Theoretical Aspects of Astroparticle Physics, Cosmology and Gravitation

Firenze, 18-22 March 2019

Aspects of neutrino physics (III)
Neutrino Masses, Mixing and Oscillations:
Leptogenesis and Hierarchy problem

Ferruccio Feruglio
Universita' di Padova

The see-saw (continue)

2 additional virtues of the see-saw

The see-saw mechanism can enhance small mixing angles into large ones

$$
m_{v}=-\left[y_{v}^{T} M^{-1} y_{v}\right] v^{2}
$$

example

$$
\begin{array}{ll}
y_{v}=\left(\begin{array}{ll}
\delta & \delta \\
0 & 1
\end{array}\right) & \begin{array}{l}
\delta \ll 1 \\
\text { small mixing }
\end{array} \\
M=\left(\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right) \text { no mixing }
\end{array}
$$

$$
\begin{aligned}
y_{v}^{T} M^{-1} y_{v} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \frac{\delta^{2}}{M_{1}}+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \frac{1}{M_{2}} \\
& \approx\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \frac{\delta^{2}}{M_{1}} \quad \text { for } \frac{M_{1}}{M_{2}} \ll \delta^{2}
\end{aligned}
$$

The (out-of equilibrium, CP-violating) decay of heavy right-handed neutrinos in the early universe might generate a net asymmetry between leptons and anti-leptons. Subsequent SM interactions can partially convert it into the observed baryon asymmetry

$$
\eta=\frac{\left(n_{B}-n_{\bar{B}}\right)}{s} \approx 6 \times 10^{-10}
$$

Sakharov conditions met by the see-saw theory

1. ($B-L$) violation at high-temperature and ($B+L$) violation by pure $S M$ interactions
2. C and $C P$ violation by additional phases in see-saw Lagrangian (more on this later)
3. out-of-equilibrium condition
restrictions imposed by leptogenesis on neutrinos

active neutrinos should be light

out-of-equilibrium controlled by rate of RH neutrino decays

Exercise 6: compute this
here: thermal leptogenesis dominated by lightest v^{c} no flavour effects]

$$
\frac{\left(y_{v} y_{v}^{+}\right)_{11} v^{2}}{M_{1}} \equiv \tilde{m}_{1}<10^{-3} \mathrm{eV}
$$

RH neutrinos should be heavy

$$
\begin{aligned}
& \eta_{B} \approx 10^{-2} \varepsilon_{1} \eta \\
& \varepsilon_{1}=\frac{\Gamma\left(v_{1}^{c} \rightarrow l \Phi\right)-\Gamma\left(v_{1}^{c} \rightarrow \bar{l} \Phi^{*}\right)}{\Gamma\left(v_{1}^{c} \rightarrow l \Phi\right)+\Gamma\left(v_{1}^{c} \rightarrow \bar{l} \Phi^{*}\right)}=-\frac{3}{16 \pi} \sum_{j=2,3} \frac{M_{1}}{M_{j}} \frac{\operatorname{Im}\left\{\left[\left(y y^{+}\right)_{1 j}\right]^{2}\right\}}{\left(y y^{+}\right)_{11}} \approx 0.1 \times \frac{M_{1} m_{i}}{v^{2}} \\
& {[\text { Yukatency factor } \leq 1}
\end{aligned}
$$

$$
M_{1}>6 \times 10^{8} \mathrm{GeV}
$$

more refined bound [Davidson and Ibarra 0202239]
$\left|\varepsilon_{1}^{\infty}\right| \leq \varepsilon_{1}^{D I}=\frac{3}{16 \pi} \frac{M_{1}}{v^{2}}\left(m_{3}-m_{1}\right)$
in conflict with the bound on T_{R} in SUSY models to avoid overproduction of gravitinos

$$
T_{R} \approx M_{1}>\left(4 \times 10^{8} \div 2 \times 10^{9}\right) G e V
$$

