Casimir actuation between real materials towards chaotic behavior

G. Palasantzas, F. Tajik, Z. Babamahdi, V.B. Svetovoy Zernike Institute for Advanced Materials

Gecko adhesive system

Stickybot

Z-MAN project DARPA (Army): Demo 2012: 16-inch² Geckskin → support ~<u>660 pounds</u>

NASA: clean the trash in space

Gecko Gripper sticking power is not affected by temperature, pressure, or radiation

A. W. Rodriguez et al. Nature Photonics (2011)

Interaction area ~1 $m^2 \rightarrow$ $F_{cas/vdW}$ ~5x10⁴N? <u>5 tons</u>!

Broer, PRB (2013)

MEMS examples with stiction problems between components as the arrows indicate

1->Casimir /vdW - Lifshitz Force...

QED says vacuum is full with fluctuating fields: "vacuum fluctuations"

H. Casimir (1948) Perfectly reflecting plates

1909-2000

For a pair of parallel plates the force is described by:

$$F = \frac{\pi^2}{240} \, \frac{\hbar c}{d^4} \, A$$

c is the speed of light, d the plate spacing and A the plate surface area.

First high accuracy measurement in 1997 by S. Lamoreaux

No perfect reflectors in nature → "real dissipative" matter: Lifshitz theory

A. W. Rodriguez et al. Nature Photonics (2011)

Fluctuation dissipation theorem (FDT): fluctuating currents ↔ dissipation

$$\langle J_{\alpha}(\omega, \mathbf{r}) J_{\beta}^{*}(\omega', \mathbf{r}') \rangle = \omega \varepsilon''(\omega) \left(\frac{\hbar \omega}{2} + \frac{\hbar \omega}{e^{\hbar \omega/kT} - 1} \right) \times \delta(\omega - \omega') \delta(\mathbf{r} - \mathbf{r}') \delta_{\alpha\beta}$$

$$Im[?(?)]$$

$$I$$

E.g. plasma wavelength metals ?p ??100-150 nm ...these 'two forces' are ultimately derived from the same cause

power laws of the force...

The scaling exponent m of the Casimir force versus separation distance, $F \sim d^{-m}$ for the sphere-plate

Interacting materials/surfaces	Separation range	Exponent m		
Au–Au ³⁵	25–100 nm	m = 2.5		
Au–Au ³⁸	160–500 nm	m = 2.71		
	500–750 nm	m = 2.84		
	160–750 nm	m = 2.76		
Au–Au ⁴⁰	98–300 nm	m = 2.79		
	98–200 nm	m = 2.67		
$Ge-Ge^{41}$	550–1500 nm	m = 2.84		
Au–ITO ⁴²	70–200 nm	m = 2.75		
Au–AIST $(A)^{43}$	$55{-}130 \text{ nm}$	m = 2.49		
Au–AIST $(C)^{43}$	$55{-}130 \text{ nm}$	m = 2.43		
Au–Au ⁴³	$55{-}130 \text{ nm}$	m = 2.55		
$Au - Au^{45,46}$	$65{-}350 \text{ nm}$	m = 2.61		
$Au-HOPG^{45,46}$	$65{-}350 \text{ nm}$	m = 2.67		
Au-Au ⁴⁷⁻⁵⁰	30–1000 nm	m = 2.64		

concensus among various groups......

G. PALASANTZAS^{*,†}, V. B. SVETOVOY[‡] and P. J. VAN ZWOL^{*,§}

International Journal of Modern Physics B Vol. 24, No. 31 (2010) 6013–6042

Real materials.....

Material optical properties: Fundamental constraints

Indirect integral dependence on the physical frequency $\varepsilon(i\zeta) = 1 + \frac{2}{\pi} \int_{0}^{\infty} d\omega \frac{\omega \varepsilon''(\omega)}{\omega^{2} + \zeta^{2}} \int_{0}^{\zeta_{ch}=c/2a} Important \zeta \sim \zeta_{ch}$ but which ω are important? It depends on the material.

For metals $\varepsilon''(\omega) \rightarrow \frac{4\pi\sigma}{\omega} \gg 1$ when $\omega \rightarrow 0$ Direct consequence of Ohm's law!

$$\Delta \times \mathbf{H} = \frac{4\pi}{c} \mathbf{j} - i\frac{\omega}{c} \mathbf{D},$$

$$\mathbf{j} = \sigma \mathbf{E}, \qquad \mathbf{D} = \varepsilon_0 \mathbf{E}$$

Ohm's law static permittivity
$$\varepsilon(\omega) = \varepsilon_0 + i\frac{4\pi\sigma}{\omega}, \qquad \omega \to 0$$

Comparison with theory, Decca et al.

Drude Casimir ? Plasma Casimir ?

Important contribution to Casimir force from imaginary frequencies $\rightarrow \zeta_{ch} = c/2a$.

