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Implication for Physics BSM



Lecture 1
Neutrino Masses



sign [Δmatm
2 ]    unknown  

Summary of data

[complete ordering
(either normal or inverted
hierarchy) not known]

[CP violation in lepton 
sector not yet established]

violation of individual lepton number
implied by neutrino oscillations

violation of total lepton number
not yet established

€ 

mν < 2.2 eV (95% CL)

absolute neutrino mass
scale is unknown
[but well-constrained!]
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mi < 0.2 ÷1 eV
i
∑

(lab)

(cosmo)

Summary of unkowns

[Capozzi, Lisi, Marrone, Palazzo 1804.09678]

𝜶, 𝜷 unkown



a non-vanishing neutrino mass is the first evidence of the incompleteness of
the Standard Model [SM]

Beyond the Standard Model

in the SM neutrinos belong to SU(2) doublets with hypercharge Y=-1/2
they have only two helicities (not four, as the other charged fermions)
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the requirement of invariance under the gauge group G=SU(3)xSU(2)xU(1) 
forbids pure fermion mass terms in the lagrangian. Charged fermion masses 
arise, after electroweak symmetry breaking, through gauge-invariant 
Yukawa interactions
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Φ ΨΨ'
same helicity


not even this term is allowed for SM neutrinos, by gauge invariance



Questions

why lepton mixing angles are so different from those of the quark sector?
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λ ≈ 0.22

how to extend the SM in order to accommodate neutrino masses?

why neutrino masses are so small, compared with the charged fermion masses?



the SM, as a consistent QFT, is completely specified by 

0.    invariance under local transformations of the gauge group G=SU(3)xSU(2)xU(1)
[plus Lorentz invariance]

1.     particle content

2.    renormalizability (i.e. the requirement that all coupling constants gi have 
non-negative dimensions in units of mass: d(gi)≥0. This allows to eliminate all 
the divergencies occurring in the computation of physical quantities, by 
redefining a finite set of parameters.)  € 

three copies of     (q,uc,dc,l,ec )
one Higgs doublet      Φ

How to modify the SM?

0.    We cannot give up gauge invariance! It is mandatory for the consistency of 
the theory. Without gauge invariance we cannot even define the Hilbert 
space of the theory [remember: we need gauge invariance to eliminate the
photon extra degrees of freedom required by Lorentz invariance]!
We could extend G, but, to allow for neutrino masses, we need to modify 1. (and/or 2.) anyway… 

(0.+1.+2.) leads to the SM Lagrangian, LSM, possessing an additional, accidental, 
global symmetry: (B-L)        ->     EXERCISE



Exercise 1: anomalies of B and Li
the anomaly of the baryonic current and the individual leptonic currents
are proportional to tr[Q {TA,TB}] and tr[Q {Y,Y}] where Q=(B,Li) and (TA,Y)
are the generators of the electroweak gauge group
compute these traces in the SM with 3 fermion generations
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(B+L) is anomalous,   (B/3-Li) [and (B-L)] are anomaly-free



First possibility: modify (1), the particle content
there are several possibilities
one of the simplest one is to mimic the charged fermion sector 
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ν c ≡ (1,1,0)add (three copies of)
right-handed neutrinos 

full singlet under 
G=SU(3)xSU(2)xU(1)

ask for (global) invariance under B-L 
(no more automatically conserved as in the SM)
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{

LY = −d
c yd (Φ

+q)−uc yu ( Φ
+q)− ec ye (Φ

+l)−ν c yν ( Φ
+l)+ h.c.

€ 

mf =
y f
2
v         f = u,d,e,ν

the neutrino has now four helicities, as the other charged fermions,
and we can build gauge invariant Yukawa interactions giving rise, after
electroweak symmetry breaking, to neutrino masses

with three generations there is an exact replica of the quark sector and, after diagonalization of the 
charged lepton and neutrino mass matrices, a mixing matrix U appears in the charged current interactions
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Wµ
−e σ µUPMNSν + h.c. UPMNS has three mixing angles and one phase, like VCKM

Example 1



if neutrinos are so similar to the other fermions, why are so light?

the particle content can be modified in several different ways
in order to account for non-vanishing neutrino masses
(additional right-handed neutrinos, new SU(2) fermion triplets, additional
SU(2) scalar triplet(s), SUSY particles,…). Which is the correct one?

