Galactic Cosmic Rays and Multimessenger Astronomy

Fiorenza Donato Torino University and INFN

Galileo Galilei Institute, 18-22 March, 2019

Energy losses for electrons

Characteristic times/losses for nuclei

The smaller the time, the more efficient the process

Effect of energy losses on electrons

The flux of cosmic rays

Weak cross sections

e+e- total cross section

 \sqrt{s} [GeV]

The galactic dark matter profiles

The J-factor

The invaluable gamma-ray sky

Counts; 5.00 - 10.40 GeV

The diffuse emission of the Galaxy

Fermi-LAT Coll. ApJS 2016

Primary - mixed - secondary nuclei

Li - Be - B are fully secondary, ¹²C and ¹⁶O primary. Many are mixed. Isotopes are relevant (¹⁰Be)

Cosmic Ray composition

Galactic Cosmic Rays have abundances similar to the Solar System ones except for Li-Be-B and sub-Fe nuclei: They are produced by spallation (fragmentation) of heavier nuclei on the Interstellar Medium (H, He)

TABLE IV. Ranking of 1- and 2-step channels for Li at 10 GeV/n, from $f_{ij}^{\perp \text{ step}}$ and $f_{ijk}^{2 \text{ step}}$ coefficients (A1). Channels < 0.1% and higher-level channels (> 2-step, contributing to ~ 8.6%, see Table I), are not shown.

Т

G

 \leq

 \sim

# of channels	in range	contribution [%]			
15	[1%.100%]	70.2			
33	0.1% 1%]	12.7			
180	[0.01% 0.1%]		67		
490	[0.01%,0.1%]	0.7			
430	[0.00170,0.0170]		1.5		
010	0.000120,0.00120		0.2		
2499	[0.0%,0.0001%]		0.0		
Channel		min	mean	max	
$^{16}O \rightarrow ^{6}Li$		12.8	15.4	17.9	
160 . 71		11.7	13.9	16.1	
120 711		0.50	11.3	13.0	
$^{24}M_{H} \rightarrow ^{6}L_{L}$		1.00	2 24	2.48	
180 J 15N	√ ⁷ Li	1.55	1.86	2.17	
56 Fe 5 6L1	/ 11	0.00	1.79	3.58	
160 5 18C	> ⁷ Li	1.48	1.78	2.08	
${}^{12}C \rightarrow {}^{11}B$	\rightarrow ⁷ Li	1.47	1.75	2.03	
²⁴ Mg > ⁷ Li		1.45	1.74	2.03	
16 O \rightarrow 13 C	> °Li	1.41	1.62	1.84	
$^{16}O \rightarrow ^{15}N$	\rightarrow ⁶ Li	1.30	1.47	1.64	
56 Fe \rightarrow ⁷ Li		0.00	1.27	2.54	
$^{28}Si \rightarrow ^{6}Li$	_	0.00	1.06	2.13	
$1^{10}O \rightarrow 1^{10}B$	> ⁷ Li	0.84	1.01	1.17	
1^{10} O $\rightarrow 1^{12}$ C	→ "Li	0.83	1.00	1.16	
$^{10}_{10}O \rightarrow ^{\prime}_{2}Li$	> "Li	0.86	0.88	0.90	
$^{12}C \rightarrow ^{1}Li$	> ^o Li	0.82	0.83	0.84	
$140 \rightarrow 140$	\rightarrow 'Li	0.68	0.81	0.95	
$^{11}_{28}N \rightarrow ^{11}_{7}Li$		0.68	0.79	0.90	
20 NI 61		0.00	0.76	1.52	
$100 \rightarrow 14$ N	. 61 :	0.00	0.69	1.38	
120 10		0.40	0.64	0.62	
160 7 7B	7 6L	0.49	0.55	0.01	
20 No 7 Li		0.45	0.82	1.09	
$14_N \rightarrow 7_L$		0.44	0.51	0.50	
${}^{12}C \rightarrow {}^{11}B$	$\rightarrow {}^{6}Li$	0.50	0.51	0.52	
$^{16}O \rightarrow ^{10}B$		0.39	0.46	0.52	
$^{12}C \rightarrow ^{7}Be$	→ ⁶ Li	0.35	0.42	0.49	
$^{16}O \rightarrow ^{14}N$	\rightarrow ⁷ Li	0.30	0.42	0.53	
$^{16}O \rightarrow ^{11}B$	$\rightarrow {}^{6}Li$	0.28	0.29	0.30	
${}^{12}C \rightarrow {}^{10}B$	\rightarrow ⁷ Li	0.20	0.24	0.28	
$^{16}O \rightarrow ^{10}B$	\rightarrow ^{$^{\prime}$} Li	0.17	0.20	0.24	
$^{13}C \rightarrow ^{7}Li$		0.15	0.18	0.21	
${}^{13}C \rightarrow {}^{6}Li$		0.14	0.16	0.18	
$\mathbb{C}^{32}S \rightarrow ^{\circ}Li$		0.00	0.14	0.27	
$^{24}Mg \rightarrow ^{4}Li$	→ "Li	0.13	0.13	0.13	
$^{20}Mg \rightarrow ^{6}Li$		0.00	0.12	0.25	
$^{20}Mg \rightarrow ^{0}Li$		0.00	0.12	0.24	
$54m \rightarrow 51i$		0.00	0.11	0.23	
$^{20}N_{\odot} \rightarrow ^{10}Li$. 71 :	0.00	0.11	0.23	
56E_{2} , 71	$\rightarrow 1DI$	0.09	0.11	0.13	
$^{24}M_{\odot} \rightarrow ^{16}\Omega$	$\rightarrow LI$	0.00	0.11	0.22	
$28q_{3}$ 27 A1	- 6T.;	0.09	0.10	0.12	
$28_{Si} \rightarrow 24_{M_{eff}}$		0.00	0.10	0.11	
$^{24}M_{\sigma} \rightarrow ^{12}C$	→ ⁶ Li	0.08	0.10	0.12	
	·	0.00	0.10	0.12	

