Casimir effect in hightemperature superconductors

Barbara Šoda in collaboration with Prof. Achim Kempf University of Waterloo

Conference: Vacuum Fluctuations at Nanoscale and Gravitation: theory and experiments

Orosei, 29.4.2019.

Motivation:

- understand the energetics of high-temperature superconductivity.
 - Conventional superconductors limited to about Tc = 40 K
 - e.g. Pb, Al, Ti, Sn, Nb...
 - (more-or-less) homogeneous pieces of metal

Pb, Al...

- BCS theory explains conventional superconductors,
- but, BCS phonon mediated electron-electron binding energy too small at higher temperatures.

Motivation:

- understand the energetics of high-temperature superconductivity.
 - high-temperature superconductors go up to about Tc = 150 K
 - Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, La-Ba-Cu-O, etc.

Pb, Al...

high-temperature

YBCO, BSCCO,...

But what explains the energetics of the high-temperature superconductors?

- Balance of energies may not be local
- Local vs. global energy trade-off

The formation of each Cooper pair costs energy.

- Balance of energies may not be local
- Local vs. global energy trade-off
- The formation of each Cooper pair costs energy.
- If sufficiently many Cooper pairs form, there is a global effect: superconductivity may lead to an overall energetic benefit.

- Balance of energies may not be local
- Local vs. global energy trade-off
- The formation of each Cooper pair costs energy.
- If sufficiently many Cooper pairs form, there is a global effect: superconductivity may lead to an overall energetic benefit.
- If the global energetic benefit exceeds the sum of local energy costs, then the Cooper pairs form and superconductivity sets in.

- Balance of energies may not be local
- Local vs. global energy trade-off
- The formation of each Cooper pair costs energy.
- If sufficiently many Cooper pairs form, there is a global effect: superconductivity may lead to an overall energetic benefit.
- If the global energetic benefit exceeds the sum of local energy costs, then the Cooper pairs form and superconductivity sets in.

How could this work concretely?

How could it work concretely?

Observations:

- high-temperature superconductors are layered structures
- above Tc the CuO(2) planes insulators, below Tc superconducting

Idea (A. Kempf, 2004):

what if Casimir effect plays a role?

A. Kempf, arXiv: gr-qc/0403112

A. Kempf, 2005, Proc. 10th Marcel Grossmann Meeting (Rio de Janeiro, 20–26 July 2003) ed. M. Novello, S. P. Bergliaffa and R. Ruffini (Singapore: World Scientific) p 2271

Quick review: Casimir effect

2 metal plates attract each other!

-> Casimir effect

$$E_{Cas}(a) = -\frac{\pi^2 \hbar cA}{720a^3}$$

(for ideal conductors)

Quick review: Casimir effect

2 metal plates attract each other!

-> Casimir effect

$$E_{Cas}(a) = -\frac{\pi^2 \hbar c A}{720 a^3} \qquad \begin{array}{c} \text{(for ideal conductors)} \\ \text{negative!} \end{array}$$

High-temperature superconductors

High-temperature superconductors

How could it work concretely?

- Calculate Casimir energy of superconducting layers separated by a dielectric medium, and compare to condensation energy!
- A simple model:
 - parallel plasma sheets separated by vacuum, with realistic layer distance and electron density

- A. Kempf, arXiv:cond-mat/0603318
- A. Kempf, arXiv:0711.1009
- A. Kempf 2008 J. Phys. A: Math. Theor. 41 164038

Casimir energy of parallel plasma sheets:

$$E_c(a) = -5 \times 10^{-3} \hbar c A \sqrt{\frac{nq^2}{2mc^2\epsilon_0}} a^{-5/2}$$
 (Bordag, 2006)

Casimir energy is spent on the condensation into superconducting state:

$$E_c(a) = E_{cond}$$

Condensation energy is related to the transition temperature:

$$E_{cond} = -D(\epsilon_F)\Delta^2(0)/2$$

$$T_c = \Delta(0)/\eta k_B$$

• Realistic layer distance and electron density:

$$a = 1 \text{ nm}$$

 $n = 10^{14} \text{ (cm)}^{-2}$

Realistic layer distance and electron density:

$$a = 1 \text{ nm}$$

 $n = 10^{14} \text{ (cm)}^{-2}$

Transition temperature:

$$T_c = 125 \text{ K}$$

Realistic layer distance and electron density:

$$a = 1 \text{ nm}$$

 $n = 10^{14} \text{ (cm)}^{-2}$

Transition temperature:

$$T_c = 125 \text{ K}$$

the right order of magnitude!

