Theoretical Aspects of Astroparticle Physics, Cosmology and Gravitation

Firenze, 18-22 March 2019

Aspects of neutrino physics (IV) Neutrino Masses, Mixing and Oscillations: Neutrinos and Lepton Flavor Violation

> Ferruccio Feruglio Universita' di Padova

Lecture 3 Neutrinos and LFV

LFV expected at some level

Process	Relative probability	Present Limit	Experiment	Year	prospects
$\mu \to e\gamma$	1	5.7×10^{-13}	MEG	2012	-6×10^{-14}
$\mu^{-}\mathrm{Ti} \rightarrow e^{-}\mathrm{Ti}$	$Zlpha/\pi$	4.3×10^{-12}	SINDRUM II	2006	
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	$Zlpha/\pi$	7×10^{-13}	SINDRUM II	2006	$-10^{-15} \div 10^{-16}$
$\mu \rightarrow eee$	$lpha/\pi$	4.3×10^{-12}	SINDRUM	1988	
$\tau ightarrow \mu \gamma$	$(m_{ au}/m_{\mu})^{2\div4}$	3.3×10^{-8}	B -factories	2011	
$\tau \to e \gamma$	$(m_{ au}/m_{\mu})^{2\div4}$	4.5×10^{-8}	B -factories	2011	

Table 1: Relative sensitivities and experimental limits of the main CLFV processes.

here: focus on radiative decays of charged leptons

in the SM, minimally extended to accommodate e.g. Dirac neutrinos

$$BR(\mu \rightarrow e\gamma) \approx \frac{3\alpha}{32\pi} \left| U_{\mu i}^* U_{ei} \frac{m_i^2}{m_W^2} \right|^2 \approx 10^{-53}$$

[unobservable also within type I see-saw] $m_i \approx 0.05 \, eV$ $U_{fi} \approx O(1)$

- -- weak interactions
- -- loop factor
- -- GIM mechanism (mixing angle large, but neutrino masses tiny)

<->

GIM suppression for quarks: small mixing angles large top mass

Exercise 10:

[solution in

Cheng and Li]

reproduce this

a good place to look for BSM physics

general parametrization of LFV effects BSM

$$L = L_{SM} + \sum_{i} c_i^5 \frac{O_i^5}{\Lambda} + \sum_{i} c_i^6 \frac{O_i^6}{\Lambda^2} + \dots$$

O^d_i gauge invariant operators dimension d

low-energy effective Lagrangian in the lepton sector

$$L = L_{SM} + i \frac{e}{\Lambda^2} e^c \left(\sigma^{\mu\nu} F_{\mu\nu} \right) \mathcal{Z}(\Phi^+ l) + \frac{1}{\Lambda^2} [\text{4-fermion}] + h.c. + \dots$$

[relation between the scale \land and new particle masses M' can be non-trivial in a weakly interacting theory g $\land/4\pi \approx$ M']

 \mathcal{Z}_{ij} a ma

a matrix in flavour space

$$L_{y} = -e^{c} y_{e}(\Phi^{+}l) + h.c. + ...$$

in the basis where charged leptons are diagonal

$$\begin{split} & \operatorname{Im} \left[\mathcal{Z} \right]_{ii} & d_i & \operatorname{electric dipole} \\ & \operatorname{Re} \left[\mathcal{Z} \right]_{ii} & a_i = \frac{(g-2)_i}{2} & \operatorname{anomalous magnetic} \\ & \left[\mathcal{Z} \right]_{ij} \right|^2 & (i \neq j) & R_{ij} = \frac{BR(l_i \rightarrow l_j \gamma)}{BR(l_i \rightarrow l_j v_i \overline{v}_j)} & \operatorname{radiative decays} \\ & \mu \rightarrow e\gamma \quad \tau \rightarrow \mu\gamma \quad \tau \rightarrow e\gamma \\ & \text{I4-fermion operators]} & \text{other LFV transitions} & \mu \rightarrow eee \quad \tau \rightarrow \mu\mu\mu \quad \tau \rightarrow eee \quad \dots \\ \hline & BR(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13} \end{split}$$

