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Outline

What is CMS@LHC?

Which are the computing needs, today and in the next ~20 years?

Which is the role of machine learning, and in general of artificial intelligence?

Some example of current studies, and future oriented ideas



CMS @ LHC @ CERN

LHC is today’s top energy pp collider.

It started operations in 2009, and is now
at the end of the second run period

At each “Run”, the collider improves,
colliding particles in greater number, of
greater energy, or with greater efficiency

The “physics capability” is measured in
terms of “luminosity”, which is
proportional to the number of events you
can collect of a given type
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» Accelerating protons @ 6.5 TeV needs a chain
of accelerators

« At full load, LHC contain 4800 bunches of
~1.5 10" protons (1 ug)

» Each bunch is separated by 7.5 m (25 ns)
from the previous

How much energy are we talking about?
7TeV=710"2eV-1,6:107% J/eV = 1,12:10 J
It doesn’t look like a lot of energy
For the ALICE experiment, each ion of Pb-208 reaches 1150/2 = 575 TeV.
So, the energy per nucleon is: 575/208 = 2,76 TeV

Let’s calculate the kinetic energy of an insect of 60 mg flying at 20 cm/s:
Ex=%mv2 = E=%6105022 ~7TeV

That is, in LHC each proton will reach an energy similar to that of an annoying ... MOSQUITO!

But we have to keep in mind that this has 36 trillion whereas the 7 TeV in the LHC will be concentrate in one sole proton.

Maybe this comparison is not very convincing so let’s look at it from another point of
view.

Let’s calculate the energy present in each bunch:
7 pi 1,15:10"" pi /bunch ~1,29-10° J/bunch
A 150 kg at 150 km/h_

Ey = %150 - 41,72 ~ 1,29:10° J

So if a bunch of protons collides with you the impact is similar to that by a powerful at 150 km/h. l

If you are lucky to avoid that "0,2 picogram motorbike", dont worry, there are 2807 following it. And if you decide to change lanes, the equivalent is coming in the opposite direction.

Anmhers calculation which can show the enormous amount of energy reached is: And that is equivalent to
1,29-10° J/ bunch x 2808 bunches ~ 360 MJ 77,4kg of TNT

-Stored beam energy- The energy content of TNT is 4.68MJ/kg (Beveridge 1998).




At an average luminosity of 1.2 1034 cm2s!, every
25 ns: ]

35 pp interactions, generating secondary particles
(we could explain this in terms of cross sections)

Relative beam sizes around IP1 (Atlas) in collision

Particles have a fraction of the venter of mass
energy 6.5+6.5 TeV, and fly away from the collision
point

They traverse the material surrounding the beam
line, which we usually fill with active detectors N

CMS Experiment at the LHC, CERN 1



CMS

» The Compart Muon Solenoid (CMS) is one the 4
major experiments at LHC

» It is general purpose: can do precision physics
and discovery physics

» It uses subdetectors with different technologies,

targeted to measuring / stopping different
particle types

SLL

Calorimeter

Calorimeter Superconducting

Solenoid Iron return yeoke interspersed

with muen chambers

Muon Electron

Charged hadron (e.g. pion)

= ==-Neutral hadron (e.g. neutron) ----. Photon

! H HADRON CALORIMETER (HCAL)
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CMS DETECTOR

STEEL RETURN YOKE
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diameter :15.0 m Pixel (100x150 pm?) ~1.9 m* ~124M channels
Opverall length :28.7m Microstrips (80-180 um) ~200 m* ~9.6M channels
Magneticfield :3.8T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16 m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

ﬂ Brass + Plastic scintillator ~7,000 channels

All in all, > 100M acquisition channels ne

principle every 25 ns (40 MHz)




Measuring or Stopping particles?

» When you want to measure a moving object, you
generally have 2 ways:

1. “speed cameras”: you measure the momentum of
something slightly perturbing it (for example
launching some photons toward it)

» We call them “Tracking devices”; typically, made of
thin silicon layers which signal the passage of a charged
particle via ionization loss

2. “crash test”: you stop it and measure the amount of
energy it releases to you

» We call them “calorimeters”: bulky detectors, with
heavy material, stop incoming particles and measure
their energy

.................




How to do physics analyses at CMS?

