassing Ratio

Mechanical & Electric Polishing

Vacuum Baking

Black Coating

