

Materials and geometry

Davide Chiappara (LNS-INFN)

XVI Seminar on Software for Nuclear, Subnuclear and Applied Physics

User classes (starting...)

Note: Geant4 basic types

- Aliases for the primitive data types to provide cross-platform compatibility:
 - * G4double, G4float, G4int, G4bool, G4long
- □ Enhanced version of string called G4String
 - ★ inherits from std::string ⇒ all methods and operators
 - several additional methods
- G4ThreeVector is a three-component class corresponding to a real physics vector (example later)

G4ThreeVector dimensions {1.0, 2.0, 3.0 };

Please, use these types for best compatibility (e.g. G4int instead of int, etc., G4ThreeVector when it makes sense etc.)

Part I: Units and Materials

System of units & constants Definition of elements Materials and mixtures NIST database

Units in Geant4

- Don't use default units!
 - * When specifying dimensions, always multiply by an appropriate unit:

G4double width = 12.5 * m; G4double density = 2.7 * g/cm3;

***** Most common units are defined in CLHEP library (included in Geant4):

► G4SystemOfUnits.hh

CLHEP/SystemOfUnits.hh

- * You can define new units (not shown here)
- Output data in terms of a specific unit:
 - divide a value by the unit

G4cout << dE / MeV << " (MeV)" << G4endl;

System of units

- □ All other units derived from the basic ones.
- □ Useful feature: Geant4 can select the most appropriate unit to use
 - * specify the category for the data (Length, Time, Energy, etc...):

G4cout << G4BestUnit(StepSize, "Length");

StepSize will be printed in km, m, mm or ... fermi, depending on its actual value

- Different levels of material description:
 - ★ isotopes → G4Isotope
 - ★ elements → G4Element
 - * molecules, compounds and mixtures \rightarrow G4Material
- □ Attributes associated:
 - ***** temperature, pressure, state, <u>density</u>
- **G4Isotope** and **G4Element** describe properties of the atoms:
 - * Atomic number, number of nucleons, mass of a mole, shell energies, cross-sections per atoms, etc...
- **G4Material** describes the macroscopic properties of the matter:
 - ***** Temperature, pressure, state, density
 - ***** Radiation length, absorption length, etc...
- **G4Material** is used by tracking, geometry and physics

Making elements

D	Isotopes can be assembled into elements Not number of neutrons!						
	G4Isotope (const G4String& name,						
	G4int z, // atomic number						
	G4int n, // number of nucleons						
	G4double a); // mass of mole						
a	building elements as follows:						
	G4Element (const G4String& name,						
	const G4String& symbol, // element symbol						
	G4int nIso); // n. of isotopes						
	G4Element::AddIsotope(G4Isotope* iso, // isotope						
	G4double relAbund); // fraction of atom per mass						
a	Otherwise, create G4Element with natural isotopic abundance:						
	G4Element (const G4String& name,						
	const G4String& symbol,						
	G4int z, // atomic number						
	G4double a); // mass of mole Do not forget unit (g/mole)						

Elements and compounds

Single-element material

G4double z, a, density; density = 1.390*g/cm3; a = 39.95*g/mole; G4Material* lAr = new G4Material("liquidAr", z=18, a, density);

Molecule material (composition by number of atoms):

```
a = 1.01*g/mole;
G4Element* elH = new G4Element("Hydrogen", symbol="H", z=1., a);
a = 16.00*g/mole;
G4Element* elO = new G4Element("Oxygen", symbol="O", z=8., a);
density = 1.000*g/cm3;
G4Material* H2O = new G4Material("Water", density, ncomponents=2);
H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);
```


Composition by fraction of mass

```
a = 14.01*g/mole;
G4Element* elN = new G4Element(name="Nitrogen", symbol="N", z= 7., a);
a = 16.00*g/mole;
G4Element* elO = new G4Element(name="Oxygen", symbol="O", z= 8., a);
density = 1.290*mg/cm3;
G4Material* Air = new G4Material(name="Air", density, ncomponents=2);
Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);
```

Composition of mixtures

An example: a gas

Necessary to specify temperature and pressure

affect dE/dx calculations, thermal scattering

- $\hfill\square$ Absolute vacuum does not exist: gas at very low ρ !
 - * Cannot define materials with $\rho=0$

```
G4double rho = 1.e-25*g/cm3;
G4double pr = 3.e-18*pascal;
G4Material* Vacuum = new G4Material("interGalactic",Z, A, rho,
kStateGas, temperature, pr);
```