TABLE V. Banking of 1- and 2-step channels for Be at 10 CeV/n, from $f_{ij}^{1-\text{step}}$ and $f_{ijk}^{2-\text{step}}$ coefficients (A1). Channels <0.1% and higher-level channels (> 2-step, contributing to ~6.8%, see Table I), are not shown.

# of channels	in range	contribution [%]		
17	[1%,100%]	71.5		
46	[0.1%, 1%]	13.4		
207	0.01%,0.1%]	6.1		
532	0.001%,0.01%	1.8		
3624	[0.0%.0.001%]	0.0		
Channel		min mean max		
$^{16}O \rightarrow ^{7}Be$		17.6 18.9 20.9		
$^{12}C \rightarrow ^{7}Be$		15.3 17.1 18.9		
$^{12}C \rightarrow ^{9}Be$		7.12 8.34 9.64		
$^{2^{n}}S_{i} \rightarrow ^{7}Be$		2.70 3.18 3.63		
$^{24}Mg \rightarrow ^{7}Be$		2.53 2.99 3.78		
$^{20}Ne \rightarrow ^{7}Be$		1.63 2.10 2.99		
$^{12}C \rightarrow ^{10}Be$		1.25 1.79 $3.701.25$ 1.72 1.99		
$^{14}N \rightarrow ^{7}Be$		1.00 1.32 1.69		
$^{16}O \rightarrow ^{10}Be$		1.17 1.29 1.39		
28 Si 9 Bo) "Be	1.21 1.25 1.35 1.02 1.14 1.21		
$^{24}Mg \rightarrow ^{9}Be$		0.96 1.13 1.46		
160 → 12C	> ⁷ Be	0.85 1.02 1.22		
$16O \rightarrow 16N$ $16O \rightarrow 15N$	> ² He 7 Po	0.84 1.02 1.24		
⁵⁰ Fe Bo) Be	0.04 1.00 1.00		
16_{O} , 14_{N}	→ <u>Z</u> He	0.68 0.83 0.97		
$^{12}C \rightarrow ^{11}B$	→ ⁷ He	0.52 0.83 1.12		
ICO III	5 ⁹ 11a	0.68 0.80 0.97		
$16\ddot{O} \rightarrow 13\ddot{O}$	→ ⁹ He	0.21 0.59 0.95		
$160 \rightarrow 130$	→ ⁷ Be	0.47 0.54 0.63		
120 2 100	> THe	0.35 0.51 0.70		
¹⁶ Ö → ¹¹ B	→ ⁷ Be	0.29 0.44 0.63		
${}^{12}C \rightarrow {}^{11}B$	→ ^{⊥0} Be	0.24 0.42 0.58		
$1600 \rightarrow 100$	9 U.S	0.19 0.40 0.62		
$^{12}C \rightarrow ^{10}B$	→ ⁷ Be	0.18 0.38 0.51 0.29 0.36 0.51		
$^{32}B \rightarrow ^{7}Be$	-	0.12 0.29 0.53		
$^{10}O \rightarrow ^{10}B$	→ 'Be	0.24 0.29 0.38		
$Mg \rightarrow Be$		0.19 0.26 0.42 0.15 0.25 0.41		
$^{16}O \rightarrow ^{14}N$	> ^a Be	0.13 0.24 0.34		
$^{24}Mg \rightarrow ^{10}Be$	10.5	0.18 0.23 0.32		
$^{26}Me \rightarrow ^{7}Bu$	→ […] Be	0.11 0.23 0.34 0.15 0.23 0.38		
28 Si > 10 Be		0.16 0.23 0.38		
$^{28}\text{Si} \rightarrow ^{27}\text{Al}$	$\rightarrow \frac{7}{Be}$	0.14 0.19 0.25		
