

Physics Particles and Physics lists

GAP Cirrone

XVI Seminar on Software for Nuclear, Sub-Nuclear and Applied Physics Alghero, Italy

In spite of the name "track-ing", **particles are not transported in the tracking** category.

G4TrackingManager is an **interface class** which brokers transactions between the **event**, **track** and **tracking** categories.

The tracking manager **receives a track from the event** manager and takes the actions required to finish tracking

G4TrackingManager aggregates the pointers to G4SteppingManager, G4Trajectory and G4UserTrackingAction (it also uses G4Track and G4Step)

G4VProcess class

- Abstract class as a base for all processes in Geant4
 - Used by all physics processes (also by the transportation, etc...
 - Defined in source/processes/management
- Define three kinds of actions:
 - AtRest actions:
 - Decay, e+ annihilation ...
 - AlongStep actions:
 - To describe continuous (inter)actions, occurring along the path of the particle, like ionisation;

- PostStep actions:

For describing point-like (inter)actions, like decay in flight, hadronic interactions ...

A process can implement a combination of them (decay = AtRest + PostStep)

3

AlongStep

Example processes

- Discrete process: Compton Scattering, hadronic inelastic, ...
 - step determined by cross section, interaction at end of step
 - PostStepGPIL(), PostStepDolt()
- Continuous process: Čerenkov effect
 - photons created along step, roughly proportional to step length
 - AlongStepGPIL(), AlongStepDolt()
- At rest process: muon capture at rest
 - interaction at rest
 - AtRestGPIL(), AtRestDolt()
- Rest + discrete: positron annihilation, decay, ...
 - both in flight and at rest
- Continuous + discrete: ionization
 - energy loss is continuous
 - knock-on electrons (δ-ray) are discrete

4

pure

Handling multiple processes

- 1 a particle is shot and "transported"
- 2 all processes associated to the particle propose a <u>geometrical</u> step length (depends on process cross-section)
- **3** The process proposing the shortest step "wins" and the particle is moved to destination (if shorter than "Safety")
- 4 All processes along the step are executed (e.g. ionization)
- 5 post step phase of the process that limited the step is executed. New tracks are "pushed" to the stack
- 6 If $E_{kin}=0$ all at rest processes are executed; if particle is stable the track is killed. Else:
- 7 New step starts and sequence repeats...

6

- o Particles
- o Processes
- o Tracking
- o Cuts
- o Physics lists

User classes

Particles and Processes

Particles: basic concepts

There are three levels of class to describe particles in Geant4:

G4ParticleDefinition

Particle static properties: name, mass, spin, PDG number, etc.

G4DynamicParticle

Particle dynamic state: energy, momentum, polarization, etc.

G4Track

9

Information for tracking in a detector simulation: position, step, current volume, track ID, parent ID, etc.

Particles: common hadrons & ions table

Particle name	Class name	Name (in GPS)	PDG
(anti)proton	G4Proton	proton	2212
	G4AnitProton	anti_proton	-2212
(anti)neutron	G4Neutron	neutron	2112
	G4AntiNeutron	anti_neutron	-2112
(anti)lambda	G4Lambda	lambda	3122
	G4AntiLambda	anti_lambda	-3122
pion	G4PionMinus	pi-	-211
	G4PionPlus	pi+	211
	G4PionZero	pi0	111
kaon	G4KaonMinus	kaon-	-321
	G4KaonPlus	kaon+	321
	G4KaonZero	kaon0	311
	G4KaonZeroLong	kaon0L	130
	G4KaonZeroShort	kaon0S	310
(anti)alpha	G4Alpha	alpha	1000020040
	G4AntiAlpha	anti_alpha	-1000020040
(anti)deuteron	G4Deteuron	deuteron	1000010020
	G4AntiDeuteron	anti_deuteron	-1000010020
Heavier ions	G4lons	ion	100ZZZAAAI*

*ZZZ=proton number, AAA=nucleon number, I=excitation level

Processes: basic concepts

How do particles interact with materials?

Responsibilities:

- 1. decide when and where an interaction occurs
 - GetPhysicalInteractionLength...()

 \rightarrow limit the step

- this requires a cross section
- for the transportation process, the distance to the nearest object
- 2. generate the final state of the interaction
 - changes momentum, generates secondaries, etc.)
 - method: Dolt...()
 - this requires a model of the physics

G4VProcess

G4VProcess class

- 12
 - Physics processes describe HOW particles interact with material
 - Are derived from G4VProcess base class
 - Abstract class defining the common interface of all processes in Geant4, used by all physics processes

Tracking and Cuts

Tracking: basic concepts

14

- G4Track keeps current information of the particle and has static information
- G4Track keeps information at the beginning of the step. After finishing all AlongStepDolts, G4Track is updated. It is updated after each invocation of a PostStepDolt.
- All Geant4 processes, including the transportation of particles, are treated generically. In spite of the name "*tracking*", particles are not *transported* in the tracking category.