Collision rate is 40 MHz ((25 ns)"), with ~100M acquisition channels
» Assume naively 1 byte per channel > 100 MB * 40 MHz = 4 PetaByte/s
Zero suppression: read only interesting channels - 1/100
L1 Trigger: look into the events in hardware, within 6 usec - 1/400
HighLevel Trigger: use 25000 PCs to look further, within 300 msec - 1/100

All in all, the physics output of CMS is ~1 GB/s, sustained for 30% of the year

This gets saved to tape, then analyzed in GRID farms, and eventually shipped to
analyzers

Detectors

Digitizers

Front end pipelines

Readout buffers

Switching networks

Processor farm




So overall, how much resources do we
need to analyze CMS data?

» These include resources to :

» CPU: process data (reconstructing particles, jets, leptons), process Monte Carlo,
analyze data/MC, perform fits, ...

» Disk: provide inputs to processing and analysis

» Tape: save 2 custodial copies of all the irreproducible data

Table 1. WLCG Rebus CMSresource deployments for 2019.

» In general, these numbers are driven b

Resource Type Unit of Year Pledged Amount
Measurement » CPU: reconstruction time (20 sec
CPU HS06 2019 2M (~ corresponding to 200k » CPU: simulation time (50 sec/ev.
computing cores) o
Disk TB 2019 160k » Disk: size of reconstructed
Tape TB 2019 290k » Tape: size of the raw ev.




Total Exotica Standard Model Supersymmetry Higgs Top Physics

Heavy lon B Physics Forward Physics Beyond 2 Generations

D 'i d 'i t ¢« WO r k » ? 874 collider data papers submitted as of 2019-05-11

» CMS to-date:
» 874 physics papers
» Observation of Higgs boson: 9000 citations

FABIOLA
GIANOTTI




So far so good, then why do we need ML
@ CMS?

» 2 very different needs

1. Do better (more precise algorithms, more more physics performance) > more
physics output!

2. Save resources (less computers, less manpower for operations) = less money

» #1is important, but there is general belief that without #2 we could simply NOT be
able to work in the next 20 years ... let’s this this before



CMS Needs for 2026+

In 2026, LHC will start its “High Luminosity” Phase, with
parameters largely improved

» Average number of pp events per bunch collision 35 > 200 (6x)

At the same time, CMS will have a much improved detector, with
> 2x the number of readout channels

» Bigger events, more complex reconstruction algorithms

Also, CMS will need to focus on Higgs physics. To do so, there is
an increase of trigger rate from 1 kHz to ~10 kHz (10x)

Hence, back-of-the-envelope estimate for 2026+ LHC run is a
factor 120x of computing resources

» Scaling from today means, by 2026:
» 24M CPU cores
» 19 Exabytes disk (1 Exabyte = 1.000.000 TeraBytes)
» 35 Exabyte tape

» (multiply by 4 for the 4 major experiments)

Clearly impossible, would be Billions Eur/y
» How can ML help??
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ence)

HL-LHC 2026 27 pp Circular 14000 5,75 200
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ML ®@ CMS as a resource saver

>

>

>

ALCF 2021 EXASCALE SUPERCOMPUTER - A21

Intel/Cray Aurora supercomputer planned for 2018 shifted to 2021
Scaled up from 180 PF to over 1000 PF

Machine learning training is from slow to very slow, but
it is not a big issue since it has to be repeated only a few
times a year; instead it is generally fast at inference
time (when using the training)

gﬂl‘\ll||ﬂ|mllll|lllll\|| il

_Pre-planning

» At least ML algorithm using CNN or (D)FF are “simply | roview " & Desidn review

@ Reébaseline review

algebra operations”: no loops, no recursion - fit well - NRE contract awarc @

@ Build contract modgﬁcalion
ALCF-3 Facility and Site p, Commissioning
ALCF-3 ESP: Application Readiness

If we could substitute standard reconstruction / T cconenced
simulation algorithms with trained ML algorithms, there Y 2017 cv 2018 cv 2019 Cv 2020 cv 2021 cv 202
is the hope to scale better with event complexity

