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Lecture 1
Neutrino Masses



Summary of data

m,<22eV (95% CL) (lab) Summary of unkowns
E m, < 02+1 eV (cosmo) absolute neutrino mass
: scale is unknown
) [but well-constrained!]
Parameter Ordering Best fit “10” (%)
om?/107° eV? NO 7.34 2.2
10 7 34 2 9 sign [Am? 1 unknown
sin® ;5 NO 3.04 4.4 [complete ordering
10 3.03 A4 (either normal or inverted
i 0”/10_2 NO 2:14 33 hierarchy) not known]
10 2.18 3.7
|Am?|/1073 eV? NO 2.455 1.4
10 2.441 1.4 K
sin? fg3 /1071 NO 5.51 5.2 %, 1§ WSt
10 5.57 4.8 [CP violation in lepton
5/n NO 139 11.6 sector not yet established]
10 1.52 9.3

[Capozzi, Lisi, Marrone, Palazzo 1804.09678]

violation of total lepton number

violation of individual lepton number ,
not yet established

implied by neutrino oscillations



Beyond the Standard Model

a non-vanishing neutrino mass is the first evidence of the incompleteness of
the Standard Model [SM]

in the SM neutrinos belong to SU(2) doublets with hypercharge Y=-1/2
they have only two helicities (not four, as the other charged fermions)
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the requirement of invariance under the gauge group 6=SU(3)xSU(2)xU(1)
forbids pure fermion mass terms in the lagrangian. Charged fermion masses

arise, after electroweak symmetry breaking, through gauge-invariant
Yukawa interactions
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same helicity

not even this term is allowed for SM neutrinos, by gauge invariance



Questions

how to extend the SM in order to accommodate neutrino masses?

why neutrino masses are so small, compared with the charged fermion masses?
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why lepton mixing angles are so different from those of the quark sector?
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0.

How to modify the SM?

the SM, as a consistent QFT, is completely specified by

invariance under local transformations of the gauge group 6=SU(3)xSU(2)xU(1)
[plus Lorentz invariance]

particle content three copies of  (q,u",d‘,l,e°)

one Higgs doublet P

renormalizability (i.e. the requirement that all coupling constants g;have
hon-negative dimensions in units of mass: d(g;)20. This allows to eliminate all
the divergencies occurring in the computation of physical quantities, by
redefining a finite set of parameters.)

(0.+1+2.) leads to the SM Lagrangian, Lsy, possessing an additional, accidental,
global symmetry: (B-L) ->  EXERCISE

We cannot give up gauge invariance! It is mandatory for the consistency of
the theory. Without gauge invariance we cannot even define the Hilbert
space of the theory [remember: we need gauge invariance to eliminate the
photon extra degrees of freedom required by Lorentz invariance]!

We could extend G, but, to allow for neutrino masses, we need to modify 1. (and/or 2.) anyway...



Exercise 1: anomalies of B and L,

the anomaly of the baryonic current and the individual leptonic currents
are proportional to tr[Q {TA,T8}]and tr[Q {Y,Y}] where Q=(B,L;) and (TA,Y)
are the generators of the electroweak gauge group

compute these traces in the SM with 3 fermion generations

1 A B _ 5 Xl % l l AB _ E AB
ETr‘[B{T ,T7}]=3(gen)x3(col) 3 (B) [4 (up)+ 1 (down)]é 5 0
l‘I'r‘[L (T, T°}1=1(L)x l(nu)+l(e) 5" = l(SAB

2 o4 4 2

3

%TP[B{Y,Y}] = 3(gen) x 3(col) x %(B) X [%(Doubl) — %(Singl)

1

%Tr‘[Li{Y,Y}] =1(L,) x %(Doubl) — I(Singl)] =3

(B+L) is anomalous, (B/3-L;) [and (B-L)] are anomaly-free



First possibility: modify (1), the particle content

there are several possibilities
one of the simplest one is to mimic the charged fermion sector

r add (three copies of) ¢ _ (1,1,0) full singlet under
right-handed neutrinos 7 G=SU(3)xSU(2)xU(1)
Example 1 <

ask for (global) invariance under B-L
. (no more automatically conserved as in the SM)

the neutrino has now four helicities, as the other charged fermions,
and we can build gauge invariant Yukawa interactions giving rise, after
electroweak symmetry breaking, to neutrino masses

L,=-dy,(®'q)-u‘y (®'q)-ey (®)-v'y (D'])+h.c.

