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Outline 

u What is CMS@LHC?

u Which are the computing needs, today and in the next ~20 years?

u Which is the role of machine learning, and in general of artificial intelligence?

u Some example of current studies, and future oriented ideas
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CMS @ LHC @ CERN
u LHC is today’s top energy pp collider.

u It started operations in 2009, and is now 
at the end of the second run period

u At each “Run”, the collider improves, 
colliding particles in greater number, of 
greater energy, or with greater efficiency

u The “physics capability” is measured in 
terms of  “luminosity”, which is 
proportional to the number of events you 
can collect of a given type

HL-LHC: High Luminosity LHC
LS: Long Shutdown
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• Accelerating protons @ 6.5 TeV needs a chain 
of accelerators

• At full load, LHC contain 4800 bunches of 
~1.5 1011 protons (1 ug)

• Each bunch is separated by 7.5 m (25 ns) 
from the previous
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2018 LHC Parameters (to set 
some numbers)

u At an average luminosity of 1.2 1034 cm-2s-1, every 
25 ns:

u 35 pp interactions, generating secondary particles 
(we could explain this in terms of cross sections)

u Particles have a fraction of the venter of mass 
energy 6.5+6.5 TeV, and fly away from the collision 
point

u They traverse the material surrounding the beam 
line, which we usually fill with active detectors

u CMS is one of these!
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CMS
u The Compart Muon Solenoid (CMS) is one the 4 

major experiments at LHC

u It is general purpose: can do precision physics 
and discovery physics

u It uses subdetectors with different technologies, 
targeted to measuring / stopping different 
particle types

All in all, > 100M acquisition channels need to be read in 
principle every 25 ns (40 MHz)
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Measuring or Stopping particles?
u When you want to measure a moving object, you 

generally have 2 ways:

1. “speed cameras”: you measure the momentum of 
something slightly perturbing it (for example 
launching some photons toward it)

u We call them “Tracking devices”; typically, made of 
thin silicon layers which signal the passage of a charged 
particle via ionization loss

2. “crash test”: you stop it and measure the amount of 
energy it releases to you 

u We call them “calorimeters”: bulky detectors, with 
heavy material, stop incoming particles and measure 
their energy
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How to do physics analyses at CMS?
u Collision rate is 40 MHz ((25 ns)-1), with ~100M acquisition channels 

u Assume naively 1 byte per channel à 100 MB * 40 MHz =  4 PetaByte/s

u Zero suppression: read only interesting channels à 1/100

u L1 Trigger: look into the events in hardware,  within 6 usec à 1/400

u HighLevel Trigger: use 25000 PCs to look further, within 300 msec à 1/100

u All in all, the physics output of CMS is ~1 GB/s, sustained for 30% of the year

u This gets saved to tape, then analyzed in GRID farms, and eventually shipped to 
analyzers
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So overall, how much resources do we 
need to analyze CMS data?

u These include resources to :

u CPU: process data (reconstructing particles, jets, leptons), process Monte Carlo, 
analyze data/MC, perform fits, …

u Disk: provide inputs to processing and analysis

u Tape: save 2 custodial copies of all the irreproducible data

u In general, these numbers are driven by

u CPU: reconstruction time (20 sec/ev)

u CPU: simulation time (50 sec/ev)

u Disk: size of reconstructed events (500 kB/ev)

u Tape: size of the raw event from DAQ (1 MB/ev)
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Did it “work”?

u CMS to-date:

u 874 physics papers

u Observation of Higgs boson: 9000 citations
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So far so good, then why do we need ML 
@ CMS?

u 2 very different needs

1. Do better (more precise algorithms, more more physics performance) à more 
physics output!

2. Save resources (less computers, less manpower for operations) à less money

u #1 is important, but there is general belief that without #2 we could simply NOT be 
able to work in the next 20 years … let’s this this before
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CMS Needs for 2026+
u In 2026, LHC will start its “High Luminosity” Phase, with 

parameters largely improved

u Average number of pp events per bunch collision 35 à 200 (6x)

u At the same time, CMS will have a much improved detector, with 
> 2x the number of readout channels

u Bigger events, more complex reconstruction algorithms

u Also, CMS will need to focus on Higgs physics. To do so, there is 
an increase of trigger rate from 1 kHz to ~10 kHz (10x)

u Hence, back-of-the-envelope estimate for 2026+ LHC run is a 
factor 120x of computing resources

u Scaling from today means, by 2026:

u 24M CPU cores

u 19 Exabytes disk (1 Exabyte = 1.000.000 TeraBytes)

u 35 Exabyte tape

u (multiply by 4 for the 4 major experiments)

u Clearly impossible, would be Billions Eur/y

u How can ML help??
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2018 Estimates for 2019 CMS Computing needs