$$
T_{R}^{S U S Y}<10^{7-9} G e V
$$

Exercise 7: reconstruct the flavour structure of ε_{1}

$\varepsilon_{1} \propto \frac{\left|y_{a 1}^{+}+W y_{1 b} y_{b k}^{+} y_{a k}^{+}\right|^{2}-\left|y_{1 a}+W y_{b 1}^{+} y_{k b} y_{k a}\right|^{2}}{\left|y_{a 1}^{+}+W y_{1 b} y_{b k}^{+} y_{a k}^{+}\right|^{2}+\left|y_{1 a}+W y_{b 1}^{+} y_{k b} y_{k a}\right|^{2}} \approx \frac{\operatorname{Im}(W) \operatorname{Im}\left\{\left[\left(y y^{+}\right)_{1 k}\right]^{2}\right\}}{\left(y y^{+}\right)_{11}}$
[sums understood]

$$
\operatorname{Im}(W) \approx \frac{M_{1}}{M_{k}}
$$

Exercise 8: count the number of physical parameters in the type I see-saw model distinguish between moduli and phases
y_{e}, y_{v} and M depend on $(18+18+12)=48$ parameters, 24 moduli and 24 phases we are free to choose any basis leaving the kinetic terms canonical (and the gauge interactions unchange)

$$
e^{c} \rightarrow \Omega_{e^{e}} e^{c} \quad v^{c} \rightarrow \Omega_{v^{c}} v^{c} \quad l \rightarrow \Omega_{l} l \quad\left[U(3)^{3}\right]
$$

these transformations contain 27 parameters (9 angles and 18 phases) and effectively modify y_{e}, y_{v} and M

$$
y_{e} \rightarrow \Omega_{e^{c}}^{T} y_{e} \Omega_{l} \quad y_{v} \rightarrow \Omega_{v^{c}}^{T} y_{v} \Omega_{l} \quad M \rightarrow \Omega_{v^{c}}^{T} M \Omega_{v^{c}}
$$

so that we can remove 27 parameters from y_{e}, y_{v} and M
we remain with 21 parameters: 15 moduli and 6 phases the moduli are 9 physical masses and 6 mixing angles
the same count in the quark sector would give a total of 9 moduli (6 masses amd 3 mixing angles) and 0 phases <- wrong how the above argument should be modified, in general?

weak point of the see-saw

full high-energy theory is difficult to test

$$
L\left(v^{c}, l\right)=v^{c} y_{v}\left(\tilde{\Phi}^{+} l\right)+\frac{1}{2} v^{c} M v^{c}+h . c .
$$

depends on many physical parameters:
3 (small) masses + 3 (large) masses
3 (L) mixing angles + $3(R)$ mixing angles
6 physical phases $=18$ parameters
the double of those describing $\left(L_{S M}\right)+L_{5}$: 3 masses, 3 mixing angles and 3 phases, as in lecture 1
few observables to pin down the extra parameters: η, \ldots [additional possibilities exist under special conditions, e.g. Lepton Flavor Violation at observable rates]
easier to test the low-energy remnant L_{5}
[which however is "universal" and does not implies the specific see-saw mechanism of Example 2]
look for a process where B-L is violated by 2 units. The best candidate is
Ov $\beta \beta$ decay:

$$
(A, Z)->(A, Z+2)+2 e^{-}
$$

this would discriminate L_{5} from other possibilities, such as Example 1.

The decay in $0 \vee \beta \beta$ rates depend on the combination $\left|m_{e e}\right|=\left|\sum_{i} U_{e i}^{2} m_{i}\right|$

$$
\left|m_{e e}\right|=\left|\cos ^{2} \vartheta_{13}\left(\cos ^{2} \vartheta_{12} m_{1}+\sin ^{2} \vartheta_{12} e^{2 i \alpha} m_{2}\right)+\sin ^{2} \vartheta_{13} e^{2 i \beta} m_{3}\right|
$$

[notice the two phases α and β, not entering neutrino oscillations]