= y—fv f=udev

mf \/5

with three generations there is an exact replica of the quark sector and, after diagonalization of the
charged lepton and neutrino mass matrices, a mixing matrix U appears in the charged current interactions

—iWJEGMUPMNSV +he.  Upmns has three mixing angles and one phase, like Ve
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a generic problem of this approach

the particle content can be modified in several different ways

in order to account for non-vanishing neutrino masses

(additional right-handed neutrinos, new SU(2) fermion triplets, additional
SU(2) scalar triplet(s), SUSY particles,...). Which is the correct one?

a problem of the above example

if neutrinos are so similar to the other fermions, why are so light?

Quite a speculative answer:

Y <107"
ytop

neutrinos are so light, because the right-handed neutrinos have access
to an extra (fifth) spatial dimension

all SM particles
live here except

.

VC

=0

Y

L

neutrino Yukawa coupling

v¢(y =0)(®*]) = Fourier expansion

: c((i)+l) + ... [higher modes]

=—V
ﬁ 0

if L>>1 (in units of the fundamental scale)
then neutrino Yukawa coupling is suppressed



Second possibility: abandon (2) renormalizability

A disaster?

L. L
L=L" + A5+Ag+...

a new scale A enters the theory. The new (gauge invariant!) operators Ls, Lg,...
contribute to amplitudes for physical processes with terms of the type

L. E L, (E)2

—2 > _ 5 s —

A A A A

the theory cannot be extrapolated beyond a certain energy scale EXA.
[at variance with a renormalizable (asymptotically free) QFT]

If E<«A (for example E close to the electroweak scale, 102 GeV, and
A=1015 GeV not far from the so-called Grand Unified scale), the above
effects will be tiny and, the theory will /ook like a renormalizable theory!

E 10° GeV _10°" an extremely tiny effect, but exactly what

A 10°GeV needed to suppress m, compared to m;o, !




Worth to explore. The dominant operators (suppressed by a single power of 1/A)
beyond Lsy are those of dimension 5. Here is a list of all d=5 gauge invariant
operators

L ((i)+l)((i)+[) a unique operator!

[up to flavour combinations]

A a A ~ it violates (B-L) by two units
vi({v it is suppressed by a factor (v/A)
=—|—|VV + ... with respect to the neutrino mass term
2\ A of Example 1 5 v
vi(D)=—VvV+..
(@) N

it provides an explanation for the smallness of m,;:
the neutrino masses are small because the scale A, characterizing (B-L)
violations, is very large. How large? Up to about 10®° GeV

from this point of view neutrinos offer a unique window on physics at very large scales, inaccessible
in present (and probably future) man-made experiments.

since this is the dominant operator in the expansion of L in powers of 1/A, we could have expected
to find the first effect of physics beyond the SM in neutrinos ... and indeed this was the casel!



L5 represents the effective, low-energy description of
several extensions of the SM

Example 2:
see-saw

| I sing|
add (three copies of) v = (1,1,0) Etsf;'{‘g)z;&r(‘g?;U(l)

this is like Example 1, but without enforcing (B-L) conservation

L(ve,D)==vy, (D)) - %VCMVC +h.c.

mass term for right-handed
neutrinos: G invariant, violates
(B-L) by two units.

the new mass parameter M is independent from the electroweak breaking

scale v. If M>>v, we might be interested in an effective description valid

for energies much smaller than M. This is obtained by “integrating out’” the
field ve terms suppressed by more

1 - X o >, powers of M-
L,(=2 (@ 1)[va yv](CI) D+he.+.

this reproduces Ls, with M playing the role of A. This particular mechanism
is called (type I) see-saw.