You are here
You need to go here



ML @ CMS as a resource saver
u Machine learning training is from slow to very slow, but 

it is not a big issue since it has to be repeated only a few 
times a year; instead it is generally fast at inference 
time (when using the training)

u At least ML algorithm using CNN or (D)FF are “simply 
algebra operations”: no loops, no recursion - fit well 
also common processors, using vector registers

u If we could substitute standard reconstruction / 
simulation algorithms with trained ML algorithms, there 
is the hope to scale better with event complexity

u Examples later: tracking, particle-matter interaction

u There are other interesting aspects with minor expected 
impact:

u Save smaller data via ML driven data compression (auto 
encoders)

u Operation supervision (anomaly detections, data 
certification) – potentially save manpower

u Training also at large scale is not really an issue also 
because “we” are offered access to Super Computers 
(HPC) with hardware specifically tuned for that
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ML @ CMS
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Faster / Better Jet reconstruction

u A jet @ LHC is the result of the shower coming 
from an unstable quark/gluon decay; all the 
decay particles are “close” to each other due 
to the momentum of the decaying particle

u @ CMS jets are reconstructed (mostly) as 
signals in the Calorimeters, where these 
particles are stopped and give position / 
energy information

u By combining the signals, one can in principle 
reconstruct the energy / direction of the 
unstable particle, and thus extract physics 
information on its generating process
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Faster / Better Jet reconstruction #2
u Classical algorithms for jet reconstruction are 

iterative and have to face with a ”noisy” 
environment, with signal jets polluted by 
particles from the other 35 (200) pp 
interactions

u Iterative: search for a calorimeter cell with 
very high deposit, and start joining nearby 
active cells up to a certain threshold. Then 
apply corrections due to the energy response

u Calorimeter response looks like an image: why 
not use the large experience in ML image 
processing to understand features like

u Which particle generated the image (a quark, a 
gluon, a W/Z boson)? – categorization

u Which is the energy on the originating particle? -
regression
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Categorization: an example 

u Train a simple 5-layer DNN on Jet calorimetry + 
other basic event features, and optimize on 
discrimination

Note: wrt to the ROCs you are more 
used in other sciences, these curves 
have Axes swapped, so the lowest right 
corner is the best performance; then y
axis is log… 
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Jet energy Regression …
u … or how to measure the energy of the initial particle from the “image 

on calorimeters” (2 for CMS: ECAL and HCAL)

u Start with images (3rd dimension is time): so more a movie than an image

u Convolution layers do sampling and feature discovery

u MaxPooling reduces the parameter space

u The rest is mostly a dense layer with 1000 neurons

u Being a classical DNN (no recursion, no loops) its timing is deterministic, 
and 1000x faster than standard approaches
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Another categorization example: tagging 
of b quark Jets

u The identification of b quarks is essential for 
many frontier studies 

u Top quark physics: the top quark decays virtually 
only to b quarks

u Many beyond the standard model scenarios: where 
the coupling is higher for higher mass fermions

u The Higgs boson has 2 bs as most probably decay 
mode

u Classically, the discrimination between light (u, d, 
s + gluon) and b quarks is done looking into the 
decay topologies

u It is a discrimination problem: answer is binary 
“looks like b” / ”does not look like b”

• A b hadron has non negligible
lifetime (10-12 sec) and can fly
mm before decaying

• A b hadron generates ~5 particles
when it decays

• None of these characteristics is
clean and easy to spot, and they
are valid on a statistical basis

• In general, try to use many inputs
with small discrimination and 
combine them to get more power
…
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b tagging standard 
algorithms …

u Use 1-50 of these “features” (with most of 
the discriminating power coming from a few)

u Use statistical methods like likelihoods to 
combine them

u Different possible approach: build a big DL, 
including even the inputs wild only mild 
correlation with the selection
u DeepCSV is an algorithm that uses a deep

neural network for identification of b-jets

u The inputs are secondary vertices parameters, 
and the parameters of up to 6 per jet

u DeepCSV is based on a deep neural network 
training, with 4 hidden dense layers with 100 
nodes each

u Why is it better? The DNN is able to «see» 
correlations between multiple variables, 
difficutl via statistical methods or analytical
representations
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Typical classical algorithm: 
60% efficiency for 50x rejection

