Theoretical Aspects of Astroparticle Physics, Cosmology and Gravitation

Firenze, 18-22 March 2019

Aspects of neutrino physics (I) Neutrino Masses, Mixing and Oscillations: the data

> Ferruccio Feruglio Universita' di Padova

General remarks on neutrinos

the more abundant particles in the universe after the photons: about 300 neutrinos per cm³

produced by stars: most of the sun energy emitted in neutrinos. As I speak more than 1 000 000 000 000 solar neutrinos go through your bodies each second.

this is a picture of the sun reconstructed from neutrinos

electrically neutral and extremely light:

they can carry information about extremely large length scales e.g. a probe of supernovae dynamics: neutrino events from a supernova explosion first observed 27 years ago

in particle physics:

they have a tiny mass (1000000 times smaller than the electron's mass) the discovery that they are massive allows us to explore, at least in principle, extremely high energy scales, otherwise inaccessible to present laboratory experiments

The Particle Universe

from Murayama talk Aspen 2007

Upper limit on neutrino mass (laboratory)

 $m_v < 2.2 \ eV \quad (95\% \ CL)$

Upper limit on neutrino mass (cosmology)

massive v suppress the formation of small scale structures

$$\sum_{i} m_i < 0.2 \div 1 \quad eV$$

depending on

- assumed cosmological model
- set of data included
- how data are analyzed

$$k_{\rm nr} \approx 0.026 \left(\frac{m_{\nu}}{1 \, {\rm eV}}\right)^{1/2} \Omega_m^{1/2} h \, {\rm Mpc}^{-1}.$$

The small-scale suppression is given by

$$\left(\frac{\Delta P}{P}\right) \approx -8\frac{\Omega_{\nu}}{\Omega_m} \approx -0.8 \left(\frac{m_{\nu}}{1 \,\mathrm{eV}}\right) \left(\frac{0.1N}{\Omega_m h^2}\right)$$

$$\delta(\vec{x}) = \frac{\rho(\vec{x}) - \overline{\rho}}{\overline{\rho}}$$
$$\left\langle \delta(\vec{x}_1) \delta(\vec{x}_2) \right\rangle = \int \frac{d^3k}{(2\pi)^3} e^{i\vec{k} \cdot (\vec{x}_1 - \vec{x}_2)} P(\vec{k})$$

Two-flavour neutrino oscillations

here
$$v_{e}$$

are produced
with average
energy E source L here we measure
 $p_{ee} \equiv P(v_{e} \rightarrow v_{e})$
neutrino
interaction
eigenstates
 $-\frac{g}{\sqrt{2}}W_{\mu}^{-}\bar{l}_{L}\gamma^{\mu}v_{l}$
 $q^{/2} = \vartheta$
as before, but
 $I = \begin{pmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$
 $\frac{1}{\sqrt{2}} = \vartheta$
 $\frac{1}{\sqrt{2}}W_{\mu}^{-}\bar{l}_{L}\gamma^{\mu}v_{l}$
 $\frac{1}{\sqrt{2}} = \vartheta$
as before, but
 $I = (-\sin \vartheta & \cos \vartheta) \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$
 $\frac{1}{\sqrt{2}} = \vartheta$
 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{$

 (v_e, v_μ)

to see any effect, if Δm^2 is tiny, we need both θ and L large

regimes	$P_{ee} = \left \left\langle \boldsymbol{v}_{e} \left \boldsymbol{\psi}(L) \right\rangle \right ^{2}$	$= 1 - \underbrace{4 U_{e1} ^2 U_{e2} ^2}_{\sin^2 2\vartheta} \sin^2 \left(\frac{4}{2}\right)^2$	$\left(\frac{\Delta m_{21}^2 L}{4E}\right)$		
$\frac{\Delta m^2 L}{4E} << 1$ $\frac{\Delta m^2 L}{4E} >> 1$ $\frac{\Delta m^2 L}{4E} \approx 1$	$\sin^2\left(\frac{\Delta m^2 L}{4E}\right) \approx \frac{1}{2}$	$P_{ee} \approx$ $P_{ee} \approx 1 - \frac{\text{si}}{2}$ $P_{ee} = P_{ee}$	$\frac{\ln^2 2\vartheta}{2}$ by average v_e energy (E)		
useful relation $\frac{\Delta m^2 L}{4E} \approx 1.27 \left(\frac{\Delta m^2}{1 eV^2}\right) \left(\frac{L}{1 Km}\right) \left(\frac{E}{1 GeV}\right)^{-1}$					
source	L(km)	E(GeV)	$\Delta m^2 (eV^2)$		
ν _{e,} ν _μ (atmosphere)	10 ⁴ (Earth diameter)	1-10	10 ⁻⁴ - 10 ⁻³		
anti- v _e (reactor)	1	10 ⁻³	10 ⁻³		
anti- v_e (reactor)	100	10 ⁻³	10 ⁻⁵		
v _e (sun)	10 ⁸	10 ⁻³ - 10 ⁻²	10 ⁻¹¹ - 10 ⁻¹⁰		