Exercise 2

derive the see-saw relation by integrating out the fields v¢ through their e.o.m.
in the heavy M limit. Compute the 15t order corrections in p/M

equations of motion of v¢
-1
¢ io'd  -M" 7] -M™"'y w -
vl u S WO w=@)
-M i0"9, y,0 -M "y @

= C

L4

L,=il5" 1+ %[a)( Yy Yo+ h.c.] rid(y* MMy )5"9 o+ O(M™)

\ | \ }
Y

d-=5 d-=6 renc!r'malizes the KE of v by v3/M?

there are 3 types of see-saw depending on the particle we integrate out
they all give rise to the same d=5 operator

H J'H H -~ «~«H H-~ /H
L, 3 P Y aY Ve
/T\ 1oy /f\
L; L L L L L;
type I /T';e\II\ type III
T -1 u T -1
yN(MN) yN yAW yz(Mz) yz

A



Theoretical motivations for the see-saw

A=®10® GeV is very close to the
so-called unification scale Mgyt

an independent evidence for Mgyt

comes from the unification of the -
gauge coupling constants in (SUSY <
extensions of) the SM.

such unification is a generic prediction

of Grand Unified Theories (6UTs):

the SM gauge group G is embedded into a simple 0 Cusbsalinlimbimlsnbsvuliin

10> 10 10° 10° 1(")1.6“- 1012 1614“ 10“5 1018
roup such as SU(B), SO(10),...

Particle classification: it is possible to unify all SM fermions (1 generation)
into a single irreducible representation of the GUT gauge group. Simplest

example: Gy7=5S0(10) 16 = (q,d* ,u’,Le¢ ,v°) awhole family plus a
T right-handed neutrino!

quite a fascinating possibility. Unfortunately, it still lacks experimental tests.In GUT new, very heavy,
particles can convert quarks into leptons and the proton is no more a stable particle. Proton decay
rates and decay channels are however model dependent. Experimentally we have only lower

bounds on the proton lifetime.

Unity of All Elementary-Particle Forces Georgi, H.; Quinn, HR. and Weinberg, S.
Phys. Rev. Lett.32,(1974) 438 Hierarchy of interactions in unified gauge theories.
Howard Georgi and S. L. Glashow Phys. Rev. Lett.33 (1974)451



Exercise 3: gauge coupling unification

Oth order approximation

5 . X
justify this -8, =8, =8, sin’ (S % = 3 ~0.375
3 g, +g, 8
include 1-loop running
1 1 b 1 0 b 33/5 b 41/10
= + —log— b, = 1 b, =| -19/6
ai(Q) ai(mZ) 27 m, b -3 b, =7

knowledge of b.c. Mgyt and ay=a(MgyTt) would allow to predict o;(mz)
In practice, we use as inputs

O{e'ni (m,) . 127.934 sin” v(m,) e 0.231
to predicT a (m )‘ — 7aem(mz) ~0.118
[MSSM] TS 15sin” 9(m,) -3

; | e 28a, (m,)) 1
[corrections from 2-loop RGE, &, = = ~
threshold corrections at Mgy, 36sin” ﬁ(mz) -3 25

threshold corrections at Mg 1] . 2
M 3-8 0
log( GUT)=J‘L’ sin” 9(m, ) = M, ~2x10°GeV

14aem (mZ)

m,



Exercise 4: effective lagrangian for nucleon decay

recoghize that, the with the SM particle content, the lowest dimensional
operators violating B occur at d=6. Make a list of them

~
1 ct+ c+

qqu ¢ qqql color and SU(2)
% X ot 1ot .o o indices contracted
A qlu“d u‘u‘de

B L

notice that they respect AB=AL: nucleon decay into antileptons
e.g. p->e* 10, n->e* - [ h->e’Tr* suppressed by further powers of Ag]

naive estimate assuming
A, ') > 1.4x 10"
T ~_B ‘L’p(p e'mw)>1.4x Vs [SK]
P S
p
we get A,>26x10"° GeV

in GUTs Ag is related to the scale Mgyt at which the grand unified symmetry
is broken down to SM gauge group

the observed proton stability is guaranteed by the largeness of Mgyt

In SUSY extensions of the SM the lowest dimensional operators violating B
occur at d=5: why?