No need to predefine elements and materials

Retrieve elements and materials from NIST manager:

```
G4NistManager* manager = G4NistManager::Instance();
G4Material* H2O = manager->FindOrBuildMaterial("G4 WATER");
G4Material* air = manager->FindOrBuildMaterial("G4_AIR");
G4Material* vacuum = manager->FindOrBuildMaterial("G4_Galactic");
G4Element* Si = manager->FindOrBuildElement("Si");
```

/material/nist/printElement

/material/nist/listMaterials

 \leftarrow print defined elements

 \leftarrow print defined materials

G4NistManager.hh

NIST material database

NIST database for materials is imported inside Geant4

- http://physics.nist.gov/PhysRefData
- Ul commands specific for handling materials
- The best accuracy for the most relevant parameters guaranteed:
 - Density
 - Mean excitation potential
 - Chemical bounds
 - Element composition
 - Isotope composition
 - Various corrections

Ζ	Α	m	error	(%)	A _{eff}
14	Si 22	22.03453	(22)	2	8.0855(3)
	23	23.02552	(21)		
	24	24.011546	(21)		
	25	25.004107	(11)		
	26	25.992330	(3)		
	27	26.986704	76 (17)		
	28	27.976926	· · · ·	92.2297	(7)
	29	28.976494	$\chi = \gamma$	4.6832 (· ·
	30	29.973770	× /	3.0872 (5)
	31	30.975363	× /		
	32	31.974148	× /		
	33	32.978001	(17)		
	34	33.978576	(15)		
	35	34.984580	(40)		
	36	35.98669	(11)		
	37	36.99300	(13)		
	38	37.99598	(29)		
	39	39.00230	(43)		
	40	40.00580	(54)		
	41	41.01270	(64)		
	42	42.01610	(75)		

- Natural isotope compositions
- More than 3000 isotope masses

NIST materials

NIST elementary materials:

*
$$H \rightarrow Cf (Z = 1 \rightarrow 98)$$

- NIST compounds:
 - * e.g. "G4_ADIPOSE_TISSUE_IRCP"

===== ### E ===== Z Nam ====== 1 G4 2 G4

3

5

6

G4 G4

G4

G4

7 G4 8 G4 9 G4 10 G4 11 G4

- HEP and Nuclear materials:
 - e.g. Liquid Ar, PbWO
- Possible to build mixtures of NIST and user-defined materials

	GEANT CINEN
	ialsfrom the NIST Data
	density(g/cm^3) I(eV)
_He _Li	8.3748e-05 19.2 0.000166322 41.8 0.534 40 1.848 63.7
E C N N 2	2.37 76 2 81 0.0011652 82 0.00133151 95
	0.00158029 115 0.000838505 137 0.971 149
,,	### Compound Materials from the NIST Data Base N Name ChFormula density(g/cm^3) I(eV)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4 G4_Air 0.00120479 85.7 6 0.000124 7 0.755268 8 0.231781 18 0.012827 2 04 04
	2 G4_Csl 4.51 553.1 53 0.47692

0.47692 0.52308

Basic concepts Implementation Tools for geometry checking

Describe your detector

- A detector geometry is made of a number of volumes
- The largest volume is called World volume
 - * It must contain all other volumes
- Derive your own concrete class from G4VUserDetectorConstruction abstract base class
- Implementing the pure virtual method Construct():
 - * Define shapes/solids required to describe the geometry
 - ***** Construct all necessary materials
 - ***** Construct and place volumes of your detector geometry
 - (Define "sensitivity" properties associated to volumes)
 - * (Associate magnetic field to detector regions)
 - * (Define visualization attributes for the detector elements)

Geometry – implementation basics GEANT (INFN

Implement a class inheriting from the abstract base class
 G4VUserDetectorConstruction:

```
class MyDetector : public G4VUserDetectorConstruction {
  public:
     virtual G4VPhysicalVolume* Construct(); // required
     virtual void ConstructSDAndField(); // optional
     // ...
};
```

Create an instance in the main program:

```
MyDetector* detector = new MyDetector();
runManager->SetUserInitialization(detector);
```

<u>Note: Spire me implementation into more classes and methods! (good programming practice)</u>

- especially for complex geometries!
- <u>Note2</u>: you should not delete the **MyDetector** instance! Run manager does that automatically.

G4VUserDetectorConstruction

Method Construct()

- Define materials
- Define solids and volumes of the geometry
- * Build the tree hierarchy of volumes
- Define visualization attributes
- * Return the world physical volume!
- Method ConstructSDAndField()
- MT
- Assign magnetic field to volumes / regions
- ***** Define sensitive detectors and assign them to volumes

Three conceptual layers

G4VSolid

Shape, size

G4LogicalVolume

* Hierarchy of volumes, material, sensitivity, magnetic field

G4VPhysicalVolume

 Position, rotation. The same logical volume can be placed many times (repeated modules)

Define detector geometry

Basic strategy

G4VSolid* pBoxSolid =
 new G4Box("aBoxSolid",
 1.*m, 2.*m, 3.*m);

Solid: shape and size.