a generic problem of this approach

a problem of the above example

Quite a speculative answer:
neutrinos are so light, because the right-handed neutrinos have access
to an extra (fifth) spatial dimension

Y=0 Y=L

nc

all SM particles
live here except

neutrino Yukawa coupling
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ν c (y = 0)( ˜ Φ +l) = Fourier expansion

                       =
1
L
ν 0
c ( ˜ Φ +l) + ...

if L>>1 (in units of the fundamental scale)
then neutrino Yukawa coupling is suppressed

[higher modes]
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yν
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≤10−12



Second possibility: abandon (2) renormalizability
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L = Ld≤4
SM +

L5
Λ

+
L6
Λ2

+ ...

a new scale L enters the theory. The new (gauge invariant!) operators L5, L6,…
contribute to amplitudes for physical processes with terms of the type

A disaster?
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the theory cannot be extrapolated beyond a certain energy scale E≈L.
[at variance with a renormalizable (asymptotically free) QFT]

If E<<L (for example E close to the electroweak scale, 102 GeV, and 
L≈1015 GeV not far from the so-called Grand Unified scale), the above 
effects will be tiny and, the theory will look like a renormalizable theory!
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E
Λ
≈
102GeV
1015GeV

=10−13 an extremely tiny effect, but exactly what
needed to suppress mn compared to mtop !



Worth to explore. The dominant operators (suppressed by a single power of 1/L)
beyond LSM are those of dimension 5. Here is a list of all d=5 gauge invariant
operators
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a unique operator!
[up to flavour combinations]
it violates (B-L) by two units

it is suppressed by a factor (v/L) 
with respect to the neutrino mass term
of Example 1:
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ν c ( ˜ Φ +l) =
v
2
ν cν + ...

since this is the dominant operator in the expansion of L in powers of 1/L, we could have expected 
to find the first effect of physics beyond the SM in neutrinos … and indeed this was the case! 

it provides an explanation for the smallness of mn: 
the neutrino masses are small because the scale L, characterizing (B-L) 
violations, is very large.  How large? Up to about 1015 GeV

from this point of view neutrinos offer a unique window on physics at very large scales, inaccessible
in present (and probably future) man-made experiments. 



L5 represents the effective, low-energy description of
several extensions of the SM
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ν c ≡ (1,1,0)    add (three copies of) full singlet under 
G=SU(3)xSU(2)xU(1)

Example 2:
see-saw
this is like Example 1, but without enforcing (B-L) conservation

Leff (l) =
1
2
( Φ+l) yν

TM −1yν#
$

%
&( Φ

+l)+ h.c.+ ...

mass term for right-handed 
neutrinos: G invariant, violates
(B-L) by two units.

the new mass parameter M is independent from the electroweak breaking
scale v. If M>>v, we might be interested in an effective description valid
for energies much smaller than M. This is obtained by “integrating out’’ the
field nc

L(ν c ,l) = −ν c yν ( Φ
+l)− 1

2
ν cMν c + h.c.

terms suppressed by more
powers of M-1

this reproduces L5, with M playing the role of L. This particular mechanism 
is called (type I) see-saw. 



Exercise 2
derive the see-saw relation by integrating out the fields nc through their e.o.m. 
in the heavy M limit. Compute the 1st order corrections in p/M
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equations of motion of nc
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d-=5 d-=6 renormalizes the KE of ν by v2/M2

there are 3 types of see-saw depending on the particle we integrate out
they all give rise to the same d=5 operator

type I type II type III
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Theoretical motivations for the see-saw
L≈1015 GeV is very close to the 
so-called unification scale MGUT.

an independent evidence for MGUT 
comes from the unification of the 
gauge coupling constants in (SUSY 
extensions of) the SM.

such unification is a generic prediction
of Grand Unified Theories (GUTs):
the SM gauge group G is embedded into a simple
group such as SU(5), SO(10),…

Particle classification: it is possible to unify all SM fermions (1 generation)
into a single irreducible representation of the GUT gauge group. Simplest 
example: GGUT=SO(10) 
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16 = (q,dc,uc,l,ec,ν c ) a whole family plus a
right-handed neutrino!