» Examples later: tracking, particle-matter interaction US Department of Energy Supercomputers
impact:

also common processors, using vector registers

» Save smaller data via ML driven data compression (auto CPU Arehiecture (?lrtlzrsz% el eon Sceaenie PHPONERE
enCOderS) GPU Architecture Radeon Instinct Intel Xe NVIDIA Volta
» Operation supervision (anomaly detections, data Performance (RPEAK) 1.5 EFLOPS 1 EFLOPS 200 PFLOPS
certification) - potentially save manpower Power Consumption —20MW - 13w
Training also at large scale is not really an issue also Nodes 100 Cabinets N/A 3,400
[{3 ”»
because e are offered access 10 SUper COMPUEETS vy
Vendor Cray 14 Intel IBM
Year 2021 2021 2018

Frontier: Powered by Cray & AMD



ML @ CMS




Faster / Better Jet reconstruction

» Ajet @ LHC is the result of the shower coming
from an unstable quark/gluon decay; all the
decay particles are “close” to each other due
to the momentum of the decaying particle }k
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‘p\ Particle Jet Energy depositions

» @ CMS jets are reconstructed (mostly) as
in calorimeters

signals in the Calorimeters, where these
particles are stopped and give position /
energy information

]
/ﬂ/

 CERN |
SunAug 123:18:32 2010 EBT
142432/ 118768330
21

» By combining the signals, one can in principle
reconstruct the energy / direction of the
unstable particle, and thus extract physics
information on its generating process



Classical algorithms for jet reconstruction are
iterative and have to face with a "noisy”
environment, with signal jets polluted by
particles from the other 35 (200) pp
interactions

Iterative: search for a calorimeter cell with
very high deposit, and start joining nearby
active cells up to a certain threshold. Then
apply corrections due to the energy response

Calorimeter response looks like an image: why
not use the large experience in ML image
processing to understand features like

Which particle generated the image (a quark, a
gluon, a W/Z boson)? - categorization

Which is the energy on the originating particle? -
regression




Categorization: an example

» Train a simple 5-layer DNN on Jet calorimetry +
other basic event features, and optimize on
discrimination

;
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—— j_g tagger, auc = 91.6%
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: ECAL input H((;AIS. igop;n
Jet energy Regression ... @522 s
Conv3iD Conv3D
(22,22,22,3) (4,4,55,10)
... or how to measure the energy of the initial particle from the “image MaxPooling3D MaxPooingsD
on calorimeters” (2 for CMS: ECAL and HCAL) (11,11,11,3) 2,2, 27, 10)

Start with images (3rd dimension is time): so more a movie than an image (2065

Convolution layers do sampling and feature discovery

MaxPooling reduces the parameter space l (5073)
The rest is mostly a dense layer with 1000 neurons 83339)
Being a classical DNN (no recursion, no loops) its timing is deterministic, l Dense
and 1000x faster than standard approaches ‘ : (1)

Predicted energy X True energy
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Another categorization example: tagging

of b quark Jets

» The identification of b quarks is essential for

many frontier studies

» Top quark physics: the top quark decays virtually

only to b quarks

» Many beyond the standard model scenarios: where
the coupling is higher for higher mass fermions

» The Higgs boson has 2 bs as most probably decay

mode

decay topologies

Classically, the discrimination between light (u, d,
s + gluon) and b quarks is done looking into the

It is a discrimination problem: answer is binary
“looks like b” / "does not look like b”

A b hadron has non n
lifetime (10°'2 sec)
mm before decayi
A b hadron generates ~5
when it decays
None of these characterist
clean and easy to spot, an
are valid on a statistical bas
In general, try to use many i
with small discrimination and
combine them to get more po



b tagging standard
algorithms ...

» Use 1-50 of these “features” (with most of
the discriminating power coming from a few)

C » Use statistical methods like likelihoods to
combine them

» Different possible approach: build a big DL,
including even the inputs wild only mild
correlation with the selection

» DeepCSV is an algorithm that uses a deep
neural network for identification of b-jets

» The inputs are secondary vertices parameters,
and the parameters of up to 6 per jet

» DeepCSV is based on a deep neural network
training, with 4 hidden dense layers with 100
nodes each

» Why is it better? The DNN is able to «see»
correlations between multiple variables,
difficutl via statistical methods or analytical
representations

Typical classical algorithm:

60% efficiency for 50x rejecti

13 TeV,

—
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Tracking would be the holy grail of ML
Currently, tracking mostly via Iterative Kalman Filter algorithms ’.'
Timing-wise, it takes the biggest part of the reconstruction time,
and it is exploding
o
I

| I I Other miniAOD
Fractional time/event, % Btags
Jets/MET
T

-

-

oy

N ey

Il Particle flow
. Calo local

- B Primary Vertex
M Tracking

I -
—

Fraction taken
I by tracking

PU20 PU35 PUS0 PU70

Event
comnlexitv

"§~b0Wri’tfaject'ories are reconstructed objects g




Tracking

» Extraction of track parameters from a ML system is difficult to
think of

» The final fit uses analytical models, knowledge of the materials,
precise knowledge of the magnetic field

» What make sense is to try and have ML defining which hits belong
to the same track («pattern recognition»), and leaving the
computation of the final parameters to a classic system («track
fitting>»)

» HEP.TrkX project: several approaches for a partial (seeding, pixel
only, ...) or global track finding approach; tested with:

» Convolutional neural nets (no LSTM)
Convolutional auto-encoder
Bi-directional LSTM

Prediction on next layer with LSTM

vV v v Vv

Definitely NOT ready for prime time

w0 Try to assemble
... hits into track
. candidates.

Pattern Recognition with LSTM

* Input sequence of hits per layers (one sequence per layer)

> One LSTM cell per layer

» Output sequence of hits per candidates

> Final LSTM runs for as many candidates the model can predict

all hits in data

target 0

cand 0

target 1 ‘ « Still work in progress
®- cand 1 + Restricted to 4 layers

=¢- target 2 " (with seeding in mind)

-&— cand 2

+ ® + »

-+~ target3 + Work to some extend

-~ cand 3
-+~ target 4
-&~ cand 4



https://indico.cern.ch/event/670408/contributions/2742248/attachments/1533335/2417209/vlimant_HtrkX_Oct17.pdf

R e R e

~ . ~"_Individual particles

A simple / easier approach: pixel EE
clustering with High Pt jets

Layer2 /’___—_;:_Hit merging
» The problem: when a very collimated jet of tracks hits the CMS pixel %W
detectors, more than 1 track can contribute signal to the same pixel High energy jet
cell roton beart) Ry

» How to identify this? Currently it is not possible, since local pixel
reconstruction is not aware of the global event

» Aglobal view in outer layers would clarify the situation; but algorithmically
that icomes «later»

» Use a CNN using as input the «4 images on the pixel detectors» in
order to improve the understanding on the first layers

» Train on Full simulation samples, with MC truth

» Even more - you can use it not only to predict the correct point of
impact, but directly track parameters (direction, momentum) and if
a given pixel cell shares signal from more than 1 track



https://indico.cern.ch/event/742793/contributions/3274301/attachments/1822584/2981871/bertacchi_deepcore_ConnectingTheDots.pdf
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CPU seconds by Type
1600

B Analysis
1400 { WEE HL-LHC MC
LHC MC
B Non-Prompt Data

GANs for simulation o | e,

1000 A

o  *

» Going back to the projection plot for CPU, it is clear thW
offender is Monte Carlo simulation 600 -

THS06 * s

400

» It includes

» The generation of the high energy collision event from theoretical : = e e =
models («generation»)

» The simulation of the interactions of the primary and secondary
particles with the detector (Geant4!)

> Needs very detailed description of the geometry, + a very detailed
simulation of the physics processes down to few MeVs

> It can be very slow, depending on the size and precision of the detectors
you need to simulate

» CMS: simulation time > reconstruction time (50 sec vs 20 sec today)

» Since you need 1-2 simulate events per collected data events, the
large impact of simulation in the overall budget is clear

» How to try and reduce that component?

» - Fast Simulation!!



Principles of Fast Simulation

» «Full Simulation» uses low level matter - particle processes to simulate
the effect of the interaction

» Generation of secondary particles, their travel through matter, additional
showers, in principle down to few keV (see G4 lessons on cuts)...

