Theoretical Aspects of Astroparticle Physics, Cosmology and Gravitation

Firenze, 18-22 March 2019

Aspects of neutrino physics (II)
Neutrino Masses, Mixing and Oscillations:
Implication for Physics BSM

Ferruccio Feruglio
Universita' di Padova

Lecture 1
 Neutrino Masses

Summary of data

$$
\begin{aligned}
& m_{v}<2.2 e V \quad(95 \% C L) \\
& \sum_{i} m_{i}<0.2 \div 1 e V
\end{aligned}
$$

Parameter	Ordering	Best fit	" 1σ " $(\%)$
$\delta m^{2} / 10^{-5} \mathrm{eV}^{2}$	NO	7.34	2.2
	IO	7.34	2.2
$\sin ^{2} \theta_{12}$	NO	3.04	4.4
	IO	3.03	4.4
$\sin ^{2} \theta_{13} / 10^{-2}$	NO	2.14	3.8
	IO	2.18	3.7
$\left\|\Delta m^{2}\right\| / 10^{-3} \mathrm{eV}^{2}$	NO	2.455	1.4
	IO	2.441	1.4
$\sin ^{2} \theta_{23} / 10^{-1}$	NO	5.51	5.2
	IO	5.57	4.8
δ / π	NO	1.32	14.6
	IO	1.52	9.3

[Capozzi, Lisi, Marrone, Palazzo 1804.09678]
violation of individual lepton number implied by neutrino oscillations

Summary of unkowns

```
absolute neutrino mass
scale is unknown
[but well-constrained!]
```

sign [$\Delta m_{\text {atm }}^{2}$] unknown
[complete ordering
(either normal or inverted
hierarchy) not known]

$\boldsymbol{\alpha}, \boldsymbol{\beta}$ unkown

[CP violation in lepton sector not yet established]

Beyond the Standard Model

a non-vanishing neutrino mass is the first evidence of the incompleteness of the Standard Model [SM]
in the $S M$ neutrinos belong to $S U(2)$ doublets with hypercharge $Y=-1 / 2$ they have only two helicities (not four, as the other charged fermions)

$$
l=\binom{\nu_{e}}{e}=(1,2,-1 / 2)
$$

the requirement of invariance under the gauge group $G=S U(3) \times S U(2) \times U(1)$ forbids pure fermion mass terms in the lagrangian. Charged fermion masses arise, after electroweak symmetry breaking, through gauge-invariant Yukawa interactions

$$
\Phi \underbrace{\Psi \Psi^{\prime}}_{\text {same helicity }}
$$

not even this term is allowed for SM neutrinos, by gauge invariance

Questions

how to extend the SM in order to accommodate neutrino masses?
why neutrino masses are so small, compared with the charged fermion masses?

why lepton mixing angles are so different from those of the quark sector?

How to modify the SM?

the SM, as a consistent QFT, is completely specified by
0. invariance under local transformations of the gauge group $G=S U(3) \times S U(2) \times U(1)$ [plus Lorentz invariance]

1. particle content three copies of $\left(q, u^{c}, d^{c}, l, e^{c}\right)$

$$
\text { one Higgs doublet } \quad \Phi
$$

2. renormalizability (i.e. the requirement that all coupling constants gi have non-negative dimensions in units of mass: $\mathrm{d}\left(\mathrm{g}_{\mathrm{i}}\right) \geq 0$. This allows to eliminate all the divergencies occurring in the computation of physical quantities, by redefining a finite set of parameters.)
($0 .+1 .+2$.) leads to the SM Lagrangian, $L_{S M}$, possessing an additional, accidental, global symmetry: $(B-L) \quad \rightarrow \quad$ EXERCISE
3. We cannot give up gauge invariance! It is mandatory for the consistency of the theory. Without gauge invariance we cannot even define the Hilbert space of the theory [remember: we need gauge invariance to eliminate the photon extra degrees of freedom required by Lorentz invariance]! We could extend G, but, to allow for neutrino masses, we need to modify 1. (and/or 2.) anyway...