quite a fascinating possibility. Unfortunately, it still lacks experimental tests. In GUT new, very heavy,
particles can convert quarks into leptons and the proton is no more a stable particle. Proton decay
rates and decay channels are however model dependent. Experimentally we have only lower 
bounds on the proton lifetime.
Unity of All Elementary-Particle Forces
Phys. Rev. Lett. 32, (1974) 438 
Howard Georgi and S. L. Glashow

Georgi, H.; Quinn, H.R. and Weinberg, S.
Hierarchy of interactions in unified gauge theories. 
Phys. Rev. Lett. 33 (1974) 451



Exercise 3: gauge coupling unification

Oth order approximation 
5
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knowledge of b.c. MGUT and αU=α(MGUT) would allow to predict αi(mZ)
in practice, we use as inputs 
αem

−1 (mZ ) MS =127.934 sin2ϑ (mZ ) MS = 0.231

to predict
[MSSM]

α3(mZ ) MS =
7αem(mZ )

15sin2ϑ (mZ )−3
≈ 0.118

αU =
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⇒ MGUT ≈ 2×10
16GeV

[corrections from 2-loop RGE, 
threshold corrections at MSUSY, 
threshold corrections at MGUT]



Exercise 4: effective lagrangian for nucleon decay

recognize that, the with the SM particle content, the lowest dimensional
operators violating B occur at d=6. Make a list of them

color and SU(2)
indices contracted

notice that they respect ΔB=ΔL: nucleon decay into antileptons
e.g. p->e+ π0, n->e+ π- [ n->e-π+ suppressed by further powers of ΛB]
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2
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qquc+ec+ qqql
qluc+d c+ ucucd cec

naïve estimate

τ p ≈
ΛB
4

mp
5

τ p ( p→ e+π 0 ) >1.4×1034 ys
assuming

we get ΛB > 2.6×10
16 GeV

[SK]

in GUTs ΛB is related to the scale MGUT at which the grand unified symmetry
is broken down to SM gauge group
the observed proton stability is guaranteed by the largeness of MGUT

In SUSY extensions of the SM the lowest dimensional operators violating B 
occur at d=5: why?  



5 = (l, d c ) 10 = (q, uc , ec ) 1=ν c Φ5 = (ΦD ,ΦT )

LY = −10yu10Φ5 − 5 yd10Φ5
+ −1yν 5Φ5 −

1
2
1M1+ h.c.

flavor puzzle made simpler in SU(5) ?
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yd = ye
T
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mb = mτ
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ms = mµ
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md = me

ms ≈ mµ / 3
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md ≈ 3me

O.K.
wrong, but not by orders of
magnitude
can be fixed with additional Higgs 

Higgs

suppose that yu, ye, yν and M/Λ are anarchical matrices [O(1) matrix elements]
and that the observed hierarchy is due to the wave function renormalization
of matter multiplets (we will see how later on)

10 → F10 10

5 → F5 5

1 → F1 1
FX =
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λ ≈ 0.22

QX1 ≥QX 2 ≥QX3

Y d = F5 ydF10 Y e = F10 yd
T F5Y u = F10 yuF10 mν ∝ F5 yν

TM −1yνF5
large mixing in lepton sector suggests F5 ≈ diag(1,1,1)
hierarchy mostly due to F10 mu :mc :mt ≈ md

2 :ms
2 :mb

2 ≈ me
2 :mµ

2 :mτ
2

large l mixing corresponds to a large dc mixing: unobservable in weak int. of quarks

F1 dependence
cancels in mν



how can a wave function renormalization (effectively) arise?
several possibilities
here (Exercise 5 ): bulk fermions in a compact extra dimension S1/Z2

L = iΨ1Γ
M∂MΨ1 + iΨ2Γ
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solve the e.o.m. for the fermion 
zero modes with the b.c.

vanishing zero-modes
for

Y≈O(1)



Back up slides



SK limits

Where We Are… 
November 11, 2013 J. Raaf, NNN 2013 26 
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Soudan Frejus Kamiokande IMB

τ/B (years)