» Taking into account ionization, elastic processes, decays, excitation, hadronic A v
effects , ... CMS Simulation

» After all of this, the tota energy deposited is summed and gives the raw = o  Fast simulation
energy response of a given detector L e ®  Geantd-based full simulation
— + standard reconstruction
» Fast simulation tries to compute the final quantity directly from - ¢ . pp - Hos 7y, 13TeV, PU25
1. A parametrization . e
2. Afit to full simulation or test beam data — *
» It is fast since there is no particle explosion or propagation, a single formula e %
suffices - %
. @ 0..
» It is as good as the fit /parametrization makes sense n e
—o 080000
» Usually very good for the bulk of events, but unable to reproduce particular parts of T PRI TR P PRI I W

the phase space 2

Fast/ Full

1 ”M”“’W‘*‘éwfu*t}*fd' ¥ +++H+

» (Some Fast Simulation approaches are even more inclusive, and try and

generate directly the reconstructed quantities, not only to mimick G4) 0
0 50 100 150 200 250 300 350 400 450 500

photon energy (GeV)




Fast Simulation with Generative
Adversarial Networks

» Jet reconstruction

A jet image on a

calorimeter
The «truth» Latent

Space

The «slow»
algo E

The «fast»

gen

Generative Adversarial
Network

Real
Samples

= ] Discriminator]
P G ;
Generated :
Generator Fake
Samples :

1D
—{_ Correct?

algo
0.08
0.07
0.06 |

0.05 §&
0.04 %
0.03N
0.02
0.01

30
An bin An bin

i Fine Tune Training |



https://arxiv.org/pdf/1805.00850.pdf

0.200
0.175
0.150

Full vs Fast

If one could use these jets for physics,
o timing would be stellar:
0000 * Full algo: ~ 1 Hz per jet (simulate
0 20 can ° wm e particles, their response in
calorimenter, jet finding,
reconstructed energy)
» Fast algo: ~ 10 kHz on a Nvidia P100

0.125
g 0.100
0.075
0.050

» Hidden facts:
» Training is slow (tens of hours)
« But it is way faster than
writing an algorithm by
hand
» Very good results; but still more
a proof of concept than
anything else.
* No commitment to use GANs as

substitution of Full Simulation
29




Why is there an empty
part here?

ML for Data Quality

» During beam operations, at least one
person needs full time to look into some
typical detector plots in order to see
that (for example) a part of the
calorimeter did not go off, or that there
is abnormal noise in another part

» Can this be substituted with a person?
What a trainer «data quality certifier»
does is:

1. Search for known problems (he/she has
been taught typical failure modes, in
order to recognize them)

2. Search for unknown problems (spotting
something unexpected, which is «strange
enough» to pass a «personal» threshold)

» A person is trained to the task by working
as shadow for some time with an
experienced shifter > a classical example

of training! Is this orange justified?




Fully connected

3x1 convolutions

_—\j:ll 5x1 max pooling

Supervised vs unsupervised ML
approaches

» Search for «<known problems»: classical pattern ——
recognition problem, trained with the «correct answer»
(problem yes/no) for both normal and problematic images

10 9x1 feature maps

g/}

2
S
Wy ,‘/*l?""

» Search for «unknown problems>: Train only on «normal> ,_,,i%.;;,:,;;.;\'\'

behavior, and let the ML encode it internally (autoencoder o L] Bmddm,,m
net) feal } Yes / no /

10 45x1 feature maps

%hlddcnuni)sNh]Ch Category

\

» At that point, the net will have difficulties
encoding something different - the output will
be largely different from the input

Internal representation of the event, with fewer dime


http://cds.cern.ch/record/2650715/files/CR2018_202.pdf
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Data quality :

Absolute Error
[e2]
T
1
Absolute Error

monitoring via 1 o« ]
autoencoders ' | :

a
4
«good- inputs: «bad~ inputs: error

» Give as input the main features used in monitoring a CMS event error is low is high
. . . (and which variables
» 401 variables (# jets, #tracks, # hits, # muons, ...), 7 numbers x are specifically high
variable (rms, men, 5 quantiles) tells you where the

» Train the system on 5 months of monitoring (a value each 23 sec) problem stays

which has been already declared good by humans \

» Test on all the data from these 5 months, including the bad ones

| S LA B L R B B HNL B B I B B =

=
o

» Test the match between what humans declared bad and the
autoencoder response + some additional good data; the
autoencoder tells you the «error» in the encoding