Exercise 1: anomalies of B and L_{i}

the anomaly of the baryonic current and the individual leptonic currents are proportional to $\operatorname{tr}\left[Q\left\{T^{A}, T^{B}\right\}\right]$ and $\operatorname{tr}[Q\{Y, Y\}]$ where $Q=\left(B, L_{i}\right)$ and $\left(T^{A}, Y\right)$ are the generators of the electroweak gauge group compute these traces in the SM with 3 fermion generations

$$
\begin{aligned}
& \frac{1}{2} \operatorname{tr}\left[B\left\{T^{A}, T^{B}\right\}\right]=3(\text { gen }) \times 3(\text { col }) \times \frac{1}{3}(B) \times\left[\frac{1}{4}(\text { up })+\frac{1}{4}(\text { down })\right] \delta^{A B}=\frac{3}{2} \delta^{A B} \\
& \frac{1}{2} \operatorname{tr}\left[L_{i}\left\{T^{A}, T^{B}\right\}\right]=1\left(L_{i}\right) \times\left[\frac{1}{4}(n u)+\frac{1}{4}(e)\right] \delta^{A B}=\frac{1}{2} \delta^{A B} \\
& \frac{1}{2} \operatorname{tr}[B\{Y, Y\}]=3(\text { gen }) \times 3(\text { col }) \times \frac{1}{3}(B) \times\left[\frac{1}{18}(\text { Doubl })-\frac{10}{18}(\text { Singl })\right]=-\frac{3}{2} \\
& \frac{1}{2} \operatorname{tr}\left[L_{i}\{Y, Y\}\right]=1\left(L_{i}\right) \times\left[\frac{1}{2}(\text { Doubl })-1(\text { Singl })\right]=-\frac{1}{2}
\end{aligned}
$$

$(B+L)$ is anomalous, $\left(B / 3-L_{i}\right)[$ and $(B-L)]$ are anomaly-free

First possibility: modify (1), the particle content

 there are several possibilities one of the simplest one is to mimic the charged fermion sector
Example 1

(add (three copies of) $\quad v^{c} \equiv(1,1,0) \quad$ full singlet under $G=S U(3) \times S U(2) \times U(1)$
ask for (global) invariance under B-L
(no more automatically conserved as in the SM)
the neutrino has now four helicities, as the other charged fermions, and we can build gauge invariant Yukawa interactions giving rise, after electroweak symmetry breaking, to neutrino masses

$$
\begin{gathered}
L_{Y}=-d^{c} y_{d}\left(\Phi^{+} q\right)-u^{c} y_{u}\left(\tilde{\Phi}^{+} q\right)-e^{c} y_{e}\left(\Phi^{+} l\right)-v^{c} y_{v}\left(\tilde{\Phi}^{+} l\right)+h . c . \\
m_{f}=\frac{y_{f}}{\sqrt{2}} v \quad f=u, d, e, v
\end{gathered}
$$

with three generations there is an exact replica of the quark sector and, after diagonalization of the charged lepton and neutrino mass matrices, a mixing matrix U appears in the charged current interactions
$U_{\text {PMNS }}$ has three mixing angles and one phase, like $\mathrm{V}_{\text {CKM }}$

a generic problem of this approach

the particle content can be modified in several different ways
in order to account for non-vanishing neutrino masses
(additional right-handed neutrinos, new $\operatorname{SU}(2)$ fermion triplets, additional SU(2) scalar triplet(s), SUSY particles,...). Which is the correct one?
a problem of the above example
if neutrinos are so similar to the other fermions, why are so light?

Quite a speculative answer:

$$
\frac{y_{v}}{y_{\text {top }}} \leq 10^{-12}
$$

neutrinos are so light, because the right-handed neutrinos have access to an extra (fifth) spatial dimension

$\underbrace{}_{y=0}$| all SM particles |
| :--- |
| live here except |
| v^{c} |

neutrino Yukawa coupling

$$
\begin{aligned}
v^{c}(y=0)\left(\tilde{\Phi}^{+} l\right) & =\text { Fourier expansion } \\
& =\frac{1}{\sqrt{L}} v_{0}^{c}\left(\tilde{\Phi}^{+} l\right)+\ldots
\end{aligned}
$$

if $L \gg 1$ (in units of the fundamental scale) then neutrino Yukawa coupling is suppressed