Super-K

p → e+ π0

p → µ+ ρ0

n → ν ω

p → e+ K 0

n → e+ K -

n → µ+ K -

p → ν K +

n → ν K 0

p → e+ K*(892)0

n → ν K*(892)0

p → ν K*(892)+

p → µ+ π0

n → µ+ π-

p → ν π+

n → ν π0

p → e+ η

p → µ+ η

n → ν η

p → e+ ρ0

n → e+ ρ-

n → ν ρ0

p → e+ ω

p → µ+ ω

n → e+ π-

n → µ+ ρ-

p → ν ρ+

p → µ+ K 0

10
35

n → e- K +

Antilepton + meson two-body modes 

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

N BARYONSN BARYONSN BARYONSN BARYONS
(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)

p, N+ = uud; n, N0 = udd

pppp I (JP ) = 1
2 (1

2
+)

Mass m = 1.00727646681 ± 0.00000000009 u
Mass m = 938.272046 ± 0.000021 MeV [a]
∣

∣mp − mp

∣

∣/mp < 2 × 10−9, CL = 90% [b]
∣

∣

qp
mp

∣

∣/(
qp
mp

) = 0.99999999991 ± 0.00000000009
∣

∣qp + qp

∣

∣/e < 2 × 10−9, CL = 90% [b]
∣

∣qp + qe

∣

∣/e < 1 × 10−21 [c]

Magnetic moment µ = 2.792847356 ± 0.000000023 µN

(µp + µp)
/

µp = (0 ± 5) × 10−6

Electric dipole moment d < 0.54 × 10−23 e cm
Electric polarizability α = (11.2 ± 0.4) × 10−4 fm3

Magnetic polarizability β = (2.5 ± 0.4) × 10−4 fm3 (S = 1.2)
Charge radius, µp Lamb shift = 0.84087 ± 0.00039 fm [d]

Charge radius, e p CODATA value = 0.8775 ± 0.0051 fm [d]

Magnetic radius = 0.777 ± 0.016 fm
Mean life τ > 2.1 × 1029 years, CL = 90% [e] (p → invisible mode)
Mean life τ > 1031 to 1033 years [e] (mode dependent)

See the “Note on Nucleon Decay” in our 1994 edition (Phys. Rev. D50D50D50D50,
1173) for a short review.

The “partial mean life” limits tabulated here are the limits on τ/Bi , where
τ is the total mean life and Bi is the branching fraction for the mode in
question. For N decays, p and n indicate proton and neutron partial
lifetimes.

Partial mean life p

p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODES (1030 years) Confidence level (MeV/c)

Antilepton + mesonAntilepton + mesonAntilepton + mesonAntilepton + meson
N → e+π > 2000 (n), > 8200 (p) 90% 459

N → µ+π > 1000 (n), > 6600 (p) 90% 453

N → ν π > 112 (n), > 16 (p) 90% 459

p → e+η > 4200 90% 309

p → µ+η > 1300 90% 297

n → ν η > 158 90% 310

N → e+ρ > 217 (n), > 710 (p) 90% 149

N → µ+ρ > 228 (n), > 160 (p) 90% 113

HTTP://PDG.LBL.GOV Page 1 Created: 7/12/2013 14:49

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

Three (or more) leptonsThree (or more) leptonsThree (or more) leptonsThree (or more) leptons

p → e+ e+ e− > 793 90% 469

p → e+µ+µ− > 359 90% 457

p → e+ν ν > 17 90% 469

n → e+ e− ν > 257 90% 470

n → µ+ e− ν > 83 90% 464

n → µ+µ− ν > 79 90% 458

p → µ+ e+ e− > 529 90% 463

p → µ+µ+µ− > 675 90% 439

p → µ+ν ν > 21 90% 463

p → e−µ+µ+ > 6 90% 457

n → 3ν > 0.0005 90% 470

Inclusive modesInclusive modesInclusive modesInclusive modes
N → e+ anything > 0.6 (n, p) 90% –
N → µ+ anything > 12 (n, p) 90% –
N → e+π0anything > 0.6 (n, p) 90% –

∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes

The following are lifetime limits per iron nucleus.

