GW vs EM astronomy

* GWs interact very weakly with matter, strain h decays as 1/r
===> GWs visible to very high z, eg SMBHs with LISA,
stochastic backgrounds

« Gravitational wavelength >~ source's size (because GWs
generated by bulk motion of matter) vs EM wavelengths <<
source's size (because EM waves generated by moving
charges, atomic processes, etc)

==> EM can be used for imaging, GWs do not have angular
resolution (akin to sound)

===> EM surveys cover small areas, GWs cover whole sky

GW and EM waves are complementary tools for testing
fundamental physics, astrophysics and cosmology
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detection confidence and minimize downtime)

q Need network of detectors/many pulsars (also to enhance
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GWs alone have poor sky localization
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GWs alone have poor sky localization

Need network of detectors/many pulsars (also to enhance
detection confidence and minimize downtime)

0.0

2 sources, 30 pulsars Babak & Sesana
(2012)

PTAs: to estimate sky location of
N sources, 3 x N pulsars are needed

BH-NS face-on at 160 Mpc (Fairhurst 2014)



( EM counterparts to GW sources?

« Allow for: - sky localization and detection confidence enhanced

- redshift measurement, unavailable with GWs alone (no
intrinsic energy scale in GR)

30°

» Goals: - GRB as triggers for GW searches

- generate GW triggers to point telescopes in 10-100 sec to
observe optical prompt emission, 100 sec-days for afterglow
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GW-based distance ladder
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Existing detectors
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Existing detectors

CMB B modes

} Thomson
Animation from Hu 2001

upole
y

Anisot

rop

adr

S/




Next-generation detectors

Earth 2 5 million kM
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EINSTEIN TELESCOPE

gravitational wave observatory
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3" generation ground detectors in
Europe and US (ET, CE, Voyager...)

Longer arms (10-40 km?), underground,
cryonigenic, squeezed laser states, etc
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Frequency windows
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GWs from binary systems

From quadrupole formula, GW frequency is twice orbital one

aLIGO/aVirgo:
1) BH-BH late inspiral and merger, with masses up to 60-70 M_

n

2) NS-NS and possibly BH-NS: from few to hundreds of events per year

Binary pulsars observed with masses ~ 1.4 M__, but isolated NS can
have masses 2M_

n

3) If intermediate mass BHs exists, IMBH-BH/NS/WD and IMBH-IMBH
observable with third generation ground detectors




Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars

e
¢! ILIGO-Virgo Neutron Stars| ¢

LIGO-Virgo | Frank Elavsky | Northwestern

Why important?

First direct detection
of GWs (indirect
evidence from binary
pulsars)

*Opens up era of
multi-band EM+GW
astronomy

*Evidence that
SsGRB=NS+NS

*High BH masses
imply formation in
weak-wind/low-
metallicity
environment

*Test GR for the first
time in strong-field
(U~c?) and highly
relativistic (v~c)
regime




GWs from binary systems

LISA:

Supermassive BHs observed in center of galaxies with masses ~ 10° —
10° M_ ; believed to merge when galaxies merge (cf double AGNs)

1) Inspiral and merger of SMBH-SMBH (with masses ~ 10° — 10° M_ )
from a few to hundreds per year

2) Inspiral and merger of SMBH — BH/NS/WD (aka Extreme Mass Ratio
Inspirals, EMRIs): rates uncertain, from a few to hundreds/thousands
per year

3) IMBH-SMBH: rates uncertain

4) WD-WD at separations of a few star radii (~ 10° km): thousands of
resolved sources, a few guaranteed sources in the Galaxy

Pulsar timing array:

SMBH-SMBH at 0.2 < z < 1.5, with masses n 5 x 10° M__and
separations of hundreds gravitational radii

e
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GWs from isolated systems

» Rotating axisymmetric star/spherical collapse do not emit

» Core collapse supernovae (type Il) produce bursts of GWs if
instabilities develop due to high rotational velocities, or if
asymmetries are present:

possible sources for LIGO/Virgo/Einstein telescope

* Rotating pulsar can radiate monochromatically if rotation
deviates from axisymmetry: possible sources for LIGO/Virgo/
Einstein telescope but no good model for €
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Stochastic backgrounds

Astrophysical origin: superposition of many unresolved GW signals (eg from
WD-WD binaries for LISA, or SMBH binaries for PTAS)

Cosmological origin, eg inflationary or due to phase transitions

Isotropic and homogenous (cosmological origin) or approximately so
(astrophysical origin)

Look like noise by can be detected by cross-correlating detectors
Inflationary GWs depend on energy scale of inflation
Q. () (E iypraion! M p)* ~constant s> E g, <1.9%10°GeV

GWs produced by phase transitions have peaked spectrum

T 1077
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10_9 L

h? Qgw(f)