either the scale of new physics is very large or flavour violation from New Physics is highly non-generic

$$\Lambda > 2 \times 10^4 \left[\sqrt{Z_{\mu e}} \right] TeV$$

not a specific problem of the lepton sector

here: constraints from flavour physics on d=6 $|\Delta F|$ =2 operators

≤	Operator	Bounds on	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
B	$(\bar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	$1.6 imes 10^4$	$9.0 imes 10^{-7}$	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
2	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	$6.9 imes 10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
ط	$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	$5.6 imes 10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
2	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
ר ר	$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
>	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	$5.6 imes 10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
4	$(\bar{b}_L \gamma^\mu s_L)^2$	1	$.1 \times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
 L	$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3	0.7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}

TABLE I: Bounds on representative dimension-six $\Delta F = 2$ operators. Bounds on Λ are quoted assuming an effective coupling $1/\Lambda^2$, or, alternatively, the bounds on the respective c_{ij} 's assuming $\Lambda = 1$ TeV. Observables related to CPV are separated from the CP conserving ones with semicolons. In the B_s system we only quote a bound on the modulo of the NP amplitude derived from Δm_{B_s} (see text). For the definition of the CPV observables in the D system see Ref. [15].

Minimal Flavour Violation (quarks)

useful benchmark: a framework where the only source of flavour violation beyond the SM are the Yukawa coupling. Well-defined in the quark sector.

in the limit $y_u = y_d = 0$, the SM lagrangian is invariant under a U(3)³ flavour symmetry

$$G_{q} = SU(3)_{u^{c}} \times SU(3)_{d^{c}} \times SU(3)_{q} \times \dots$$
$$q = (1,1,3) \quad u^{c} = (\overline{3},1,1) \quad d^{c} = (1,\overline{3},1)$$

if the Yukawa couplings y_u and y_d are promoted to non-dynamical fields (spurions) transforming conveniently, the SM lagrangian remains formally invariant under the flavour group G_q

$$L_{SM} = \dots - d^{c} y_{d} (\Phi^{+}q) - u^{c} y_{u} (\tilde{\Phi}^{+}q) + h.c$$
$$y_{u} = (3,1,\overline{3}) \qquad y_{d} = (1,3,\overline{3})$$

MFV assumes that new operators coming from New Physics do not involve any additional field/spurions and that they are still invariant under G_q [additional assumption: no additional sources of CPV other than those in $y_{u,d}$]

Exercise 11: build the leading operator contributing to $b \rightarrow s \gamma$ in MFV

a convenient basis:

$$y_d = \hat{y}_d$$
 $y_u = \hat{y}_u V_{CKM}$

leading order MFV invariant

$$i \frac{e}{\Lambda^2} d^c \left(\sigma^{\mu\nu} F_{\mu\nu} \right) \mathcal{Z}^d \left(\Phi^+ q \right) + h.c.$$
$$b \to s\gamma \quad \Leftrightarrow \quad \left(\mathcal{Z}^d \right)_{32}^*, \quad \left(\mathcal{Z}^d \right)_{23}^*$$

 $\left(Z^{d}\right)_{32}^{*} = \frac{2\sqrt{2}}{v^{3}} m_{b} \left(m_{t}^{2} V_{tb} V_{ts}^{*}\right)$

 $\left(\mathcal{Z}^d\right)_{23} = \frac{2\sqrt{2}}{v^3} m_s \left(m_t^2 V_{tb} V_{ts}^*\right)$

$$\hat{y}_{u,d}$$
 diagonal

$$\mathcal{Z}^{d} = y_{d} y_{u}^{\dagger} y_{u}$$
$$= \frac{2\sqrt{2}}{v^{3}} \left(\hat{m}_{d} V_{CKM}^{\dagger} \hat{m}_{u}^{2} V_{CKM} \right)$$
$$\hat{m}_{u} \approx \operatorname{diag}(0, 0, m_{t})$$