Second possibility: abandon (2) renormalizability

A disaster?

$$
L=L_{d \leq 4}^{S M}+\frac{L_{5}}{\Lambda}+\frac{L_{6}}{\Lambda^{2}}+\ldots
$$

a new scale Λ enters the theory. The new (gauge invariant!) operators L_{5}, L_{6}, \ldots contribute to amplitudes for physical processes with terms of the type

$$
\frac{L_{5}}{\Lambda} \rightarrow \frac{E}{\Lambda} \quad \frac{L_{6}}{\Lambda^{2}} \rightarrow\left(\frac{E}{\Lambda}\right)^{2}
$$

the theory cannot be extrapolated beyond a certain energy scale $\mathrm{E} \approx \Lambda$. [at variance with a renormalizable (asymptotically free) QFT]

If $\mathrm{E} \ll \Lambda$ (for example E close to the electroweak scale, $10^{2} \mathrm{GeV}$, and $\Lambda \approx 10^{15} \mathrm{GeV}$ not far from the so-called Grand Unified scale), the above effects will be tiny and, the theory will look like a renormalizable theory!

$$
\frac{E}{\Lambda} \approx \frac{10^{2} \mathrm{GeV}}{10^{15} \mathrm{GeV}}=10^{-13}
$$

an extremely tiny effect, but exactly what needed to suppress m_{v} compared to $m_{\text {top }}$!

Worth to explore. The dominant operators (suppressed by a single power of $1 / \Lambda$) beyond $L_{S M}$ are those of dimension 5 . Here is a list of all $d=5$ gauge invariant operators

it provides an explanation for the smallness of m_{v} : the neutrino masses are small because the scale Λ, characterizing ($B-L$) violations, is very large. How large? Up to about $10^{15} \mathrm{GeV}$
from this point of view neutrinos offer a unique window on physics at very large scales, inaccessible in present (and probably future) man-made experiments.
since this is the dominant operator in the expansion of L in powers of $1 / \Lambda$, we could have expected to find the first effect of physics beyond the SM in neutrinos ... and indeed this was the case!
L_{5} represents the effective, low-energy description of several extensions of the SM

Example 2:

 see-sawfull singlet under $G=S U(3) \times S U(2) \times U(1)$
this is like Example 1, but without enforcing (B-L) conservation

$$
L\left(v^{c}, l\right)=-v^{c} y_{v}\left(\tilde{\Phi}^{+} l\right)-\frac{1}{2} v^{c} M v^{c}+h . c .
$$

mass term for right-handed neutrinos: G invariant, violates (B-L) by two units.
the new mass parameter M is independent from the electroweak breaking scale v. If $M \gg v$, we might be interested in an effective description valid for energies much smaller than M. This is obtained by "integrating out'" the field v^{c}

$$
L_{e f f}(l)=\frac{1}{2}\left(\tilde{\Phi}^{+} l\right)\left[y_{v}^{T} M^{-1} y_{v}\right]\left(\tilde{\Phi}^{+} l\right)+\text { h.c. }+\ldots{ }^{\substack{\text { hoows }}}
$$

this reproduces L_{5}, with M playing the role of Λ. This particular mechanism is called (type I) see-saw.

Exercise 2

derive the see-saw relation by integrating out the fields v^{c} through their e.o.m. in the heavy M limit. Compute the $1^{\text {st }}$ order corrections in p / M

equations of motion of v^{c}

$$
\binom{v^{c}}{\bar{v}^{c}}=\left(\begin{array}{cc}
i \bar{\sigma}^{\mu} \partial_{\mu} & -M^{+} \\
-M & i \sigma^{\mu} \partial_{\mu}
\end{array}\right)^{-1}\binom{y_{v}^{*} \bar{\omega}}{y_{v} \omega}=\binom{-M^{-1} y_{v} \omega}{-M^{*-1} y_{v}^{*} \bar{\omega}}+\ldots \quad \omega \equiv\left(\tilde{\Phi}^{+} l\right)
$$