DeepCSV and other AI based
algorithms: 60% efficiency
for 300x rejection



Tracking with ML
u Tracking would be the holy grail of ML

u Currently, tracking mostly via Iterative Kalman Filter algorithms

u Timing-wise, it takes the biggest part of the reconstruction time, 
and it is exploding
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complexity
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Tracking
u Extraction of track parameters from a ML system is difficult to 

think of 

u The final fit uses analytical models, knowledge of the materials, 
precise knowledge of the magnetic field

u What make sense is to try and have ML defining which hits belong
to the same track («pattern recognition»), and leaving the 
computation of the final parameters to a classic system («track
fitting»)

u HEP.TrkX project: several approaches for a partial (seeding, pixel  
only, …) or global track finding approach; tested with:

u Convolutional neural nets (no LSTM)

u Convolutional auto-encoder

u Bi-directional LSTM

u Prediction on next layer with LSTM

u Definitely NOT ready for prime time
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https://indico.cern.ch/event/670408/contributions/2742248/attachments/1533335/2417209/vlimant_HtrkX_Oct17.pdf


A simple / easier approach: pixel 
clustering with High Pt jets

u The problem: when a very collimated jet of tracks hits the CMS pixel 
detectors, more than 1 track can contribute signal to the same pixel 
cell

u How to identify this? Currently it is not possible, since local pixel 
reconstruction is not aware of the global event

u A global view in outer layers would clarify the situation; but algorithmically
that icomes «later»

u Use a CNN using as input the «4 images on the pixel detectors» in 
order to improve the understanding on the first layers

u Train on Full simulation samples, with MC truth

u Even more à you can use it not only to predict the correct point of 
impact, but directly track parameters (direction, momentum) and if
a given pixel cell shares signal from more than 1 track

24 V. Bertacchi et al

https://indico.cern.ch/event/742793/contributions/3274301/attachments/1822584/2981871/bertacchi_deepcore_ConnectingTheDots.pdf


Results
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Impact point on

pixel dets
Track parameters

(direction, momentum, …)



GANs for simulation
u Going back to the projection plot for CPU, it is clear the major 

offender is Monte Carlo simulation

u It includes

u The generation of the high energy collision event from theoretical
models («generation»)

u The simulation of the interactions of the primary and secondary
particles with the detector (Geant4!)

u Needs very detailed description of the geometry, + a very detailed
simulation of the physics processes down to few MeVs

u It can be very slow, depending on the size and precision of the detectors 
you need to simulate

u CMS: simulation time > reconstruction time (50 sec vs 20 sec today)

u Since you need 1-2 simulate events per collected data events, the 
large impact of simulation in the overall budget is clear

u How to try and reduce that component?

u à Fast Simulation!! 26



Principles of Fast Simulation
u «Full Simulation» uses low level matter – particle processes to simulate 

the effect of the interaction

u Generation of secondary particles, their travel through matter, additional
showers, in principle down to few keV (see G4 lessons on cuts)…

u Taking into account ionization, elastic processes, decays, excitation, hadronic
effects , …

u After all of this, the tota energy deposited is summed and gives the raw
energy response of a given detector

u Fast simulation tries to compute the final quantity directly from 

1. A parametrization

2. A fit to full simulation or test beam data

u It is fast since there is no particle explosion or propagation, a single formula 
suffices

u It is as good as the fit /parametrization makes sense

u Usually very good for the bulk of events, but unable to reproduce particular parts of 
the phase space

u (Some Fast Simulation approaches are even more inclusive, and try and 
generate directly the reconstructed quantities, not only to mimick G4)
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Fast Simulation with Generative 
Adversarial Networks

u Jet reconstruction
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A jet image on a 
calorimeter

The «truth»
The «slow»
algo

The «fast»
algo

P. Musella et al

https://arxiv.org/pdf/1805.00850.pdf


Full vs Fast
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If one could use these jets for physics, 
timing would be stellar:
• Full algo: ~ 1 Hz per jet (simulate 

particles, their response in 
calorimenter, jet finding, 
reconstructed energy)

• Fast algo: ~ 10 kHz on a Nvidia P100

• Hidden facts:
• Training is slow (tens of hours)

• But it is way faster than
writing an algorithm by 
hand

• Very good results; but still more 
a proof of concept than
anything else.

• No commitment to use GANs as
substitution of Full Simulation



ML for Data Quality

u During beam operations, at least one
person needs full time to look into some 
typical detector plots in order to see
that (for example) a part of the 
calorimeter did not go off, or that there
is abnormal noise in another part

u Can this be substituted with a person? 
What a trainer «data quality certifier» 
does is:

1. Search for known problems (he/she has
been taught typical failure modes, in 
order to recognize them)

2. Search for unknown problems (spotting
something unexpected, which is «strange 
enough» to pass a «personal» threshold)

u A person is trained to the task by working
as shadow for some time with an 
experienced shifter à a classical example
of training!