Neutrinos and the Higgs boson

1. neutrinos and the hierarchy problem
2. neutrinos and the stability of the electroweak vacuum

often discussed in terms of quadratic divergences

$$
\delta m_{h}^{2} \propto \frac{y_{t}^{2}}{16 \pi^{2}} \Lambda^{2}
$$

but
-- what represents exactly \wedge ? Any evidence from experiment?
-- can we get rid of Λ in some suitable scheme?
-- technical aspect obscure physics
hierarchy problem can be formulated entirely in terms of renormalized quantities with no reference to regulators
assumption: coupling y of Higgs particle to an heavy state of mass M
running Higgs mass

$$
\delta m_{h}^{2}(Q) \approx \frac{y^{2}}{16 \pi^{2}} M^{2} \log \frac{Q}{M} \quad Q>M
$$

fine-tune the initial conditions at Q^{*} such that

$$
m_{h}^{2}(v) \approx m_{h}^{2}\left(Q^{*}\right)-\frac{y^{2}}{16 \pi^{2}} M^{2} \log \frac{Q^{*}}{M}
$$

consider type I see-saw

heavy state v^{c}
 mass M
 Yukawa coupling
 y_{v}

we will see in a moment

$$
\delta m_{h}^{2}(Q) \approx-\frac{y_{v}^{2}}{4 \pi^{2}} M^{2} \log \frac{Q}{M} \quad Q>M
$$

by using $m_{v} \approx \frac{y_{v}^{2} v^{2}}{M}$ to eliminate the y^{2} dependence

$$
\begin{array}{r}
\left|\delta m_{h}^{2}(Q)\right| \approx \frac{1}{4 \pi^{2}} \frac{m_{v} M^{3}}{v^{2}} \log \frac{Q}{M}<v^{2} \\
M<1.4 \times 10^{7} G e V \quad\left[\begin{array}{c}
\log \frac{Q}{M} \approx 1 \\
m_{v} \approx 0.05 \mathrm{eV}
\end{array}\right]
\end{array}
$$

$$
y_{v} \approx \sqrt{\frac{m_{v} M}{v^{2}}}<10^{-4}
$$

too small for thermal leptogenesis?

Exercise 9: derive the threshold corrections to $m_{\sigma}{ }^{2}(Q)$ in the toy model

$$
\begin{aligned}
& L=\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma+i \bar{\xi} \bar{\sigma}^{\mu} \partial_{\mu} \xi-\frac{1}{2}\left[\xi^{T} \mathcal{M} \xi+\text { h.c. }\right] \\
& \text { assume } \quad m_{\sigma}^{2}(0)=0
\end{aligned}
$$

1. start from the 1 -loop renormalized self-energy

2. evaluate 1-loop diagram $-i \Pi\left(Q^{2}\right)$ in the limit $0 \approx m_{1} \ll m_{2} \approx M$

$$
m_{1,2}=\frac{1}{2}\left(M \pm \sqrt{M^{2}+4 y^{2} v^{2}}\right) \approx\left\{\begin{array}{c}
-y^{2} v^{2} / M \\
M+y^{2} v^{2} / M
\end{array}\right.
$$

in dimensional regularization

$$
\Pi\left(Q^{2}\right)=\frac{y^{2}}{2 \pi^{2}} \int_{0}^{1} d x\left[(D-\log \Omega)\left(2 \Omega-Q^{2} x(1-x)\right)+\Omega\right] \quad \begin{aligned}
& D=\frac{2}{\varepsilon}-\gamma+\log 4 \pi \\
& \Omega=-Q^{2} x(1-x)+M^{2} x
\end{aligned}
$$

3. compute $\Pi_{f}\left(Q^{2}\right)$

$$
\Pi_{f}\left(Q^{2}\right)=\frac{y^{2}}{2 \pi^{2}} \int_{0}^{1} d x\left[-2 Q^{2} x(1-x)-\left(2 M^{2} x-3 Q^{2} x(1-x)\right) \log \frac{\Omega}{M^{2} x}\right] \quad \text { finite }
$$

relevant limits $\quad Q^{2} \ll M^{2} \quad \Pi_{f}\left(Q^{2}\right)=-\frac{y^{2}}{12 \pi^{2}} \frac{Q^{4}}{M^{2}}+\ldots$