$$
L_{\text {eff }}=i \bar{l} \bar{\sigma}^{\mu} \partial_{\mu} l+\frac{1}{2} \underbrace{\left[\omega\left(y_{v}^{T} M^{-1} y_{v}\right) \omega+\text { h.c. }\right]}_{\mathrm{d}-=5}+\underbrace{i \bar{\omega}\left(y_{v}^{+} M^{+-1} M^{-1} y_{v}\right) \bar{\sigma}^{\mu} \partial_{\mu}}_{\mathrm{d}-=6} \underbrace{\omega}_{\text {renormalizes the KE of } v \text { by } \mathrm{v}^{2} / M^{2}}+O\left(M^{-3}\right)
$$

there are 3 types of see-saw depending on the particle we integrate out they all give rise to the same $\mathrm{d}=5$ operator

$$
y_{N}^{T}\left(M_{N}\right)^{-1} y_{N}
$$

$$
y_{\Delta} \frac{\mu}{M_{\Delta}^{2}}
$$

Theoretical motivations for the see-saw

 $\Lambda \approx 10^{15} \mathrm{GeV}$ is very close to the so-called unification scale $M_{\text {Gut }}$.an independent evidence for $M_{\text {GUT }}$ comes from the unification of the gauge coupling constants in (SUSY extensions of) the SM.
such unification is a generic prediction
 Particle classification: it is possible to unify all SM fermions (1 generation) into a single irreducible representation of the GUT gauge group. Simplest example: $G_{G U T}=S O(10) \quad 16=\left(q, d^{c}, u^{c}, l, e^{c}, v^{c}\right)$ a whole family plus a right-handed neutrino!
quite a fascinating possibility. Unfortunately, it still lacks experimental tests. In GUT new, very heavy, particles can convert quarks into leptons and the proton is no more a stable particle. Proton decay rates and decay channels are however model dependent. Experimentally we have only lower bounds on the proton lifetime.

Unity of All Elementary-Particle Forces
Phys. Rev. Lett. 32, (1974) 438
Howard Georgi and S. L. Glashow

```
Georgi, H.: Quinn, H.R. and Weinberg, S. Hierarchy of interactions in unified gauge theories. Phys. Rev. Lett. 33 (1974) 451
```


Exercise 3: gauge coupling unification

$\mathrm{O}^{\text {th }}$ order approximation
justify this $\quad \sqrt{\frac{5}{3}} g_{Y}=g_{2}=g_{3} \quad \sin ^{2} \vartheta_{W}=\frac{g_{Y}^{2}}{g_{Y}^{2}+g_{2}^{2}}=\frac{3}{8} \approx 0.375$
include 1-loop running

$$
\frac{1}{\alpha_{i}(Q)}=\frac{1}{\alpha_{i}\left(m_{z}\right)}+\frac{b_{i}}{2 \pi} \log \frac{Q}{m_{z}}
$$

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)_{\text {MSS }}=\left(\begin{array}{c}
33 / 5 \\
1 \\
-3
\end{array}\right) \quad\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)_{S M}=\left(\begin{array}{c}
41 / 10 \\
-19 / 6 \\
-7
\end{array}\right)
$$

knowledge of b.c. $M_{G U T}$ and $\alpha_{U}=\alpha\left(M_{G U T}\right)$ would allow to predict $\alpha_{i}\left(m_{z}\right)$ in practice, we use as inputs

$$
\left.\alpha_{e m}^{-1}\left(m_{Z}\right)\right|_{\overline{M S}}=\left.127.934 \quad \sin ^{2} \vartheta\left(m_{z}\right)\right|_{M \overline{M S}}=0.231
$$

to predict [MSSM]
[corrections from 2-loop RGE, threshold corrections at $M_{\text {susy, }}$ threshold corrections at $M_{G U T}$]

$$
\begin{aligned}
& \left.\alpha_{3}\left(m_{Z}\right)\right|_{\overline{M S}}=\frac{7 \alpha_{e m}\left(m_{z}\right)}{15 \sin ^{2} \vartheta\left(m_{z}\right)-3} \approx 0.118 \\
& \alpha_{U}=\frac{28 \alpha_{e m}\left(m_{Z}\right)}{36 \sin ^{2} \vartheta\left(m_{Z}\right)-3} \approx \frac{1}{25} \\
& \log \left(\frac{M_{G U T}}{m_{Z}}\right)=\pi \frac{3-8 \sin ^{2} \vartheta\left(m_{z}\right)}{14 \alpha_{e m}\left(m_{z}\right)} \Rightarrow M_{G U T} \approx 2 \times 10^{16} \mathrm{GeV}
\end{aligned}
$$

