Neutrino Physics Tutorials - GGI 2019

Ferruccio Feruglio, Olcyr Sumensari

March 20, 2019

1. Neutrino oscillation in vacuum

a) Derive the general expression for the probability of neutrino oscillation in vacuum, namely

$$
\begin{array}{r}
P_{\alpha \beta} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\delta_{\alpha \beta}-4 \sum_{i<k} \operatorname{Re}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha k} U_{\beta k}^{*}\right) \sin ^{2}\left(\varphi_{i k}\right) \\
+2 \sum_{i<k} \operatorname{Im}\left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha k} U_{\beta k}^{*}\right) \sin \left(2 \varphi_{i k}\right), \tag{1}
\end{array}
$$

where $\varphi_{i k}=\Delta m_{i k}^{2} L /(4 E), \Delta m_{i k}^{2}=m_{\nu_{i}}^{2}-m_{\nu_{k}}^{2}$ and L is the traveled distance.
b) Show that the above expression is invariant under the transformation

$$
\begin{equation*}
U_{\alpha k} \rightarrow e^{i \phi_{\alpha}} U_{\alpha k} e^{i \theta_{k}} \tag{2}
\end{equation*}
$$

where ϕ_{α} and θ_{k} are generic angles.
c) Derive the expressions for $P_{e e}, P_{\mu \mu}$ and $P_{e \mu}$ in the limit $\Delta m_{21}^{2} \approx 0$, for neutrino oscillation in vacuum.
d) Derive the $P_{e e}$ expression for the KamLAND experiment by keeping the full dependence on Δm_{21}^{2} and by averaging on the oscillations driven by Δm_{32}^{2}. Neglect matter effects and keep $U_{e 3}$ non-vanishing.
e) Derive the $P_{\mu e}$ expression relevant to T2K and MINOS by expanding the general expression (1) at first order in $\Delta m_{12}^{2} / \Delta m_{13}^{2}$. Neglect matter effects.

2. Z-boson decays

Do neutrinos produced in the decay $Z^{0} \rightarrow \nu \bar{\nu}$ oscillate? If so, design an experiment in which these oscillations could be observed.

3. Gauge anomalies

Check that B and L_{i} are anomalous in the SM , while the three combinations $B / 3-L_{i}$ are anomaly free.

4. Lepton flavor violation

Let us consider the SM extended with Dirac neutrino masses.
a) Draw the Feynman diagrams contributing to $\mu \rightarrow e \gamma$ in the unitary gauge.
b) Show that the most general amplitude for this process, consistent with gauge and Lorentz symmetries, can be written as

$$
\begin{equation*}
\mathcal{M}(\mu \rightarrow e \gamma)=\epsilon^{\alpha} \cdot \bar{u}_{e}(p-q)\left[\sigma_{\alpha \beta}\left(A+B \gamma_{5}\right) q^{\beta}\right] u_{\mu}(p) \tag{3}
\end{equation*}
$$

where p and q denote respectively the muon and photon 4 -momentum vectors, and A and B are Lorentz invariant quantities.
c) Write down the lowest-order effective operator contributing to this process with the SM particle content.
d) Without computing the loop-diagrams, argue that the coefficients given above take the form

$$
\begin{equation*}
A=B \propto \frac{e g_{2}^{2}}{16 \pi^{2}} \frac{m_{\mu}}{m_{W}^{2}} \sum_{i} U_{\mu i}^{*} U_{e i} \frac{m_{i}^{2}}{m_{W}^{2}}, \tag{4}
\end{equation*}
$$

where U is the PMNS matrix. Estimate $\mathcal{B}(\mu \rightarrow e \gamma)$ from this amplitude.
e) How would the above expression change if we assume that neutrinos have Majorana masses?

5. Type-I see-saw

a) Derive the Weinberg operator in the type-I see-saw framework by integrating-out the righthanded neutrinos.
b) Derive the expression for the NLO dimension-six operator appearing in this scenario.

6. Baryon number violation

List the lowest order operators with the SM particle content that violate baryon number.