by averaging over $v_{\rm e}$ energy at the source

neglecting matter effects

Three-flavour neutrino oscillations

survival probability as before, with more terms

$$P_{ff} = P(v_f \rightarrow v_f) = \left| \left\langle v_f \left| \psi(L) \right\rangle \right|^2 = 1 - 4 \sum_{k < j} \left| U_{fk} \right|^2 \left| U_{fj} \right|^2 \sin^2 \left(\frac{\Delta m_{jk}^2 L}{4E} \right)$$

similarly, we can derive the disappearance probabilities

$$P_{ff'} = P(v_f \rightarrow v_{f'})$$

 (v_e, v_μ, v_τ)

conventions:
$$[\Delta m_{ij}^2 \equiv m_i^2 - m_j^2]$$

$$m_1 < m_2$$

 $\Delta m_{21}^2 < |\Delta m_{32}^2|, |\Delta m_{31}^2|$ i.e. 1 and 2 are, by definition, the closest levels

two possibilities:

Mixing matrix U=U_{PMNS} (Pontecorvo, Maki, Nakagawa, Sakata)

neutrino interaction eigenstates

$$\boldsymbol{v}_{f} = \sum_{i=1}^{3} U_{fi} \boldsymbol{v}_{i}$$
$$(f = e, \mu, \tau)$$

neutrino mass eigenstates

U is a 3 x 3 unitary matrix standard parametrization

$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{-i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{-i\delta} & c_{13}s_{23} \\ -c_{12}s_{13}c_{23}e^{-i\delta} + s_{12}s_{23} & -s_{12}s_{13}c_{23}e^{-i\delta} - c_{12}s_{23} & c_{13}c_{23} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha} & 0 \\ 0 & 0 & e^{i\beta} \end{pmatrix}$$
$$c_{12} = \cos \vartheta_{12}, \dots$$

three mixing angles

three phases (in the most general case)

oscillations can only test 5 combinations

 $\Delta m_{21}^2, \Delta m_{32}^2, \vartheta_{12}, \vartheta_{13}, \vartheta_{23}$

$$\boldsymbol{\vartheta}_{12}, \quad \boldsymbol{\vartheta}_{13}, \quad \boldsymbol{\vartheta}_{23}$$

$$\boldsymbol{\delta} \qquad \underbrace{\boldsymbol{\alpha}, \boldsymbol{\beta}}_{\text{do not enter}} P_{ff'} = P(\boldsymbol{v}_f \rightarrow \boldsymbol{v}_{f'})$$

structure of the mixing matrix

$$\begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{13} s_{23} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{13} s_{23} e^{-i\delta} & c_{13} s_{23} \\ -c_{12} s_{13} c_{23} e^{-i\delta} + s_{12} s_{23} & -s_{12} s_{13} c_{23} e^{-i\delta} - c_{12} s_{23} & c_{13} c_{23} \end{pmatrix} = \\ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Analysis of Oscillations Data

we anticipate that there are two small parameters

$$\alpha \left| = \left| \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \right| \approx 0.03$$
$$U_{e3} \right|^2 \approx \sin^2 \vartheta_{13} \approx 0.02$$

$$\Delta m_{21}^2 << |\Delta m_{32}^2|, |\Delta m_{31}^2|$$

we first consider experiments not sensitive to Δm^2_{21} (L not very large, E not very small) and we set $\Delta m^2_{21} = 0$

EXERCISE derive P_{ee} , $P_{\mu\mu}$, $P_{\mu e}$ in the limit $\Delta m_{21}^2 = 0$ (vacuum osc., no matter effects)