Tracking Verbosity

15

UI command: /tracking/verbose 1

* G4Track Information: Particle = gamma, Track ID = 1, Parent ID = 0											
Step#	X (mm)	Y(mm)	Z(mm)	KinE(MeV)	dE (MeV)	StepLeng	TrackLeng	NextVolume	ProcName		
0	47.4	-53	-150	6	0	0	0	Envelope	initStep		
1	47.4	-53	-58	0.844	0	92	92	Envelope	compt		
2	-46	15.9	5.55	0.47	0	132	224	Envelope	compt		
3	-100	6.37	-3.62	0.47	0	55.6	280	World			
Transportation											
4	-120	2.84	-7.02	0.47	0	20.6	301	OutOfWorld			
Transportation											

* G4Track Information: Particle = e-, (Track ID = 3, $\sqrt{Parent ID} = 1$)											

Step#	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE (MeV)	StepLeng	TrackLeng	NextVolume	ProcName		
0	-46	15.9	5.55	0.375	0	0	0	Envelope	initStep		
1	-46.1	16.4	5.98	0.0482	0.327	1.16	1.16	Envelope	eIoni		
2	-46.1	16.3	5.98	0	0.0482	0.0408	1.2	Envelope	eIoni		
_				, i i i i i i i i i i i i i i i i i i i							

You can set a "range" production threshold

• this threshold is a distance, not an energy

• default = 1 mm

Particles unable to travel at least the range cut are not produced

Energy is conserved !!!

Production threshold is internally converted to the energy threshold W₀, depending on particle type and material

Effective energy threshold is different in each material

Cut in range: an example

17

Cuts: UI Commands

18

Universal cut (whole world, all particles)
/run/setCut 10 mm

Override low-energy limit
/cuts/setLowEdge 100 eV

Set cut for a specific particle (whole world)
/run/setCutForAGivenParticle gamma 0.1 mm

Set cut for a region (all particles)
/run/setCutForARegion myRegion 0.01 mm

Print a summary of particles/regions/cuts
/run/dumpCouples

Physics - the challenge

20

- Huge amount of different processes for various purposes (only a handful relevant)
- Competing descriptions of the same physics phenomena (necessary to choose)
 - fundamentally different approaches
 - balance between speed and precision
 - different parameterizations
- Hypothetical processes & exotic physics

Solution: Atomistic approach with modular physics lists

Physics models: basic concepts

There are currently 28 "packaged" physics lists available

• but you will likely interested in only a few, namely the "reference physics lists"

O many physics lists are either developmental or cutomized in some way, and so not very useful to new users

Reference physics lists

- QGSP_BERT, QGSP_BERT_EMV, QGSP_BERT_HP, QGSP_BIC, FTFP_BERT, LBE, LHEP
- plus a few more

Conventional Physics List

- 22
- Two families of builders for the high-energy part
- **QGS**, or list based on a model that use the Quark Gluon String
- model for high energy hadronic interactions of protons, neutrons, pions and kaons
- **FTF**, based on the FTF (FRITIOF like string model) for protons, neutrons, pions and kaons
- Three families for the cascade energy range
- **BIC**, binary cascade
- **BERT**, Bertini cascade
- INCLXX, Liege Intranuclear cascade model

New Model: ParticleHP

Data based on TENDL-2014 (charged particles) and ENDFVII.r1 (neutrons).

Physics lists

Physics List

- 24
- One instance per application
 - registered to run manager in main()
 - inheriting from G4VUserPhysicsList
- Responsibilities
 - all particle types (electron, proton, gamma, ...)
 - all processes (photoeffect, bremsstrahlung, ...)
 - all process parameters (...)
 - production cuts (e.g. 1 mm for electrons, ...)