30
Is this orange justified?

Why is there an empty
part here?



Supervised vs unsupervised ML 
approaches

u Search for «known problems»: classical pattern 
recognition problem, trained with the «correct answer» 
(problem yes/no) for both normal and problematic images

u Search for «unknown problems»: Train only on «normal» 
behavior, and let the ML encode it internally (autoencoder
net)
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Yes / no /
which category

A.Pol et alu At that point, the net will have difficulties
encoding something different à the output will
be largely different from the input

Internal representation of the event, with fewer dimensions

http://cds.cern.ch/record/2650715/files/CR2018_202.pdf


Data quality
monitoring via 
autoencoders

u Give as input the main features used in monitoring a CMS event

u 401 variables (# jets, #tracks, # hits, # muons, …), 7  numbers x 
variable (rms, men, 5 quantiles)

u Train the system on 5 months of monitoring (a value each 23 sec) 
which has been already declared good by humans

u Test on all the data from these 5 months, including the bad ones

u Test the match between what humans declared bad and the 
autoencoder response + some additional good data; the 
autoencoder tells you the «error» in the encoding

u How far a the output was from the input

u Not production ready, but aimed to Run-III as a way to reduce 
monitoring manpower
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«good» inputs: 
error is low

«bad» inputs: error
is high
(and which variables
are specifically high 
tells you where the 
problem stays



Anomaly detections for physics?

u Only a wild idea at the moment – supported by some 
theoretical papers

u In standard new physics searches, you search for a 
physics signatures for a specific model

u What is there is physics you did not think of? (well, 
do not worry, we are somehow already covered)

u Train an autoencoder on «standard physics» (hard 
to define, but assuming that new physics is VERY 
rare, it is not an issue)
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Search events
with 
• 3 leptons
• Missing

energy

Proof of principle: 
if trained on QCD, 
error is high on top 
and gluoino events
(all from 
simulation here) 

Farina et al.

https://arxiv.org/abs/1808.08992
https://arxiv.org/abs/1808.08992


DeepLearning as a complete 
replacement of «every algorithm»

u The algorithmic steps we need to go from RAW detector data («a bunch
of 01001010», 1MB sized) to the selection of different types of events
(«does this event contain the decay products of an Higgs boson?») are 
many

u Take the RAW data for every subdetector, and interpret them as local signals
(hits on a silicon detector, energy in a calorimeter cell)

u Use local signal from different subdetectors, to form a global object (a track, 
a jet)

u Consider all the objects in an event, and try and understand the topology; 
evenrtually, find an Higgs boson decaying to something

u Involves statistical methods, understanding of the different topologies from physics
processes, …

u Up to here: understand the workflow in terms of smaller algorithms, try
and replace some of them with ML. What if …
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u … we try the longest possible step: train a very large ML 
system to start from RAW detector data, and give a final
event characterization (Higgs/notHiggs)?

u It is defintely too early; for example how to feed 100M 
inputs to a network? Hot to have enough events for training?

u Still we can try with a simplified model: 

u clean events (no pile up)

u only tracking detectors

u Reduce granularity of input

u Idea: take pictures of the hits in the CMS tracker, from 
different views (xy, xz, zy), as lowish resolution Jpegs (to 
reduce the # of inputs) 

u 300x300 pixel images = 90k (sparse) inputs
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Event categories and results

u Use 4 event categories

u Higgs decays tu tau leptons

u QCD (strong interactions)

u Jpsi decays (to 2 muons)

u Upsilon decays (to 2 muons)

u And train with ~10k simulated events per category

u It works! Are we done? No…

u Model very simplified

u Never tried on complex events
(add 35 pp interactions and see..) 

u Eventually, who would trust the result now?

Medium event
complexity

Low event
complexity

Low event
complexity

High event
complexity

36

(each category against all others)

No more needs

for physicists
!



Conclusions
u ML today is for CMS, apart from a few tools deployed in production, an R&D 

field; we expect its utilization to become more important by RunIII and 
eventually on the critical path on RunIV

u It is a field which evolves fast, GANs are now ubiquotous and it is difficult to 
believe they were proposed in 2014. Somehow complex to stay up-to-date

u Not described here, but GraphNets are now studied as a general tool for HEP, and 
they are from 2018.

u In general, we foresee the need for different expertise in the coming year: 
less «analysists», more «data scientists»

u But there we are in competition with the private sector

u We still have an advantage over many other sectors trying ML approaches: we
literally have Petabytes of data on which to train; we just need to understand
HOW to evolve our systems

u Will you join us?
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https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/1806.01261