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E} \qquad \Delta = \frac{\Delta m_{13}^2 L}{4E} \quad [\Delta m_{21}^2 = 0]$$

$$P_{ee} = 1 - 4 |U_{e3}|^2 (1 - |U_{e3}|^2) \sin^2 \Delta$$
$$P_{\mu\mu} = 1 - 4 |U_{\mu3}|^2 (1 - |U_{\mu3}|^2) \sin^2 \Delta$$
$$P_{\mu e} = P_{e\mu} = 4 |U_{\mu3}|^2 |U_{e3}|^2 \sin^2 \Delta$$

similarly, $P_{\tau\tau}$, $P_{\tau\mu}$, $P_{\mu\tau}$, $P_{\tau e}$, $P_{e\tau}$ only depend on U_{f3} and Δ for $\Delta m_{21}^2 = 0$

we are testing the third column

$$U_{PMNS} = \left(\begin{array}{ccc} \cdot & \cdot & U_{e3} \\ \cdot & \cdot & U_{\mu3} \\ \cdot & \cdot & U_{\tau3} \end{array} \right)$$

we also consider the limit $9_{13} = 0$ we are left with one frequency and one mixing angle $|U_{e3}|^2$

$$\left|U_{e3}\right|^2 \approx \sin^2 \vartheta_{13} \approx 0$$

 $P_{ee} = 1$ $P_{\mu\mu} = 1 - \sin^2 2\vartheta_{23} \sin^2 \Delta$ $P_{\mu e} = P_{e\mu} = 0$

two-flavour oscillations

$$P_{\tau\tau} = P_{\mu\mu}$$
$$P_{\tau\mu} = P_{\mu\tau} = \sin^2 2\vartheta_{23} \sin^2 \Delta$$
$$P_{\tau e} = P_{e\tau} = 0$$

Atmospheric neutrino oscillations

electron neutrinos do not oscillate

by working in the approximation $\Delta m^2_{21} = 0$

$$P_{ee} = 1 - \underbrace{4|U_{e3}|^2 (1 - |U_{e3}|^2)}_{\sin^2 2\vartheta_{13}} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) \approx 1 \quad \text{for } U_{e3}$$

for
$$U_{e3} = \sin \vartheta_{13} \approx 0$$

K2K

T2K

maximal mixing! not a replica of the quark mixing pattern

+(small corrections)

other terrestrial experiments measuring $P_{\mu\mu}$

man made neutrino beams

(Japan, from KEK to Kamioka mine L \approx 250 Km E \approx 1.3 GeV) (USA, from Fermilab to Soudan mine $L \approx 735$ Km $E \approx 3$ GeV) MINOS NOVA (USA, from Fermilab to Ash River L \approx 810 Km E \approx 2 GeV) (Japan, from Tokai, J-Park to Kamioka mine $L \approx 295$ Km $E \approx 0.6$ GeV) (CERN-Italy, from CERN to LNGS L \approx 732 Km E \approx 17 GeV) OPERA all sensitive to Δm_{32}^2 close to 10^{-3} eV^2 **OPERA** energy optimized to maximize τ production, via CC events

by 2018 about 10 T events have been seen

recent results

EPJ Web of Conferences 191, 03001 (2018)

KamLAND

previous experiments were sensitive to Δm^2 close to $10^{-3}~eV^2$ to explore smaller Δm^2 we need larger L and/or smaller E

KamLAND experiment exploits the low-energy electron anti-neutrinos (E≈3 MeV) produced by Japanese and Korean reactors at an average distance of L≈180 Km from the detector and is potentially sensitive to Δm^2 down to 10⁻⁵ eV²

EXERCISE estimate Δm_{21}^2 from position of second oscillation dip in previous plot

$$\Delta m_{21}^2 = 6\pi \frac{E}{L}\Big|_{dip} \approx 6\pi \times \frac{1}{50} MeV / Km = 7.5 \times 10^{-5} eV^2$$

EXERCISE work out P_{ee} by keeping U_{e3} non-vanishing

$$P_{ee} \approx |U_{e3}|^4 + (1 - |U_{e3}|^2)^2 (1 - \sin^2 2\vartheta_{12} \sin^2 \Delta_{21})$$

this pattern is called tri-bimaximal completely different from the quark mixing pattern: two angles are large

+ (small corrections)

historically Δm_{21}^2 and $\sin^2 \theta_{12}$ were first determined by solving the solar neutrino problem, i.e. the disappearance of about one third of solar electron neutrino flux, for solar neutrinos above few MeV. The desire of detecting solar neutrinos, to confirm the thermodynamics of the sun, was the driving motivation for the whole field for more than 30 years. Electron solar neutrinos oscillate, but the formalism requires the introduction of matter effects, since the electron density in the sun is not negligible. Experiments: SuperKamiokande, SNO, Borexino