Exercise 4: effective lagrangian for nucleon decay

recognize that, the with the SM particle content, the lowest dimensional operators violating B occur at $d=6$. Make a list of them

$$
\frac{1}{\Lambda_{B}^{2}} \times\left\{\begin{array}{cc}
q q u^{c+} e^{c+} & q q q l \\
q l u^{c+} d^{c+} & u^{c} u^{c} d^{c} e^{c}
\end{array}\right.
$$

color and SU(2) indices contracted
notice that they respect $\Delta B=\Delta L$: nucleon decay into antileptons e.g. $p->e^{+} \pi^{0}, n->e^{+} \pi^{-} \quad\left[n->e^{-} \pi^{+}\right.$suppressed by further powers of Λ_{B}]
naïve estimate

$$
\begin{equation*}
\tau_{p} \approx \frac{\Lambda_{B}^{4}}{m_{p}^{5}} \tag{SK}
\end{equation*}
$$ assuming

$$
\tau_{p}\left(p \rightarrow e^{+} \pi^{0}\right)>1.4 \times 10^{34} y s
$$

we get

$$
\Lambda_{B}>2.6 \times 10^{16} \quad \mathrm{GeV}
$$

in GUTs Λ_{B} is related to the scale $M_{\text {GUT }}$ at which the grand unified symmetry is broken down to SM gauge group the observed proton stability is guaranteed by the largeness of $M_{G U T}$
In SUSY extensions of the SM the lowest dimensional operators violating B occur at $d=5$: why?

flavor puzzle made simpler in $S U(5)$?

$$
\begin{aligned}
& \overline{5}=\left(l, d^{c}\right) \quad 10=\left(q, u^{c}, e^{c}\right) \quad 1=v^{c} \\
& \Phi_{5}=\left(\Phi_{D}, \Phi_{T}\right) \\
& L_{Y}=-10 y_{u} 10 \Phi_{5}-\overline{5} y_{d} 10 \Phi_{5}^{+}-1 y_{v} \overline{5} \Phi_{5}-\frac{1}{2} 1 M 1+\text { h.c. } \\
& y_{d}=y_{e}^{T} \quad \begin{array}{l}
m_{b}=m_{\tau} \\
m_{s}=m_{\mu} \\
m_{d}=m_{e}
\end{array} \\
& \text { O.K. } \\
& \text { wrong, but not by orders of } \\
& \text { magnitude } \\
& m_{s} \approx m_{\mu} / 3 \\
& \text { can be fixed with additional Higgs } \\
& m_{d} \approx 3 m_{e}
\end{aligned}
$$

suppose that y_{u}, y_{e}, y_{v} and M / Λ are anarchical matrices [O(1) matrix elements] and that the observed hierarchy is due to the wave function renormalization of matter multiplets (we will see how later on)

$$
\begin{array}{rlr}
10 & \rightarrow F_{10} 10 \\
\overline{5} & \rightarrow F_{\overline{5}} \overline{5} \\
1 & \rightarrow F_{1} 1
\end{array} \quad F_{X}=\left(\begin{array}{ccc}
\lambda^{Q_{X_{1}}} & 0 & 0 \\
0 & \lambda^{Q_{X_{2}}} & 0 \\
0 & 0 & \lambda^{Q_{X_{3}}}
\end{array}\right) \quad \begin{aligned}
& \lambda \approx 0.22 \\
& Q_{X_{1}} \geq Q_{X_{2}} \geq Q_{X_{3}} \\
& F_{1} \text { dependence } \\
& \text { cancels in } m_{v}
\end{aligned}
$$

large mixing in lepton sector suggests $F_{\overline{5}} \approx \operatorname{diag}(1,1,1)$ hierarchy mostly due to $\mathrm{F}_{10} \quad m_{u}: m_{c}: m_{t} \approx m_{d}^{2}: m_{s}^{2}: m_{b}^{2} \approx m_{e}^{2}: m_{\mu}^{2}: m_{\tau}^{2}$ large I mixing corresponds to a large dc mixing: unobservable in weak int. of quarks

how can a wave function renormalization (effectively) arise?