flavor puzzle made simpler in SU(5) ? Higgs

5=(1,d°) 10=(q,u‘, e") 1=v° O =(D,,D,)
— s — 1
L, ==10y,10®,-5y,10®] -1y, 5 & - 1M1+ h.c.
_ T mb = mt O.K.
yd ye m, =m, xr;c;rr\‘?mt;ue‘r not by orders of ms =~ mu /3
m, =m, can be fixed with additional Higgs 11, = 3 n,

suppose that y,, Ye, Yy and M/A are anarchical matrices [O(1) matrix elements]
and that the observed hierarchy is due to the wave function renormalization
of matter multiplets (we will see how later on)

10 — F,10 2% o 0 A=022

_ _ 0,

5 — ng FX= 0 A 0 QXIZQXZZQX3

1 — FIl 0 0 A% F; dependence

cancels inm,

T Th,-1
Y, =Foqu10 (Yd=F§de10 (Ye=Fode‘ mvochva va§

u 1
large mixing in lepton sector suggests Fg ~ diag(l,l,l)
hierarchy mostly dueto Fio  m :m :m =m’:m’>:m =m’:m’:m’
large | mixing corresponds to a large d¢ mixing: unobservable in weak int. of quarks



how can a wave function renormalization (effectively) arise?

several possibilities
here (Exercise 5 ): bulk fermions in a compact extra dimension S!/Z,

L= iqllI‘MaMlpl + i‘leI‘MaM‘Pz —mlg(y)qllll’1 + mzs(y)qu‘lj2 — (5()/)%]71(}1 +v)f, +h.c.

solve the e.om. for the fermion
Y = % Y = ]:2 zeromodes with the b.c. qjl(_y) = +V5‘P1(y)
/i _ 0 0o _
1 ? ysayqjl,z = m1,2 g(y)lpl,z =0

Y, (-y)=-y,¥,(»)

vanishing zero-modes

2m
0 i -m, for —
fi (y)=\/1_e—2ml.nRe y (ElaEz)

Y20(1)
1 ~/2 x. >>1
L,=-——f(FyE)h+v)f, p_ |5 1 x =0
A.TL'R i 1— e—xl. i
\J—X, x. << -1




Back up slides



Antilepton + meson two-body modes

Soudan Frejus Kamiokande IMB Super-K

p—etno
n—e*mn
p— uao
n— u* -
p—vat
n— vmo
p—e*n
p—u'n
n—vn
p—=e*po
n—e*p
p—utpo
n— u*p-
p—=>vp*
n—vpo
p—etm
p—uo
n—=vw
p—e*KO
n—etK-
n—ekK?*
p—utKO
n— utK-
p—vK®*
n—vKO

p — e* K*@892)0
p — v K*@892)*
n — v K*@892)0

103
/B (years)




Flavor symmetries I (the hierarchy puzzle)

hierarchies in fermion spectrum

%)
X m, m, & & ~
§ m << m <<1 m, << m, <<1 ‘Vub‘<< ‘Vcb‘<< ‘Vus‘=)\,<1
7 2

An/lsol D)
v = =(0.025+0.049) = A" <<1 (20)
S n " Amatm
2 ¢ << <<
s M U,|<0.18<1 (20)

call & the generic small parameter. A modern approach to understand why &i<<1
consists in regarding &; as small breaking ferms of an approximate flavour
symmetry. When £=0 the theory becomes invariant under a flavour symmetry F

Example: why ye<<y;qp? Assume F=U(1)¢

F(t)=F(t<)=F(h)=0 Yiop (B + V)L allowed

F(e<)=p>0 F(e)=¢>0 y,(h+v)e‘e breaks U(1)g by (p+q) units
if £=<p>/A<1 breaks U(1) by one negative unit  y, =O0(5""") <<y, =O()

provides a qualitative picture of the existing hierarchies in the fermion spectrum