• Compare:

$$T_c = 125 \text{ K}$$

• HTSCs:

Formula
YBa ₂ Cu ₃ O ₇
Bi ₂ Sr ₂ CuO ₆
Bi ₂ Sr ₂ CaCu ₂ O ₈
$\mathrm{Bi_2Sr_2Ca_2Cu_3O_{10}}$
Tl ₂ Ba ₂ CuO ₆
Tl ₂ Ba ₂ CaCu ₂ O ₈
$Tl_2Ba_2Ca_2Cu_3O_{10}$
TIBa ₂ Ca ₃ Cu ₄ O ₁₁
HgBa ₂ CuO ₄
HgBa ₂ CaCu ₂ O ₆
HgBa ₂ Ca ₂ Cu ₃ O ₈

<i>T</i> _c (K)
92
20
85
110
80
108
125
122
94
128
134

(Wiki)

• Compare:

HTSCs:

$$T_c = 125 \text{ K}$$

YBa ₂ Cu ₃ O ₇
Bi ₂ Sr ₂ CuO ₆
Bi ₂ Sr ₂ CaCu ₂ O ₈
Bi ₂ Sr ₂ Ca ₂ Cu ₃ O ₁₀
Tl ₂ Ba ₂ CuO ₆
Tl ₂ Ba ₂ CaCu ₂ O ₈
Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀
TIBa ₂ Ca ₃ Cu ₄ O ₁₁
HgBa ₂ CuO ₄
HgBa ₂ CaCu ₂ O ₆
HgBa ₂ Ca ₂ Cu ₃ O ₈

Formula

7 _c (K) 92 20	
20	
85	
110	
80	
108	
125	
122	
94	
128	
134	

(Wiki)

- Note: superconductors are worse conductors than ideal conductors
- If layers were ideal conductors: $T_c \approx 3000 \; \mathrm{K}$

Other indications that Casimir effect plays a role:

smaller layer distance -> higher Tc (Li et al, Lowndes et al)

$$E_c(a) = E_{cond}$$
$$E_{cond} \propto T_c^2$$

 $T_c < T_c'$

Li Q, Xi X X, Wu X D, Inam A, Vadlamannati S and McLean W L 1990 Phys. Rev. Lett. 64 3086 Lowndes D H, Norton D P and Budai J D 1990 Phys. Rev. Lett. 65 1160

Other indications that Casimir effect plays a role:

- smaller layer distance -> higher Tc (Li et al, Lowndes et al)
- more layers -> higher Tc (Li et al, Lowndes et al)

Li Q, Xi X X, Wu X D, Inam A, Vadlamannati S and McLean W L 1990 Phys. Rev. Lett. 64 3086 Lowndes D H, Norton D P and Budai J D 1990 Phys. Rev. Lett. 65 1160

Other indications that Casimir effect plays a role:

- smaller layer distance -> higher Tc (Li et al, Lowndes et al)
- more layers -> higher Tc (Li et al, Lowndes et al)
- more layers of carbon nanotubes -> higher Tc (Takesue, 2006)

Takesue I et al 2006 Phys. Rev. Lett. 96 057001

Overall picture:

above Tc

- Coulomb repulsion
- low conductivity
- low Casimir effect

Overall picture:

above Tc

- Coulomb repulsion
- low conductivity
- low Casimir effect

below Tc

- Cooper pairs formed
- superconductivity
- strong Casimir effect

Overall picture:

- At Tc Cooper pairs form high conductivity sets in
- There is a strong coordination between the currents in layers (depicted by wavy lines)