Define detector geometry

Basic strategy

Logical volume : + material, sensitivity, etc.

Define detector geometry

Solids

- CSG (Constructed Solid Geometry) solids
 - ***** G4Box, G4Tubs, G4Cons, G4Trd, ...
 - Analogous to simple GEANT3 CSG solids
- □ Specific solids (CSG like)
 - ***** G4Polycone, G4Polyhedra, G4Hype, ...
 - ***** G4TwistedTubs, G4TwistedTrap, ...
- BREP (Boundary REPresented) solids
 - ***** G4BREPSolidPolycone, G4BSplineSurface, ...
 - Any order surface
- Boolean solids
 - ***** G4UnionSolid, G4SubtractionSolid, ...

CGS: G4Box

CGS: G4Tubs & G4Cones

-20

-40 {

20

					y 10	15 ⁰ 5 ^x 10 15
G4Tubs (const	G4double G4double G4double G4double	pRmin, pRmax, pDz, pSphi,	 	<pre>name inner radius (0) outer radius Z half! length starting Phi (0) segment angle (twopi)</pre>	28 10 z 0 -10	

G4Cons(const	G4double G4double G4double G4double G4double G4double	<pre>pRmin1, pRmax1, pRmin2, pRmax2, pDz, pDz, pSphi,</pre>	// // // //	<pre>name inner radius -pDz outer radius -pDz inner radius +pDz outer radius +pDz Z half length starting Phi segment angle</pre>	-20 40 20 20 2 0 -20	10 ²⁰⁻²⁰ X 0
--------------	--	---	----------------------	--	-------------------------------------	-------------------------

Other CGS solids

Boolean solids

Solids can be combined using boolean operations:

- * G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid
- Requires: 2 solids, 1 boolean operation, and an (optional) transformation for the 2nd solid
- <u>2nd solid is positioned relative to the coordinate</u> system of the 1st solid
- * Result of boolean operation becomes a solid \rightarrow re-usable in a boolean operation
- Solids to be combined can be either CSG or other Boolean solids
- Note: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent CSG solids

Boolean solids – an example


```
G4VSolid* box = new G4Box("Box", 50*cm, 60*cm, 40*cm);
G4VSolid* cylinder =
    new G4Tubs("Cylinder", 0., 50.*cm, 50.*cm, 0., twopi);
G4VSolid* union =
    new G4UnionSolid("Box+Cylinder", box, cylinder);
G4VSolid* subtract =
    new G4SubtractionSolid("Box-Cylinder", box, cylinder,
        0, G4ThreeVector(30.*cm,0.,0.));
G4RotationMatrix* rm = new G4RotationMatrix();
rm->RotateX(30.*deg);
G4VSolid* intersect =
    new G4IntersectionSolid("Box&&Cylinder",
        box, cylinder, rm, G4ThreeVector(0.,0.,0.));
```

Boolean solid - example

Logical volumes

- Contains all information of volume except position:
 - Shape and dimension (G4VSolid)
 - Material, sensitivity, visualization attributes
 - Position of daughter volumes
 - Magnetic field, User limits
- Physical volumes of same type can share a logical volume.
- **The pointers to solid and material must be not nullptr**

G4LogicalVolume(G4VSolid* pSolid,	
G4Material* pMaterial,	
const G4String& name,	
G4FieldManager* pFieldMgr=0,	
G4VSensitiveDetector* pSDetector=0,	
G4UserLimits* pULimits=0,	optional
G4bool optimise=true);	-

Physical volumes

- A physical volume is a positioned instance of a logical volume inside another logical volume (the mother volume)
- Placement (G4PVPlacement)
 - it is one positioned volume
- Repeated: a volume placed many times
 - can represent any number of volumes
 - reduces use of memory
 - *** G4PVReplica** (= simple repetition)
 - * G4PVParameterised (= more complex pattern)
 - G4PVDivision

placement

repeated

Geometry hierarchy

- □ A volume is placed in its mother volume
 - Position and rotation of the daughter volume is described with respect to the local coordinate system of the mother volume
 - The origin of the mother's local coordinate system is at the center of the mother volume
 - Daughter volumes cannot protrude from the mother volume
 - Daughter volumes cannot overlap
- The logical volume of mother knows the daughter volumes it contains
 - ***** It is uniquely defined to be their mother volume