MFV is nothing but the GIM mechanism extended to BSM contributions

 $\begin{bmatrix} b^{c} \left(\sigma F \right) s \end{bmatrix}^{+} \begin{array}{c} \text{dominates over} \\ \text{by } \left(\mathsf{m}_{\mathsf{t}} / \mathsf{m}_{\mathsf{b}} \right) \end{array} \quad s^{c} \left(\sigma F \right) b$

 $BR(B \rightarrow X_{s}\gamma) = (3.55 \pm 0.24 \pm 0.09) \times 10^{-4}$

 $\Lambda > 6.1 \, TeV$

Exercise 12: build the leading operator with $\Delta F=2$ in MFV

same basis as before:

$$y_d = \hat{y}_d$$
 $y_u = \hat{y}_u V_{CKM}$ $\hat{y}_{u,d}$ diagonal

leading MFV invariant

$$\overline{q}_{Li}\gamma^{\mu}(y_{u}^{\dagger}y_{u})_{ij}q_{Lj}\overline{q}_{Lk}\gamma_{\mu}(y_{u}^{\dagger}y_{u})_{kl}q_{Ll}$$

looking at the down quark sector and selecting i=k=d,s and j=l=b we get the MFV operator contributing to ΔB =2

$$O_{MFV}(|\Delta B| = 2) = \frac{c}{\Lambda_{NP}^2} y_t^4 (V_{tb} V_{tq}^*)^2 \overline{q}_L \gamma^{\mu} b_L \overline{q}_L \gamma_{\mu} b_L \qquad (q = d, s) \qquad \text{where we used} \\ \hat{m}_u \approx \text{diag}(0, 0, m_t)$$

again same CKM suppression as in the SM. Now the bound on the scale of New Physics reads

$$\Lambda_{NP} > 5.9 \ TeV$$

define 2 New Physics parameters

$$\Delta_q \equiv \frac{M_{12}^q}{M_{12}^{q,SM}} \qquad (q=d,s)$$

 $[O_{MFV} \mod M_{12} \text{ for } B_d \text{ and } B_s \text{ in the same way:}$ i.e Δ_d and Δ_s are identical and real in MFV]

bound on the scale of New Physics in MFV

Operator	Bound on Λ	Observables
$H^{\dagger}\left(\overline{D}_{R}Y^{d\dagger}Y^{u}Y^{u\dagger}\sigma_{\mu\nu}Q_{L}\right)\left(eF_{\mu\nu}\right)$	$6.1 { m TeV}$	$B \to X_s \gamma, \ B \to X_s \ell^+ \ell^-$
$\frac{1}{2} (\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L)^2$	$5.9~{\rm TeV}$	$\epsilon_K, \Delta m_{B_d}, \Delta m_{B_s}$
$H_D^{\dagger} \left(\overline{D}_R Y^{d\dagger} Y^u Y^{u\dagger} \sigma_{\mu\nu} T^a Q_L \right) \left(g_s G^a_{\mu\nu} \right)$	$3.4 { m TeV}$	$B \to X_s \gamma, \ B \to X_s \ell^+ \ell^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(\overline{E}_R \gamma_\mu E_R\right)$	$2.7 { m TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$i\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) H_U^{\dagger} D_\mu H_U$	$2.3 { m TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(\overline{L}_L \gamma_\mu L_L\right)$	$1.7 { m TeV}$	$B \to X_s \ell^+ \ell^-, B_s \to \mu^+ \mu^-$
$\left(\overline{Q}_L Y^u Y^{u\dagger} \gamma_\mu Q_L\right) \left(e D_\mu F_{\mu\nu}\right)$	$1.5 { m TeV}$	$B \to X_s \ell^+ \ell^-$