$=i Q^{2}\left[1+\frac{y^{2}}{12 \pi^{2}} \frac{Q^{2}}{M^{2}}+\ldots\right] \quad m_{\sigma}^{2}(Q)=0$

similar conclusions in type II and type III see-saw where threshold corrections are dominated by 2-loop gauge interactions
type III $\delta m_{h}^{2}(Q) \approx-\frac{72 g^{4}}{(4 \pi)^{4}} M^{2} \log \frac{Q}{M} \quad Q>M \quad M<940 \quad \mathrm{GeV}$

type II $M<200 \mathrm{GeV}$

ways out
the initial conditions at the scale Q^{*} are fine-tuned to an accuracy of order (e.w. scale)/M
the threshold correction at the scale M is almost cancelled by an other contribution, as e.g. in supersymmetry with a splitting between neutrinos and sneutrinos of order $4 \pi \times$ (e.w. scale)
the Higgs is not an elementary particle and dissolves above a compositness scale ~ TeV
gap between the e.w. scale and the compositeness scale if
the Higgs is a PGB

2. neutrinos and the stability of the electroweak vacuum

for the current values

$$
\begin{aligned}
& m_{h}=(125.66 \pm 0.34) \quad \mathrm{GeV} \\
& m_{t}=(173.2 \pm 0.9) \mathrm{GeV} \\
& \alpha_{s}\left(m_{z}\right)=0.1184 \pm 0.0007
\end{aligned}
$$

the Higgs potential develops an instability at

$$
10^{9} \mathrm{GeV}<\Lambda<10^{15} \mathrm{GeV}
$$

assumption: only SM all the way up to the scale \wedge
for large values of the field h

$$
V(h) \approx \frac{\lambda}{4} h^{4}
$$

$(4 \pi)^{2} \frac{d \lambda}{d t}=-6 y_{t}^{4}+\frac{3}{8}\left[2 g^{4}+\left(g^{2}+g^{\prime 2}\right)\right]$ $+12 \lambda y_{t}^{2}-3 \lambda\left(g^{2}+3 g^{\prime 2}\right)+24 \lambda^{2}+\ldots$
$O(\lambda) \quad O\left(\lambda^{2}\right)$
above the scale M a new contribution to β_{λ} arises from neutrino Yukawa couplings

$\delta \beta_{\lambda}=-2 \operatorname{tr}\left(y_{v} y_{v}^{+} y_{v} y_{v}^{+}\right)<0$
contributes to instability above M

the larger M, the larger the contribution

$$
y_{v} \approx \sqrt{\frac{m_{v} M}{v^{2}}}
$$

the bound applies only to the portion of SM parameter space that guarantees a stable vacuum in the limit $y_{v}=0$
(m_{+}on the lower side α_{s} on the higher side)

Back up slides

Type-III see-saw at LHC

Roberto Franceschini ${ }^{a}$, Thomas Hambye ${ }^{b}$, Alessandro Strumia ${ }^{c}$

${ }^{a}$ Scuola Normale Superiore and INFN, Pisa, Italy
${ }^{b}$ Service de Physique Théorique, Université Libre de Bruxelles, Belgium
${ }^{\text {c }}$ Dipartimento di Fisica dell'Università di Pisa and INFN, Italia

Abstract

Neutrino masses can be generated by fermion triplets with TeV -scale mass, that would manifest at LHC as production of two leptons together with two heavy SM vectors or higgs, giving rise to final states such as $2 \ell+4 j$ (that can violate lepton number and/or lepton flavor) or $\ell+4 j+\mathbb{E}_{T}$. We devise cuts to suppress the SM backgrounds to these signatures. Furthermore, for most of the mass range suggested by neutrino data, triplet decays are detectably displaced from the production point, allowing to infer the neutrino mass parameters. We compare with LHC signals of type-I and type-II see-saw.