Svetovoy et al., PRB (2008)

Contact mode AFM force measurement

Zwoll et al., PRB (2008) do: Distance upon contact due to roughness

Zwoll et al., PRB (2008), Svetovoy-Palasantzas Adv. Coll. Interface Sci. 2016

Grass and trees model

Number of high peaks $d_1 < h < d_0$

w: rms roughness **[?]**: correlation length Average distance between high peaks l >> ??

If l > d the peaks can be accounted additively \longrightarrow condition on d_1

Typically $d_1 \gtrsim 3w$, but close to 3w

Broer et al., EPL (2012), PRB (2008), Svetovoy-Palasantzas Adv. Coll. Interface Sci. 2016

Broer et al., EPL (2012), PRB (2008), Svetovoy-Palasantzas Adv. Coll. Interface Sci.

$F_{e1} = X(z)(V - V_0)^2$ V₀: Contact potential

Energy band diagram

Electrostatics....contact potentials

02 400 398 Energy (eV)

536 534 532 Binding Energy (eV)

(e)

Work in progress.....!

Topological Insulators

Signatures of the exotic metallic surface states in topological insulators. Theoretical ideal electronic structure of Bi2Se3

Dynamic actuation MEMS: Conservative system ?=0

Dynamic driven nononservative MEMS

$$m\ddot{x} = \kappa (L_0 - x) - F_{\text{Cas}}(x) - \epsilon \gamma \dot{x} + \epsilon F_0 \cos \omega t.$$

Broer et al., PHYSICAL REVIEW APPLIED 4, 054016 (2015)

 $(\epsilon = 1)$

<u>Chaotic system</u>: can not long term actuation state

Broer et al., PHYSICAL REVIEW APPLIED 4, 054016 (2015)

Stronger Casimir force→ ...more chaoticity...

Phys. Rev. A 2010, New Scientist July 2, 2010, Adv. Funct. Mat. 2012

Melnikov analysis

100 oscillations

decrease ? ? Increase chaoticity

Tajik et al., Phys. Rev. E (2017)

Higher conductivity material \rightarrow More chaotic.....

Drude model \rightarrow conductivity ratio: $\omega \downarrow p \uparrow 2 / \omega \downarrow \tau$ $\omega \downarrow \tau$ plasma frequency

 $\omega \downarrow \tau$ damping factor

- $\omega \downarrow p$ 12 / $\omega \downarrow \tau \mid \downarrow Au$?1600 eV
- ω↓*p* ↑2 / ω↓*τ* |↓AIST(*C*) =10.1 eV
- $\omega \downarrow p \uparrow 2 / \omega \downarrow \tau | \downarrow SiC = 0.4 eV$

Tajik et al., Eur. J. Phys. B (2018)

Melnikov analysis

V=0 ? ? decreases

Tajik et al., Eur. J. Phys. B (2018)

Voltage application → strong effect depending on material

TABLE II. The Drude parameters determined by different methods described in the text. In all cases the statistical errors in the parameters are on the same level: 0.01-0.03 meV for ω_p and 0.2-0.5 meV for ω_{τ} . The last column shows the values of the parameters averaged on different methods and the corresponding rms errors.

Sample	Parameter	Joint e', e"	Joint n, k	KK ε'	KK n	Average
1	$\omega_p [eV]$	6.70	6.87	6.88	6.83	6.82 ± 0.08
400 nm/Si	ω_{τ} [meV]	38.4	43.3	40.2	39.9	40.5 ± 2.1
2	ω_p	6.78	7.04	6.69	6.80	6.83 ± 0.15
200 nm/Si	$\omega_{ au}$	40.7	45.3	36.1	36.0	39.5 ± 4.4
3	ω_p	7.79	7.94	7.80	7.84	7.84 ± 0.07
100 nm/Si	$\omega_{ au}$	48.8	52.0	47.9	47.4	49.0 ± 2.1
4	ω_p	7.90	8.24	7.95	7.90	8.00 ± 0.16
120 nm/Si	$\omega_{ au}$	37.1	41.4	35.2	29.2	35.7 ± 5.1
5	ω_p	8.37	8.41	8.27	8.46	8.38 ± 0.08
120 nm/mica	$\omega_{ au}$	37.1	37.7	34.5	39.1	37.1±1.9

Sensitivity of chaotic behavior: Plasma-Drude model......

Conclusions.....

Real materials are promissing for applications in Casimir driven devices but many "ToDos" Still :

- Optical properties & theory uncertaities
- Electrostatics
- Surface roughness
- Chaotic motion Device predictability

Acknowledgements & people involved:

Senior: V. B. Svetovoy, B. J. Kooi, J. Knoester, H. Waalkens, C. Binns, M. Wuttig PhDs: P. Van Zwol, W. Broer, M. Sedighi, F. Tajik, Z. Babamahdi