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Exercices

[Tight-coupling approximation]

The first two moments of the photon and baryon Boltzmann equations read
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While Vb represents the baryon bulk velocity, ⇥1 is formally not a bulk velocity because it does
not exist for photons (and, generally, for collisionless particles that can propagate in all directions).
We should interpret it as the bulk velocity of the photon temperature perturbation.

This system of coupled ODEs simplifies in the so-called tight-coupling limit. Let k ⇠ L
�1 be

the wavenumber of the fluctuations. There are two important characteristic timescales:
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Tight coupling between the photons and baryons occurs when
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In regime, photons experience so many scattering as they travel across a perturbation that they
remain strongly coupled to the baryons.

(a) since the baryon bulk velocity Vb varies on a timescale much longer than ⌧̇
�1
c , show that

this implies
⇥1 ' Vb , ⇥2 ' 0 . (2.62)

The photon temperature quadrupole, or anisotropic stress, can thus be neglected, which closes the
Boltzmann hierarchy. We will hereafter assume the tight-coupling limit, so that we can ignore all
multipoles with ` > 2.

[Acoustic Oscillations]

One generally expands the Boltzmann hierarchy in powers of k/⌧̇c (the inverse of the optical depth
through a wavelength k) and !/⌧̇c (the inverse of the optical depth through a period of oscillation
!). We will remain at first order in ⌧̇

�1
c , which leads to a driven harmonic oscillator equation

describing acoustic waves in the photon-baryon fuild. At second order in ⌧̇
�1
c , acoustic oscillations

of the monopole and dipole are damped owing to the imperfect coupling between photons and
baryons. Photon diffusion creates heat conduction through ⇥1 � Vb and shear viscosity through
⇥2.
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(b) Extract the term ⌧̇c(⇥1�Vb) from Eq.(2.58) and substitute into Eq.(2.56). Show that, after
some manipulations, one obtains
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Use the fact that R = 3⇢̄b/4⇢̄� / a, i.e. Ṙ = HR to reexpress this relation as
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This is the equation of an oscillator with a time-varying mass meff = 1 + R. The homogeneous
equation can be solved by employing the fact that variations over a single period of the oscillation
are small.

(c) We have thus far not used Einstein equations. One can show that, in the absence of
anisotropic stress (that is, ⇡� = ⇡⌫ = ... = 0), Einstein equations imply that the two potentials are
equal:  = �. Neglect the time-dependence of R and show that
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is the adiabatic sound speed of the photon-baryon fluid. cs defines a characteristic comoving length
scale rs(⌘) known as the sound horizon,

rs(⌘) = cs

Z
dt

a(t)
⌘ cs⌘ , (2.67)

which represents the comoving distance traveled by a sound perturbation. Calculate rs when the
CMB decouples from the plasma at ⌘dec assuming zdec = 103 and an EdS universe.

(d) Eq.(2.65) is a driven harmonic oscillator equation for the effective temperature ⇥0 +  ,
in which the gravitational blueshift due to the infall onto a potential well is exactly compensated
by  . The frequency ! = kcS increasing with decreasing comoving scale k

�1. Ignoring the time
variation of cs, R and, especially,  ̈, show that the solution to Eq.(2.65) is of the form
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⇥0 +  oscillates around �R and not zero owing to the baryons, which drag the photons into
the potential wells (an effect known as baryon drag).

(e) To fix the initial conditions which determine A and B, we take the limit ⌘ ! 0 (or,
equivalently, cs⌘ ⌘ rs ! 0), in which case (not demonstrated here)
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3
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⇥0 + ⇡ 2 (isocurvature ICs) (2.70)
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Assuming adiabatic perturbations (generated by inflation for instance) and zero initial “velocity”
⇥̇0, show that the solution is
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The baryon drag increases the amplitude of the cosine term. Overall, it accounts for the alternate
height of the acoustic peaks (compression peaks occuring at kcs⌘ = ⇡, 3⇡, ..., are enhanced
relative to the rarefaction peaks at kcs⌘ = 2⇡, 4⇡, ...) and their enhancement with R / ⌦bh

2.

[Integral solution to CMB anisotropies]

Rather than decomposing the Boltzmann equation Eq.(2.37),
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in Legendre polynomials and solve for the multipoles ⇥`(⌘,k), it can be formally integrated to
yield the CMB temperature anisotropy ⇥(⌘0, n̂) as seen by an observer at time ⌘0:
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Here, ⌧(⌘) is the (average) optical depth along the line of sight.

(f) To see this, show that
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Next, demonstrate that
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Argue that the first term in the right-hand side can be neglected, and substitute this result into the
expression of ⇥(⌘0, n̂) to obtain
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Argue that the visibility function
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is sharply peaked around the decoupling or last scattering epoch ⌘dec to approximate ⇥(⌘0, n̂) as

⇥(⌘0, n̂) ⇡
✓
1

4
�� + + n̂ · vb

◆
(⌘dec, n̂) +

Z ⌘0

0
d⌘

�
 ̇+ �̇

�
(2.78)

The first encode the contributions of the intrinsic photon density perturbation (14��), Sachs-Wolfe
effect from the gravitational potential ( ) and Doppler effect from the photon-baryon relative
motion (n̂ · vb). The second term is the integrated Sachs-Wolfe (ISW) effect, which vanishes for
time-independent potentials.