$^{12}C \rightarrow ^{12}Bo$ 24Ma $^{23}N_{\odot}$) 'Be	0.16 0.19 0.21		
50 Fe 5 10 Be) ne	0.01 0.17 0.34		
$^{16}O \rightarrow ^{15}N$	> ¹⁰ Be	0.10 0.16 0.21		
$10 \text{Ne} \rightarrow 10 \text{Be}$	10.0	0.10 0.16 0.26		
$160 \rightarrow 910$	→ ⁷ He	0.02 0.14 0.26		
$^{20}Mg \rightarrow ^{9}Be$		0.09 0.13 0.17		
$^{24}Mg \rightarrow {}^{16}O$	→ ⁷ He	0.10 0.12 0.14		
$^{29}M_{\pi} \rightarrow ^{29}M_{\pi}$	→ 'He	0.12 0.12 0.13		
$32S \rightarrow Be$		0.06 0.12 0.19		
$^{24}M_F \rightarrow {}^{12}O$	\rightarrow ⁷ He	0.10 0.12 0.13		
$^{29}S1 \rightarrow ^{7}Be$		0.07 0.11 0.17		
$^{20}Ne \rightarrow ^{10}O$	\rightarrow ⁷ He	0.08 0.11 0.15		
$^{16}O \rightarrow ^{12}C$	→ ^{⊥0} Be	0.06 0.11 0.14		
$^{24}Mg \rightarrow ^{22}Ne$	→ ⁷ Be	0.08 0.11 0.15		
$^{10}Ne \rightarrow ^{10}O$ $^{23}Ne \rightarrow ^{7}Pe$	→ 1He	0.10 0.11 0.11		
$^{14}N \rightarrow ^{18}C$	\rightarrow ⁷ Be	0.07 0.10 0.21		
$^{20}Ne \rightarrow {}^{19}F$	\rightarrow ⁷ Be	0.07 0.10 0.14		

15

Production cross sections (Genolini, Maurin, Miskalenko, Unger, PRC 2018)

Boron-to-Carbon: a "standard candle" for fixing GALACTIC PROPAGATION

- Li, Be, B are produced by fragmentation of heavier nuclei (mostly C, N, O) on H and He: production cross sections
- B/C is very sensitive to propagation effects, kind of standard candle

B/C (AMS, PRL 117, 2016) does not show features at high energies At first order, we understand B/C within Fermi acceleration and isotropic diffusion. This may be no longer sufficient when dealing with data at higher energies, gamma-ray data, other species

Interpretation of antiproton data

Reinert & Winkler JCAP 2018

Propagation models fitted on AMS-02 B/C data. Greatest uncertainty set by nuclear cross sections.

Background antiproton can explain data naturally, mainly because of the small diffusion coefficient slope indicated by B/C.

The cosmic positrons

One or more components are negeds, typically in nearby sources given the strong radiative cooling experienced by e+e-.

-0.5

total