E.g. some exotic models

(eg extra dimensions, cosmic
strings) could produce phase o1 W
transitions observable by LISA 10 107 0001 001 0.l ‘
(Dufaux 2012) f (Hz)
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Frequency ranges

q Figure from A. Cooray, astro-ph/0503118 ‘
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LISA vs LIGO/Virgo
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LISA vs LIGO/Virgo

Range depends on sources, but is at most z~0.1 for LIGO/Virgo...




deergers, 4yr

LISA vs LIGO/Virgo

... vs z>10 for LISA (for SMBH binaries)
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Detectable SMBH binaries in a poplll
seed formation model

Detections (per bin per year)

Detectable EMRIs




Detector noise

* S()=h(t)+n(t)

» By central theorem limit, noise n(t) should be close to a
Gaussian process, i.e. noise should be uncorrelated in
Fourier but not in time domain

S5a (187 = 1)
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Seismic and
gravity gradient

noise
Geophysics

Strain [1/v/Hz]

Quantum noise
Quantum mechanics

Detector noise

AdV Noise Curve: Fin =1250W
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Quantum noise

Gravity Gradients
Suspension themal noise
Coating Brownian noise
Coating Thermmo-optic noise
Substrate Brownian noise
Excess Gas
Total noise
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Figure courtesy Matteo Barsuglia




Detector noise

10° ESACall2016_v1.1:ASD noise in displacement

10° | i

LISA

1w H all [sum]
— acceleration
— r/o carrier
—— OPN carrier
10° {{ — Unmod. carrier s
-=- rfoT™

| = - OPNTM

- = Unmod. TM
r/o Ref P .
- - OPN Ref SlL.uTEEe
--- Unmod. Ref - - N
10° || - -- r/o sideband PR AT SAC R .2
--- OPN sideband Lol - )

-~ - Unmod. sideband et ’
- - backlink Tl E T e
10'H — TDI laser et

1

10° |

ASD noise in displacement (pm.Hz"~-1/2)
|

10°

10°

10—4 1 L 1 1
10° 10¢ 10° 107 10 10°
Frequency (Hz)



Sensitivity

Detector noise

limitations:
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How to extract signal from noise?

Can we extract GW signal even if it is much smaller than the
instrumental noise?

Elementary example

1500 |

1000

Discrete FT

2x10° 4x100 6x 100 8x 100 1 x 107 I —...



The matched filtering theorem
- s(t)=h(t)+n(t)

+00
. Define filter § — / (K (t)dt

* Maximum signal-to-noise ratio S/N, with S = §(h #0), N = 5(h =0),
IS given by optimal filter

RO i(D/s,s) mmm (1) =4[ 0Ly

(proof on the blackboard, c.f. also Maggiore's book)

* h(f) is called template




SNR for compact binaries

From quadrupole + pattern functions formula, h(t) = F . h,(t) + Fyhy(t)
Use Newtonian dynamics (i.e. Kepler's law) and energy conservation

Compute Fourier transform via stationary phase approximation, and
account for propagation in cosmological background by replacing
distance with luminosity distance and masses by redshifted masses

~ 5 M5/6f—7/6 ’Lw 2Q 1 4 COS2 L ' (m1m2)3/5
)= \[6 i, € g 9= g FeticsiBx M=pom ol x (142)
4
If sky and orientation averaged, ((1 + cos®¢)*F7 + 4 cos” JF2\1/2 = -

~ 5/6 £—T7/6 5/6 f—T7/6
| > h(f) 5 M?IPf w2 1 MPf it

V6 228D, © 57 B0 723Dy
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( SNR for quasi-monochromatic sources

| h(t) = V2hocos[B(t)]  ¢(t) =2x[f + f(t—to) +..)(t — t0)

>

(5 -+ 850285

For long-lived sources, SNR grows with sqrt of observation time

N —— e T




Parameter estimation

With what accuracy can observations estimate the source parameters?

Assuming Gaussian stationary noise,

p(no) o< exp [—%(ndno)] ; (A|B) = 4Re /000 df A*g{z)(?)(f) , :>

s(t) = h(t;6;) +no(t)  hy = h(6y)
Extracted parameters maximize the likelihood A(s|f,) o exp [(ht|s) — %(ht|ht)]

> (Ozhyls) — (Oihelhy) =0 9, = 0/06¢

Expanding to quadratic order near true parameters, and assuming large SNR

A(s]6) o exp [—%rijAeiAej] 0i = fi + A i = (0:ih|0;h)

Fisher Information Matrix=
Errors on parameters: Inverse of covariance matrix

V{(A0)2) = \/(T71);

More advanced tecniques (MCMC) used to sample likelihood

————N e
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