TABLE II: Bounds on the scale of new physics (at 95% C.L.) for some representative $\Delta F = 1$ [27] and $\Delta F = 2$ [12] MFV operators (assuming effective coupling $\pm 1/\Lambda^2$), and corresponding observables used to set the bounds. [Isidori, Nir, Perez, 2010]

Minimal Flavour Violation (leptons)

extension of MFV to leptons is ambiguous: we can describe neutrino masses in several ways

1 B-L conserved, pure Dirac neutrino masses just copy the quark sector

$$G_{l} = SU(3)_{v^{c}} \times SU(3)_{e^{c}} \times SU(3)_{l} \times \dots$$

$$l = (1,1,3) \quad v^{c} = (\overline{3},1,1) \quad e^{c} = (1,\overline{3},1)$$

$$y_v = (3, 1, \overline{3})$$

 $y_e = (1, 3, \overline{3})$

$$i \frac{e}{\Lambda^2} e^c \left(\sigma^{\mu\nu} F_{\mu\nu} \right) \mathcal{Z}(\Phi^+ l) + h.c.$$

choose as basis:

$$y_e = \hat{y}_e \qquad y_v = \hat{y}_v U_{PMNS}^+$$

$$\mathcal{Z} = y_e y_v^+ y_v$$
$$= \frac{2\sqrt{2}}{v^3} \left(\hat{m}_e U_{PMNS} \hat{m}_v^2 U_{PMNS}^+ \right)$$

dominant contribution to $\mu \rightarrow e \gamma$

$$\left(\mathcal{Z}\right)_{21}^{*} = \frac{2\sqrt{2}}{\nu^{3}} m_{\mu} \left(U_{\mu i}^{*} U_{e i} m_{i}^{2}\right)$$
$$\approx 10^{-28}$$
$$\mu \rightarrow e \gamma \text{ unobservable}$$
even for $\Lambda \approx 1 \text{ TeV}$

2 B-L violated, neutrino masses from d=5 operator

$$L = \dots + e^{c} y_{e}(\Phi^{\dagger}l) + \frac{1}{2\Lambda_{L}} \left(\tilde{\Phi}^{\dagger}l\right) w \left(\tilde{\Phi}^{\dagger}l\right) + h.c.$$

 $w = \frac{2\Lambda_L}{v^2} U^* m_v^{diag} U^+$

[Cirigliano, Grinstein, Isidori, Wise 2005]

an important assumption: $\Lambda_L \neq \Lambda$

$$G_{l} = SU(3)_{e^{c}} \times SU(3)_{l} \times ...$$

 $l = (1,3) \quad e^{c} = (\overline{3},1)$

$$y_e = (3, \overline{3})$$
$$w = (1, \overline{6})$$

the only sources of G1 breaking

spurions expressed in terms of known quantities and $\Lambda_{\rm L}$

$$\mathcal{Z} = y_e w^* w$$
$$= \frac{4\sqrt{2}}{v^3} \frac{\Lambda_L^2}{v^2} \left(\hat{m}_e U_{PMNS} \hat{m}_v^2 U_{PMNS}^* \right)$$

 $\frac{\Lambda_L^2}{v^2}$

enhancement factor can be huge

 $y_e = \sqrt{2} \frac{m_e^{diag}}{m_e}$

 $\mu \twoheadrightarrow e \gamma$ dominated by

$$\left(\mathcal{Z}\right)_{21}^{*} = \frac{4\sqrt{2}}{v^{3}} \frac{\Lambda_{L}^{2}}{v^{2}} m_{\mu} \left(U_{\mu i}^{*} U_{e i} m_{i}^{2}\right)$$

experimental bound satisfied by $(\Lambda_L/\Lambda)\!<\!10^9$

 $\mu \rightarrow e \gamma$ observable if $\Lambda_L >> \Lambda$

[qualitatively similar conclusion when MFV extended to the type I see-saw case]