Solar Neutrinos

with different energy spectrum

most neutrinos come from pp fusion $E_{max} \approx 0.4 \text{ MeV}$

most energetic neutrinos come from ⁸B decay $E_{max} \approx 15$ MeV

Theory prediction for P_{ee}

[pdg2018]

9_{13} from disappearance experiments

These experiments have been realized with reactors. Electron anti-neutrinos are produced by a reactor (E≈3 MeV, L≈1 Km) (by CPT the survival probability in vacuum is the same for neutrinos and antineutrinos and matter effects are negligible). In this range of (L,E) oscillations driven by Δm^2_{21} are negligible and the survival probability P_{ee} only depends on ($|U_{e3}|, \Delta m^2_{31}$).

$$P_{ee} = 1 - \underbrace{4|U_{e3}|^2 (1 - |U_{e3}|^2)}_{\sin^2 2\vartheta_{13}} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) \quad E \approx 3 MeV$$

$$L \approx 1 Km$$

Experiment	Near Detectors	Far Detectors
CHOOZ (France)	_	(1) 1050m
Double CHOOZ	400 m	(1) 1050m
Reno (Korea)	(1) 290m	(1) 1380m
Daya Bay (China)	(4) (360-530)m	(4) (1600-2000)m

before 2012 there was only an upper bound on $|U_{e3}|$ by CHOOZ today (2019) the value of 9_{13} is dominated by the Daya Bay result

$$\frac{\sin^2 2\vartheta_{13} = 0.0841 \pm 0.0033}{|U_{e3}|^2 = \sin^2 \vartheta_{13} = 0.0215 \pm 0.0009}$$

$$\left|\Delta m_{32}^2\right| = \begin{cases} 2.45 \pm 0.09(NO) \\ 2.56 \pm 0.09 \text{ (IO)} \end{cases}$$

9_{13} from appearance experiments

These experiments use a muon-neutrino beam from an accelerator and look for conversion of muon-neutrinos into electron-neutrinos. The (L,E) range is such that they are mainly sensitive to Δm^2_{31}

Experiment	E(GeV)	L(Km)
T2K (Japan)	0.6	295
MINOS (USA)	3	735
NOVA (USA)	2	810

at the LO (neglecting Δm^2_{21} and matter effects)

$$P_{\mu e} = 4 \left| U_{\mu 3} \right|^2 \left| U_{e 3} \right|^2 \sin^2 \Delta = \sin^2 \vartheta_{23} \sin^2 2\vartheta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right)$$

however in this case corrections from Δm^2_{21} and matter effects are non-negligible EXERCISE

by expanding $P_{\mu e}$ to first order in $\alpha \text{=} \Delta m^2{}_{21/}\Delta m^2{}_{13}$ show that

$$P_{\mu e} = \sin^2 \vartheta_{23} \sin^2 2\vartheta_{13} \sin^2 \Delta_{13}$$

$$-8\alpha J_{CP} \Delta_{13} \sin^2 \Delta_{13}$$

$$-8\alpha J_{CP} \frac{\cos \delta}{\sin \delta} \Delta_{13} \cos \Delta_{13} \sin \Delta_{13}$$

$$+ O(\alpha^2) + matter effects$$

$$\Delta_{13} = \frac{\Delta m_{31}^2 L}{4E}$$
$$J_{CP} = \operatorname{Im} \left(U_{\mu 3} U_{e3}^* U_{\mu 2}^* U_{e2} \right)$$
$$= \frac{1}{8} \sin 2\vartheta_{12} \sin 2\vartheta_{23} \sin 2\vartheta_{13} \cos \vartheta_{13} \sin \delta$$

T2K works near the first oscillation maximum where $|\Delta_{13}|=\pi/2$

$$P_{\mu e} = \sin^2 \vartheta_{23} \sin^2 2 \vartheta_{13}$$
$$-4\pi |\alpha| J_{CP}$$
$$+ O(\alpha^2) + matter effects$$

At present (2019) agreement with the value of 9_{13} determined by reactor disappearance experiments requires

$$\sin \delta \approx -1$$
$$\delta \approx \frac{3}{2}\pi$$

i.e. maximal CP violation in the lepton sector the relative subleading corrections are O(20%) and are sensitive to sin δ

main detection processes

Neutrinos	Experiment	Process
	SK	
atmospheric v	K2K, MINOS,	$v N \rightarrow l X$
	T2K, Opera	
colon v	SK, Borexino	$v_X e \rightarrow v_X e$
Solarv	SNO	$v_X D \rightarrow v_X pn, v_e D \rightarrow e pp$
neactor	KamLand, Chooz,	\overline{u} $p > a^{\dagger} p (a^{\dagger} D u)$
reactor v	DoubleChooz, Reno, Daya Bay	$v_e p \rightarrow e n (e \ D\gamma)$