True Positive Rate
o
o

0.8~
» How far a the output was from the input C ]
. . 0.7 E
Not production ready, but aimed to Run-Ill as a way to reduce - —— Undercomplete Autoencoder, AUC = 0.895  0.004 1
monitori ng manpower 0.6E —— Contractive Autoencoder, AUC = 0.895 + 0.003
r —— Variational Autoencoder, AUC = 0.901 + 0.003
F -~ Sparse Autoencoder, AUC = 0.905 + 0.003
0.5 C 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 l 7
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate



Anomaly detections for physics?

a Search events

with
(A7 e =S > 3 leptons
Only a wild idea at the moment - supported by some W o ' ) > Missing
theoretical papers 7 / energy
In standard new physics searches, you search for a
physics signatures for a specific model
What is there is physics you did not think of? (well, !
do not worry, we are somehow already covered)
QCD
Train an autoencoder on «standard physics» (hard Proof of principle: | = 3 00 6en
to define, but assuming that new physics is VERY if trained on QCD,  os

error is high on top
and gluoino events
(all from 0.4
simulation here)

rare, it is not an issue)

o

6

0.2

0.0

1077 10-% 107
Reconstruction Error


https://arxiv.org/abs/1808.08992
https://arxiv.org/abs/1808.08992

DeeplLearning as a complete
replacement of «every algorithm»

» The algorithmic steps we need to go from RAW detector data («a bunch

of 01001010», 1MB sized) to the selection of different types of events
(«does this event contain the decay products of an Higgs boson?») are
many

» Take the RAW data for every subdetector, and interpret them as local signals
(hits on a silicon detector, energy in a calorimeter cell)

» Use local signal from different subdetectors, to form a global object (a track,
a jet)

» Consider all the objects in an event, and try and understand the topology;
evenrtually, find an Higgs boson decaying to something

» Involves statistical methods, understanding of the different topologies from physics
processes, ...

» Up to here: understand the workflow in terms of smaller algorithms, try
and replace some of them with ML. What if ...
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... we try the longest possible step: train a very large ML
system to start from RAW detector data, and give a final
event characterization (Higgs/notHiggs)?

It is defintely too early; for example how to feed 100M
inputs to a network? Hot to have enough events for training?

{200k N[ zorzs Joimij[osnitin

Still we can try with a simplified model:

clean events (no pile up)
only tracking detectors

Reduce granularity of input

Idea: take pictures of the hits in the CMS tracker, from
different views (xy, xz, zy), as lowish resolution Jpegs (to
reduce the # of inputs)

i el 'r"‘éﬁ!&*‘{ wAsl
Lo AW ANE LSS s, T

300x300 pixel images = 90k (sparse) inputs

Higgs event Jpsi event



Event categories and results

Medium event
/ complexity

> nggs decays tU taU leptonS H-Igh event Receiver Operating Characteristic
Low event

» QCD (strong interactions)«— complexity complexity
» Jpsi decays (to 2 muons) —

Low event
complexity
» And train with ~10k simulated events per category

» Use 4 event categories

<
<

» Upsilon decays (to 2 muons)

True Positive Rate

e
IS

-
- RelValHiggs200ChargedTaus_13 ROC curve (area = 0.98)
—— RelValJpsiMuMu_Pt-8 ROC curve (area = 0.93)
—— RelValQCD_Pt_600_800_13 ROC curve (area = 0.99)
,/— RelValUpsilon1SToMuMu_13 ROC curve (area = 0.86)

0.2

It works! Are we done? No...

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

» Model very simplified

» Never tried on complex events

(each catego
(add 35 pp interactions and see..)

» Eventually, who would trust the result now?



Conclusions

>

ML today is for CMS, apart from a few tools deployed in production, an R&D
field; we expect its utilization to become more important by Runlll and
eventually on the critical path on RunlV

It is a field which evolves fast, GANs are now ubiquotous and it is difficult to
believe they were proposed in 2014. Somehow complex to stay up-to-date

» Not described here, but GraphNets are now studied as a general tool for HEP, and
they are from 2018.

In general, we foresee the need for different expertise in the coming year:
less «analysists», more «data scientists»

» But there we are in competition with the private sector

We still have an advantage over many other sectors trying ML approaches: we
literally have Petabytes of data on which to train; we just need to understand
HOW to evolve our systems

Will you join us?


https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/1806.01261