Exercise 13: show that

+ for normal hierarchy- for inverted hierarchy

$$\mathcal{Z}_{ij} = \frac{4\sqrt{2}}{v^3} \frac{\Lambda_L^2}{v^4} \Big[\Delta m_{sol}^2 U_{i2} U_{j2}^* \pm \Delta m_{atm}^2 U_{i3} U_{j3}^* \Big]$$

and estimate
$$\frac{R_{\mu e}}{R_{\tau \mu}} = \frac{BR(\mu \to e\gamma)}{BR(\tau \to \mu\gamma)} \times \frac{BR(\tau \to \mu\nu_{\tau}\overline{\nu}_{\mu})}{BR(\mu \to e\nu_{\mu}\overline{\nu}_{e})}$$

$$\frac{R_{\mu e}}{R_{\tau \mu}} \approx \left|\frac{2}{3}r \pm \sqrt{2}\sin\vartheta_{13}e^{i\delta}\right|^2 \approx (0.035 \div 0.055) \qquad r \equiv \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}$$

from present bound on μ -> e γ

$$R_{\tau\mu} < (1.0 \div 1.6) \times 10^{-11}$$

hints:

-- use unitarity relation for U_{PMNS}

-- use approximate values

$$U_{\mu 3} \approx U_{\tau 3} \approx 1/\sqrt{2}$$
$$U_{e 2} \approx U_{\mu 2} \approx -U_{\tau 2} \approx 1/\sqrt{3}$$

_

LFV in the limit of vanishing neutrino masses

MFV extended to the lepton sector reproduces the GIM suppression in particular LF is conserved when $m_i=0$

GIM suppression can be evaded in several models of fermion masses e.g. in partial compositness where elementary fermions acquire a mass through their mixing with a composite sector

a toy model

$$\begin{split} L_Y &= -e^c \Delta_E E - L^c \Delta_L l \\ &- E^c M E - L^c M L \\ &- E^c Y(\Phi^+ L) - (L^c \tilde{\Phi}^+) \tilde{Y} E + h.c. \end{split}$$

 \iff elementary-composite mixing

 \Leftrightarrow Dirac masses for composite fermions

Yukawa coupling of composite fermions

by integrating out the composite sector

$$L_v = -e^c y_a(\Phi^+ l) + h.c.$$

$$y_e = (\Delta_E M^{-1}) Y (M^{-1} \Delta_L) + \dots$$

[Exercise 14]

$$\frac{\Delta_{\mathsf{E}} \qquad \mathsf{Y} \qquad \Delta_{\mathsf{L}}}{\mathsf{M}^{-1}} \qquad \mathsf{M}^{-1}$$

higher-orders in (Φ/M)

ec

Exercise 15

compute the corrections to previous LO relations by using the equation of motion for the composite sector. Start with 1 generation and then discuss the 3 generation case.

write L_y in matrix notation

$$\begin{split} L_{Y} = - \begin{pmatrix} e^{c} & E^{c} & L^{c} \end{pmatrix} \begin{pmatrix} 0 & \Delta_{E} & 0 \\ 0 & M & Y\Phi^{+} \\ \Delta_{L} & \tilde{\Phi}^{+}\tilde{Y} & M \end{pmatrix} \begin{pmatrix} l \\ E \\ L \end{pmatrix} + h.c. \end{split}$$

write the e.o.m. for the composite fields (E^c , L^c) and (E,L) in the limit of negligible kinetic term and substitute them back into L_y

$$L_{Y} = e^{c} \begin{pmatrix} \Delta_{E} & 0 \end{pmatrix} \begin{pmatrix} M & Y \Phi^{+} \\ \tilde{\Phi}^{+} \tilde{Y} & M \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ \Delta_{L} \end{pmatrix} l + h.c.$$

expand this expression in powers of the Higgs field

At the LO
$$y_e = F_{E^c} Y F_L$$

$$F_{E^c} = \Delta_E M^{-1}$$

$$F_L = M^{-1} \Delta_L$$

an intriguing possibility (anarchic scenario):