The onset of Casimir effect pays the energy price for Cooper pair formation

N two-level systems:

• they can be in up state: $|\uparrow\rangle$ = "Cooper pair has formed,

and down state: $|\downarrow\rangle$ = "Cooper pair did not form"

N two-level systems:

$$\cdots \hspace{0.1cm} \bigoplus \hspace{0.1cm} \cdots$$

Hamiltonian:

$$|ocal|$$

$$H = a \sum_{i} \bar{\sigma_i}$$

$$\bar{\sigma}_i = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{H}_i}$$

N two-level systems:

$$\cdots \hspace{0.1cm} \textcircled{\hspace{0.1cm}} \hspace{0.1cm} \cdots \hspace{0.1cm} \vdots \hspace{0.1cm} \hspace{0.1cm} \vdots \hspace{0.1cm} \vdots$$

• Hamiltonian:

$$H = -b N \prod_{i} \bar{\sigma}_{i}$$

$$\bar{\sigma}_i = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{H}_i}$$

N two-level systems:

$$\cdots \hspace{0.1cm} \bigoplus \hspace{0.1cm} \cdots \hspace{0.1cm} \cdots \hspace{0.1cm} \qquad \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \cdots \hspace{0.1cm} \qquad \qquad \qquad \cdots \hspace{0.1cm} \qquad \cdots \hspace{0.1cm} \qquad \cdots \hspace{0.1cm} \qquad \cdots \hspace{0.1cm} \qquad \qquad \cdots \hspace{0.1cm} \qquad \cdots \hspace{0.1cm} \qquad \qquad \cdots \hspace{0.1cm} \qquad$$

Hamiltonian:

$$\begin{aligned} & \text{local} & + & \text{global} \\ H &= a \sum_i \bar{\sigma_i} - b \ N \prod_i \bar{\sigma}_i \end{aligned}$$

$$\bar{\sigma}_i = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}_{\mathcal{H}_i}$$

Thermodynamical properties of this system:

$$E_0 = -(b-a)N \qquad \cdots \qquad \textcircled{\uparrow} \qquad \textcircled{\uparrow} \qquad \textcircled{\uparrow} \qquad \cdots$$

$$E_1 = 0 \qquad \cdots \qquad \textcircled{\downarrow} \qquad \textcircled{\downarrow} \qquad \textcircled{\downarrow} \qquad \cdots$$

$$E_2 = a \qquad \cdots \qquad \textcircled{\uparrow} \qquad \textcircled{\uparrow} \qquad \textcircled{\downarrow} \qquad \textcircled{\downarrow} \qquad \cdots$$

$$E_3 = 2a \qquad \cdots \qquad \textcircled{\uparrow} \qquad \textcircled{\uparrow} \qquad \textcircled{\uparrow} \qquad \textcircled{\downarrow} \qquad \cdots$$

$$Z = e^{\beta(b-a)N} + (1 + e^{-\beta a})^N - e^{-\beta aN}$$

$$\langle E \rangle = -\frac{\partial \log Z}{\partial \beta}$$
 $C = \frac{\partial \langle E \rangle}{\partial T}$

Thermodynamical properties of this system:

• phase transition at: $k_BT_c = \frac{b-a}{\log\left(1+e^{-\frac{a}{k_BT_c}}\right)}$

Thermodynamical properties of this system:

 This is a simple model that reproduces the main idea of Casimir effect in superconductors.

Outlook for Casimir effect in high-temperature superconductors:

- look for the experimental signature of Casimir effect in hightemperature superconductors:
 - observe small squeezing of the high-temperature superconductor at Tc
- this model suggests where to look for new materials:
 - need high contrast in conductivity between normal and superconducting state
 - small layer spacing

Outlook for local vs. global energy trade-off:

This simple model clearly demonstrates these effects are possible!

- Challenge 1: beyond high-temperature superconductivity, are there other phenomena where local energy expense is offset by global benefit?
- Challenge 2: are there different theoretical models that can show this property?

Experimental challenge:

 Challenge 3: can we make an experimental realization of the proposed model or a similar model? Thank you for your attention!