several possibilities

here (Exercise 5): bulk fermions in a compact extra dimension S^{1} / Z_{2}
$\mathcal{L}=i \bar{\Psi}_{1} \Gamma^{M} \partial_{M} \Psi_{1}+i \bar{\Psi}_{2} \Gamma^{M} \partial_{M} \Psi_{2}-m_{1} \varepsilon(y) \bar{\Psi}_{1} \Psi_{1}+m_{2} \varepsilon(y) \bar{\Psi}_{2} \Psi_{2}-\left[\delta(y) \frac{y}{\Lambda} \bar{f}_{1}(h+v) f_{2}+h . c.\right]$

$$
\Psi_{1}=\binom{E_{1}}{\bar{f}_{1}} \quad \Psi_{2}=\binom{f_{2}}{\bar{E}_{2}} \quad \begin{aligned}
& \text { solve the e.o.m. for the fermion } \\
& \text { zeromodes with the b.c. } \\
& -\gamma_{5} \partial_{y} \Psi_{1,2}^{0} \pm m_{1,2} \varepsilon(y) \Psi_{1,2}^{0}=0
\end{aligned} \quad \begin{aligned}
& \Psi_{1}(-y)=+\gamma_{5} \Psi_{1}(y) \\
& \Psi_{2}(-y)=-\gamma_{5} \Psi_{2}(y)
\end{aligned}
$$

$$
f_{i}^{0}(y)=\sqrt{\frac{2 m_{i}}{1-e^{-2 m_{i} \pi R}}} e^{-m_{i} y}
$$

vanishing zero-modes for $\left(E_{1}, \bar{E}_{2}\right)$

$$
F_{i}=\sqrt{\frac{x_{i}}{1-e^{-x_{i}}}} \approx\left\{\begin{array}{cl}
e^{-x_{i} / 2} & x_{i} \gg 1 \\
1 & x_{i} \approx 0 \\
\sqrt{-x_{i}} & x_{i} \ll-1
\end{array}\right.
$$

Back up slides

Antilepton + meson two-body modes
Soudan Frejus Kamiokande IMB
Super-K

Flavor symmetries I (the hierarchy puzzle)

hierarchies in fermion spectrum

$$
\begin{align*}
& \frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}}=(0.025 \div 0.049) \approx \lambda^{2} \ll 1 \\
& \left|U_{e 3}\right|<0.18 \leq \lambda \quad(2 \sigma)
\end{align*}
$$

call ξ_{i} the generic small parameter. A modern approach to understand why $\xi_{i} \ll 1$ consists in regarding ξ_{i} as small breaking terms of an approximate flavour symmetry. When $\xi_{i}=0$ the theory becomes invariant under a flavour symmetry F

Example: why $y_{e}<y_{\text {top }}$? Assume $\mathrm{F}=\mathrm{U}(1)_{\mathrm{F}}$

$$
\begin{array}{lll}
\mathrm{F}(\mathrm{t})=\mathrm{F}(\mathrm{t} \mathrm{c})=\mathrm{F}(\mathrm{~h})=0 & y_{\text {top }}(h+v) t^{c} t & \text { allowed } \\
\mathrm{F}\left(e^{c}\right)=\mathrm{p}>0 \mathrm{~F}(e)=q>0 & y_{e}(h+v) e^{c} e & \text { breaks } \cup(1)_{\mathrm{F}} \text { by }(\mathrm{p}+\mathrm{q}) \text { units } \\
\text { if } \xi=<\varphi>/ \Lambda<1 \text { breaks } U(1) \text { by one negative unit } & y_{e} \approx O\left(\xi^{p+q}\right) \ll y_{\text {top }} \approx O(1)
\end{array}
$$

provides a qualitative picture of the existing hierarchies in the fermion spectrum