- -- Yukawa coupling Y in the composite sector are O(1)
- -- fermion mass hierarchy entirely due to the amount of mixing F
- it arises is many SM extensions

split fermions in an Extra Dimension

$$F_{X_i} = \sqrt{\frac{2\mu_i}{1 - e^{-2\mu_i r}}}$$

[Nelson-Strassler 0006251]

ED	$\mu_{_i}$	r
Flat [0,π <i>R</i>]	$M_{_i}$ / Λ	$\Lambda \pi R$
Warped [R,R']	$1/2 - M_i R$	$\log R'/R$

no symmetry: hierarchy produced by geometry M_i = bulk mass of fermion X_i

 $Y_{u,d} = O(1)$ Yukawa couplings between bulk fermions and a Higgs localized at one brane

fermion masses from abelian flavour symmetries $Q(X_i) \ge 0$

$$F_{X_{i}} = \operatorname{diag}\left(\lambda^{\mathcal{Q}(X_{1})}, \lambda^{\mathcal{Q}(X_{2})}, \lambda^{\mathcal{Q}(X_{3})}\right) \quad \lambda = \frac{\langle \varphi \rangle}{\Lambda}$$
chiral multiplets X_i of
the MSSM coupled to
a superconformal sector
$$F_{X_{i}} = \left(\frac{\Lambda_{c}}{\Lambda}\right)^{\frac{\gamma_{i}}{2}} < 1$$

$$Y_{i} \text{ anomalous dimension of X_{i}}$$

$$\Lambda_{c} = M_{GUT} \qquad \Lambda = M_{Pl}$$

11 /

so far neutrino are massless do we expect LFV in our toy model?

one-loop contribution to lepton dipole operator from Higgs exchange (assuming M proportional to identity)

$$\begin{bmatrix} \frac{Z}{\Lambda^2} \approx \frac{1}{16\pi^2 M^2} (\Delta_E M^{-1}) Y \tilde{Y} Y (M^{-1} \Delta_L) + \dots \\ \text{in general these combinations} \\ \text{not diagonal in the same basis} \end{bmatrix} e^{c} \frac{\Delta_E}{M^{-1}} \frac{Y}{M^{-1}} \frac{Y}{M^{-1}} \frac{Y}{M^{-1}} \frac{\Delta_L}{M^{-1}} \end{bmatrix}$$

LFV not suppressed by neutrino masses and unrelated to (B-L) breaking scale

rough estimate

$$\frac{Z_{\mu e}}{\Lambda^2} < 2 \times 10^{-9} \text{ TeV}^{-2}$$

$$M > 10 \text{ TeV}$$

$$\begin{split} \Delta_E &\approx \Delta_L \\ \frac{\Delta_f}{M} &\approx \sqrt{\frac{m_f}{v}} \\ Y &\approx \tilde{Y} \approx O(1) \end{split}$$

Exercise 16: reproduce flavour pattern of Z from a spurion analysis

$$\frac{Z}{\Lambda^2} \approx \frac{1}{16\pi^2 M^2} (\Delta_E M^{-1}) Y \tilde{Y} Y (M^{-1} \Delta_L) + \dots$$

- -- identify the maximal flavour symmetry G of our toy model
- -- identify the transformation properties of the spurions Δ_L , Δ_E , Y, \tilde{Y} , that guarantee the invariance of L_y
- -- using previous tools, build the relevant dipole operator invariant under G

LFV expected in charged leptons = CLFV

CLFV probes physics beyond the vSM [=SM minimally extended to accommodate v masses]

observable rates for CLFV require new physics at a scale well below the GUT or the L-violation scales $[\Lambda \leftrightarrow \Lambda_L \text{ in our example of MFV}]$

GIM suppression in CLFV is a special feature of MFV: it can be violated in models of fermion masses and relation to neutrino masses and mixing angles can be more indirect