Summary of data $m_v < 2.2 \ eV$ (95% CL) (lab) $\sum_i m_i < 0.2 \div 1 \ eV$ (cosmo)

Parameter	Ordering	Best fit	1σ range
$\delta m^2/10^{-5} \ \mathrm{eV^2}$	NO	7.34	7.20 - 7.51
	IO	7.34	7.20 - 7.51
$\sin^2 \theta_{12}$	NO	3.04	2.91 - 3.18
	IO	3.03	2.90-3.17
$\sin^2 \theta_{13}/10^{-2}$	NO	2.14	2.07 - 2.23
	IO	2.18	2.11 - 2.26
$ \Delta m^2 /10^{-3} \text{ eV}^2$	NO	2.455	2.423 - 2.490
	IO	2.441	2.406 - 2.474
$\sin^2 \theta_{23}/10^{-1}$	NO	5.51	4.81 - 5.70
	IO	5.57	5.33 - 5.74
δ/π	NO	1.32	1.14 - 1.55
	IO	1.52	1.37 - 1.66

[Capozzi, Lisi, Marrone, Palazzo 1804.09678]

violation of individual lepton number implied by neutrino oscillations

Summary of data

Ordering

NO

 $m_v < 2.2 \ eV$ (95% CL)

 $\sum m_i < 0.2 \div 1 \quad eV$

Parameter

 $\delta m^2 / 10^{-5} \text{ eV}^2$

(cosmo)

Best fit

7.34

" 1σ " (%)

2.2

(lab)

Summary	/ of	unł	kowns

absolute neutrino mass scale is unknown [but well-constrained!]

sign	$\left[\Delta m_{atm}^2\right]$	unknown
------	---------------------------------	---------

[complete ordering (either normal or inverted hierarchy) not known]

NO favored by global fits at ~ 3σ level

α, β unkown

[CP violation in lepton sector not yet established]

[Capozzi, Lisi	, Marrone,	Palazzo	1804.096	578]
----------------	------------	---------	----------	------

violation of individual lepton number implied by neutrino oscillations

violation of total lepton number not yet established

,	IO	7.34	2.2	
$\sin^2 \theta_{12}$	NO	3.04	4.4	
	IO	3.03	4.4	
$\sin^2 \theta_{13} / 10^{-2}$	NO	2.14	3.8	
	IO	2.18	3.7	
$ \Delta m^2 /10^{-3} \text{ eV}^2$	NO	2.455	1.4	
	IO	2.441	1.4	
$\sin^2 \theta_{23} / 10^{-1}$	NO	5.51	5.2	
	IO	5.57	4.8	
δ/π	NO	1.32	14.6	
	IO	1.52	9.3	

sterile neutrinos?

reactor anomaly (anti- v_e disappearance)

1

re-evaluation of reactor anti- v_e flux: new estimate 3.5% higher than old one

supported by the Gallium anomaly

 v_e flux measured from high intensity radioactive sources in Gallex, Sage exp

 $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$ [error on σ or on Ge

extraction efficiency]

... but disfavoured by cosmological limits

2 long-standing claim

evidence for $v_{\mu} \rightarrow v_{e}$ appearance in accelerator experiments

exp		E(MeV)	L(m)	
LSND	$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$	10 ÷ 50	30	3.8σ
MiniBoone	$ \begin{array}{l} $	300÷3000	541	3.8σ

3.80 [signal from low-energy region]

parameter space limited by negative results from Karmen and ICARUS

> $\vartheta_{e\mu} \approx 0.035$ $\Delta m^2 \approx 0.5 \, eV^2$

interpretation in 3+1 scheme: inconsistent (more than 1s disfavored by cosmology)

 $\underbrace{\vartheta_{e\mu}}_{0.035} \approx \underbrace{\vartheta_{es}}_{0.2} \times \vartheta_{\mu s} \implies \vartheta_{\mu s} \approx 0.2$

predicted suppression in ν_{μ} disappearance experiments: undetected

by ignoring LSND/Miniboone data the reactor anomaly can be accommodated by $m_s \ge 1 \text{ eV}$ and $\vartheta_{es} \approx 0.2$ [not suitable for Warm DM]