pp → π+π+ > 0.7 90% –
pn → π+π0 > 2 90% –
nn → π+π− > 0.7 90% –
nn → π0π0 > 3.4 90% –
pp → e+ e+ > 5.8 90% –
pp → e+µ+ > 3.6 90% –
pp → µ+µ+ > 1.7 90% –
pn → e+ ν > 2.8 90% –
pn → µ+ ν > 1.6 90% –
nn → νe νe > 1.4 90% –
nn → νµ νµ > 1.4 90% –

pn → invisible > 0.000021 90% –
pp → invisible > 0.00005 90% –

p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODES

Partial mean life p

p DECAY MODES (years) Confidence level (MeV/c)

p → e−γ > 7 × 105 90% 469

p → µ−γ > 5 × 104 90% 463

p → e−π0 > 4 × 105 90% 459

p → µ−π0 > 5 × 104 90% 453

p → e−η > 2 × 104 90% 309

p → µ−η > 8 × 103 90% 297

HTTP://PDG.LBL.GOV Page 3 Created: 7/12/2013 14:49

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

Three (or more) leptonsThree (or more) leptonsThree (or more) leptonsThree (or more) leptons

p → e+ e+ e− > 793 90% 469

p → e+µ+µ− > 359 90% 457

p → e+ν ν > 17 90% 469

n → e+ e− ν > 257 90% 470

n → µ+ e− ν > 83 90% 464

n → µ+µ− ν > 79 90% 458

p → µ+ e+ e− > 529 90% 463

p → µ+µ+µ− > 675 90% 439

p → µ+ν ν > 21 90% 463

p → e−µ+µ+ > 6 90% 457

n → 3ν > 0.0005 90% 470

Inclusive modesInclusive modesInclusive modesInclusive modes
N → e+ anything > 0.6 (n, p) 90% –
N → µ+ anything > 12 (n, p) 90% –
N → e+π0anything > 0.6 (n, p) 90% –

∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes

The following are lifetime limits per iron nucleus.

pp → π+π+ > 0.7 90% –
pn → π+π0 > 2 90% –
nn → π+π− > 0.7 90% –
nn → π0π0 > 3.4 90% –
pp → e+ e+ > 5.8 90% –
pp → e+µ+ > 3.6 90% –
pp → µ+µ+ > 1.7 90% –
pn → e+ ν > 2.8 90% –
pn → µ+ ν > 1.6 90% –
nn → νe νe > 1.4 90% –
nn → νµ νµ > 1.4 90% –

pn → invisible > 0.000021 90% –
pp → invisible > 0.00005 90% –

p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODES

Partial mean life p

p DECAY MODES (years) Confidence level (MeV/c)

p → e−γ > 7 × 105 90% 469

p → µ−γ > 5 × 104 90% 463

p → e−π0 > 4 × 105 90% 459

p → µ−π0 > 5 × 104 90% 453

p → e−η > 2 × 104 90% 309

p → µ−η > 8 × 103 90% 297

HTTP://PDG.LBL.GOV Page 3 Created: 7/12/2013 14:49

>170 (SK-I-IV)  

>190 (SK-I-IV) 

pp → K+K+                    > 170 (SK-I only) 
                                                             per oxygen nucleus 

>30.7 (SK-IV only) 

per oxygen nucleus 

x1030 yrs 

x1030 yrs >1000 (SK-I only) 

per oxygen nucleus 



Flavor symmetries I (the hierarchy puzzle)
hierarchies in fermion spectrum

1<<<<
t

c

t

u

m
m

m
m 1<<<<

b

s

b

d

m
m

m
m

1<<<<
τ

µ

τ m
m

m
me

1<≡<<<< λuscbub VVV

)2(18.03 σλ≤<eU

)2(1)049.0025.0( 2
2

2

σλ <<≈÷=
Δ

Δ

atm

sol

m
mqu

ar
ks

call xi the generic small parameter. A modern approach to understand why xi<<1
consists in regarding xi as small breaking terms of an approximate flavour
symmetry. When xi=0 the theory becomes invariant under a flavour symmetry F

Example: why ye<<ytop? Assume F=U(1)F

€ 

ytop (h + v)t ctF(t)=F(tc)=F(h)=0

F(ec)=p>0 F(e)=q>0 

€ 

ye (h + v)ece
allowed
breaks U(1)F by (p+q) units

if x=<j>/L<1 breaks U(1) by one negative unit 

€ 

ye ≈O(ξ
p+q ) << ytop ≈O(1)

provides a qualitative picture of the existing hierarchies in the fermion spectrum