Physics List

3 ways to get a physics list

1) Manual: Specify all particles & processes that may occur in the simulation. (difficult)

2) Physics constructors: Combine your physics from pre-defined sets of particles and processes.
Still you define your own class – modular physics list (easier)

3) Reference physics lists: Take one of the predefined physics lists. You don't create any class (easy)

26

G4VUserPhysicsList class

Implement 3 methods:

Advantage: most flexible

Disadvantages:

- most verbose
- most difficult to get right

Physics List

27

G4VUserPhysicsList: implementation

ConstructParticle():

 choose the particles you need in your simulation, define all of them here

ConstructProcess() :

 for each particle, assign all the physics processes relevant to your simulation

SetCuts() :

 set the range cuts for secondary production for processes with infrared divergence

Physics List

G4VModularPhysicsList

 Similar structure as G4VUserPhysicsList (same methods to override – though not necessary):

```
class MyPhysicsList : public G4VModularPhysicsList {
  public:
    MyPhysicsList(); // define physics constructors
    void ConstructParticle(); // optional
    void ConstructProcess(); // optional
    void SetCuts(); // optional
}
```

Differences to "manual" way:

- Particles and processes typically handled by physics constructors (still customizable)
- Transportation automatically included

29

Physics constructor

- = "module" of the modular physics list
- Inherits from G4VPhysicsConstructor
- Defines ConstructParticle() and ConstructProcess()
 - to be fully imported in modular list (behaving in the same way)
- GetPhysicsType()
 - enables switching physics of the same type, if possible (see next slide)

Physics List

. . .

30

Physics constructors

- Huge set of pre-defined ones
 - EM: Standard, Livermore, Penelope
 - Hadronic inelastic: QGSP_BIC, FTFP_Bert,
 - Hadronic elastic: G4HadronElasticPhysics,

– ... (decay, optical physics, EM extras, ...)

 You can implement your own (of course) by inheriting from the G4VPhysicsConstructor class

31

Replace physics constructors

You can **add** or **remove** the physics constructors after the list instance is created:

- e.g. in response to UI command
- only before initialization
- physics of the same type can be replaced

```
void MyModularList::SelectAlternativePhysics() {
    AddPhysics(new G4OpticalPhysics);
    RemovePhysics(fDecayPhysics);
    ReplacePhysics(new G4EmLivermorePhysics);
}
```


32

SetCuts()

 Define all production cuts for gamma, electrons and positrons

Recently also for protons

Notice: this is a production cut, not a tracking cut

Physics List

33

Reference physics lists

- Pre-defined physics lists
 - already containing a complete set of particles
 & processes (that work together)
 - targeted at specific area of interest (HEP, medical physics, ...)
 - constructed as modular physics lists, built on top of physics constructors
 - customizable (by calling appropriate methods before initialization)

34

Lists of reference physics lists

Source code: \$G4INSTALL/source/physics_lists/lists

FTF BIC.hh FTFP BERT.hh FTFP BERT HP.hh FTFP BERT TRV.hh FTFP INCLXX.hh FTFP INCLXX HP.hh G4GenericPhysicsList.hh QGS BIC.hh G4PhysListFactoryAlt.hh G4PhysListFactory.hh

G4PhysListRegistry.hh G4PhysListStamper.hh INCLXXPhysicsListHelper.hh QGSP BIC HP.hh LBE.hh NuBeam.hh QBBC.hh QGSP BERT.hh QGSP BERT HP.hh

QGSP BIC AllHP.hh QGSP BIC.hh QGSP FTFP BERT.hh QGSP INCLXX.hh QGSP INCLXX HP.hh Shielding.hh

link to the task: http://geant4.lngs.infn.it/alghero2019/task3/index.html

Task 3 - Physics and Physics Lists

Processes and particles
Physics constructors
Physics lists
Production and cuts

G4SteppingManager plays an essential role in **tracking the particle**.

It takes care of all **message passing between objects in the different categories relevant to transporting** a particle (for example, geometry and interactions in matter).

Its public method **Stepping()** steers the stepping of the particle.

Processes

G4VProcess is a base class of all processes

Only processes **can change information** of **G4Track** and add secondary tracks via **ParticleChange**.

If a user want to modify information of **G4Track**, he SHOULD create a special process for the purpose and **register the process to the particle**.

G4VProcess is a **base class** of all processes and it has 3 kinds of **DoIt** and

GetPhysicalInteraction

Track

G4Track keeps 'current' information of the particle. (i.e. energy, momentum, position, time and so on) and has 'static' information (i.e. mass, charge, life and so on)

Step

G4Step stores the transient information of a step.

This includes the **two endpoints** of the step, PreStepPoint and

PostStepPoint, which contain the **points' coordinates and the volumes containing the points**. G4Step also stores

the change in track properties between the two points (such as energy and momentum), are updated

as the various active processes are invoked.

Particle Change

Processes do NOT change any information of **G4Track** directly in their Dolt.

Instead, they proposes changes as a result of interactions by using **ParticleChange**.

After each DoIt, ParticleChange updates PostStepPoint based on proposed changes.

Then, G4Track is updated after finishing all AlongStepDoIts and after each PostStepDoIt.