Geometry hierarchy

- One logical volume can be placed more than once.
 One or more volumes can be placed in a mother volume
- The mother-daughter relationship is an information of G4LogicalVolume
 - If the mother volume is placed more than once, all daughters by definition appear in each placed physical volume
- The world volume must be a unique physical volume which fully contains all other volumes (root volume of the hierarchy)
 - The world volume defines the global coordinate system. The origin of the global coordinate system is at the center of the world volume
 - Position of a track is given with respect to the global coordinate system

G4PVPlacement

- □ Single volume positioned relatively to the mother volume
 - In a frame rotated and translated relative to the coordinate system of the mother volume
- □ A few variants available:
 - Using G4Transform3D to represent the direct rotation and translation of the solid instead of the frame (alternative constructor)
 - specifying the mother volume as a pointer to its physical volume instead of its logical volume
- **G** Four constructors available
 - Iogical OR physical volume as mother
 - active OR passive transformation of the coordinate system

G4PVPlacement Rotation <u>of</u> mother frame ...

□ Single volume positioned relatively to the mother volume (passive transformation)

G4PVPlacement(G4RotationMatrix* pRot, const G4ThreeVector& tlate,	<pre>// rotation of mother frame // position in mother frame</pre>
G4LogicalVolume* pCurrentLog	ical,
const G4String& pName,	
G4LogicalVolume* pMotherLogi	cal,
	not used. Set it to false
G4int pCopyNo, //	unique arbitrary index
G4bool pSurfChk=false); //	optional overlap check

G4PVPlacement Rotation <u>in</u> mother frame ...

□ Single volume positioned relatively to the mother volume (active transformation)

G4PVPlacement(G4Transform3D(
G4RotationMatrix &pRot, //	rotation in daughter frame
const G4ThreeVector &tlate),	<pre>// position in mother frame</pre>
G4LogicalVolume *pDaughterLogica	al,
const G4String &pName,	
G4LogicalVolume *pMotherLogical,	r
G4bool pMany,	<pre>// not used, set it to false</pre>
G4int pCopyNo,	<pre>// unique arbitrary integer</pre>
<pre>G4bool pSurfChk=false);</pre>	<pre>// optional overlap check</pre>

- Placement volume (G4PVPlacement): one positioned volume
 - One physical volume represents one "real" volume
- Repeated volume: a volume placed many times
 - One physical volume represents any number of "real" volumes
 - Reduced use of memory
 - Very convenient for large voxelized geometries
 - Parametrized (repetitions w.r.t. copy number)

o G4VPVParameterisation

- * Replicas and Divisions (G4PVReplica, G4PVDivision)
- □ <u>Notice</u>: a repeated volume is not equivalent to a loop of placements
 - All placements of the loop exists individually in the memory

Geometry problems

- Geant4 does not allow for malformed geometries, neither protruding (daughter/mother) not overlapping (sisters)
 - * The behavior of navigation is unpredictable for such cases
- The problem of detecting overlaps between volumes is bounded by the complexity of the solid models description
- Utilities are provided for detecting wrong positioning
 - Optional checks
 - at construction
 - Kernel run-time commands
 - Graphical tools (DAVID)

Tools for geometry check

Constructors of G4PVPlacement and G4PVParameterised have an optional argument "pSurfChk"

G4PVPlacement(G4RotationMatrix* pRot, const G4ThreeVector &tlate, G4LogicalVolume *pDaughterLogical, const G4String &pName, G4LogicalVolume *pMotherLogical, G4bool pMany, G4int pCopyNo, G4bool pSurfChk=false);

- * If this flag is true, overlap check is done at the construction
- ***** Some number of points are randomly sampled on the surface of creating volume
- This check requires lots of CPU time, but it is worth to try at least once
- Built-in run-time commands to activate verification tests for the user geometry:

* /geometry/test/run or /geometry/test/grid_test

- start verification of geometry for overlapping regions based on a standard grid setup, limited to the first depth level
- * /geometry/test/recursive_test for all depth levels (CPU intesive!)

Tools for geometry check

- □ A region is a sub-set of the geometry
- □ It may have its specific
 - * Production thresholds (cuts)
 - User limits
 - Artificial limits affecting to the tracking, e.g. max step length, max number of steps, min kinetic energy left, etc.
 - Field manager
- World logical volume is recognized as the default region. User is not allowed to define a region to the world logical volume

===> Task1

Link to the Tasks : <u>http://geant4.lngs.infn.it/alghero2019/task1</u>

Task 1 - Geometry

- Defining and using materials
- Constructing a volume using solids, logical and physical volumes
- Magnetic fields