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INTRODUCING MYSELF

Before: Particle identification and gamma-ray 
astronomy with DAMPE @ University of Bari and 

University of Perugia

Now: Hunting cosmic neutrino sources with 
IceCube and Fermi-LAT @DESY Zeuthen



PARTICLE IDENTIFICATION IN A SPACE-BASED PARTICLE PHYSICS EXPERIMENT
OUTLINE

• The Dark Matter Particle Explorer - Mission and  scientific goals 

• The DAMPE detector 

• Deep learning and Machine learning for gamma-ray selection in DAMPE: 

• Neural networks for pattern recognition 

• Tree-based classifiers for multivariate analysis



THE DAMPE COLLABORATION
• CHINA 
–Purple Mountain Observatory, CAS, Nanjing 
–Institute of High Energy Physics, CAS, Beijing 
–National Space Science Center, CAS, Beijing 
–University of Science and Technology of China, Hefei 
–Institute of Modern Physics, CAS, Lanzhou 

• ITALY 
–INFN Perugia and University of Perugia 
–INFN Bari and University of Bari 
–INFN Lecce and University of Salento 
–GSSI Gran Sasso Science Institute 

• SWITZERLAND 
–University of Geneva 

Thanks to the DAMPE Collaboration for supporting this talk and for allowing the 
presentation of these results!



THE DAMPE MISSION

• Satellite launched on Dec. 17, 2015 from the Jiuquan Satellite Center 
(China) 

• Total payload: 1900 kg 

• Detector payload: 1300 kg 

• Polar Sun-synchronous orbit: 

• Altitude: 500 km 

• Inclination: 97.4° 

• Period: 95 min 

• Satellite renamed “Wukong” after launch



HIGH ENERGY PARTICLE DETECTION IN SPACE
PHYSICS GOALS

• Study of the cosmic-ray electrons and positrons spectrum 

• Study of cosmic ray protons and nuclei: 
- spectrum and composition 

• High energy gamma-ray astronomy and photon spectra 

• Search for dark matter signatures in lepton and photon spectra



INSTRUMENT DESIGN

DAMPE AMS-02 Fermi LAT

e/γ Energy res.@100 GeV (%) <1.5 3 10

e/γ Angular res.@100 GeV (deg.) <0.2 0.3 0.1

e/p discrimination >105 105 - 106 103

Calorimeter thickness (X0) 32 17 8.6

Geometrical accep. (m2sr) 0.3 0.09 1

• Measuring VHE cosmic-rays 

◦ e+/e- and gamma-rays in the range 1 GeV - 10 TeV 

◦ Cosmic-ray nuclei in the range 50 GeV - 100 TeV 

• Goals:  

◦ Search for dark matter signals with e+/e- and 
gamma-rays 

◦ Study of cosmic-ray spectra and composition 

◦ HE gamma-ray astronomy 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PLASTIC SCINTILLATOR DETECTOR (PSD)

• Dual role: 
◦ Anti-coincidence detector 
◦ Measure the charge of the incident particles 

• Geometry and performance: 

◦ 2 layers, 82 bars (XZ and YZ view) 
◦ Active area: 82cm x 82cm  
◦ Efficiency single module ≥0.95 for MIPs 
◦ Position resolution ≤ 2cm 
◦ Charge resolution:  
◦ 13.7% (Z = 1) 
◦  30% (Z = 26)

https://arxiv.org/pdf/1810.10784.pdf



SILICON TRACKER

• Principal tasks: 
◦ Precise track reconstruction 
◦ Measure the charge of the incident particles 
◦ Photon conversion to e+/e- pairs 

• Geometry and performance: 

◦ 6 tracking planes, double layer (XZ and YZ) 
◦ 3 Tungsten plates (total of ~1 X0) 
◦ Active area: 0.55 m2 x 12 layers 
◦ Spatial resolution ≤80 µm

https://arxiv.org/pdf/1806.10355.pdf



BGO CALORIMETER

๏ 308 Bi4Ge3O12 crystal bars 

○ Size of single bar: 2.5cm x 2.5cm x 60cm 

○ Bar cross-section 60cm x 60cm 

○ 14 layers of 22 bars 

○ Alternate XZ and YZ arrangement 

๏ Thickness of almost 32 X0 

○ Energy resolution (e/𝜸) @100 GeV: < 1.5% 

DAMPE AMS-02 Fermi LAT

e/γ Energy res.@100 GeV (%) <1.5 3 10

e/γ Angular res.@100 GeV (deg.) <0.2 0.3 0.1

e/p discrimination >105 105 - 106 103

Calorimeter thickness (X0) 32 17 8.6

Geometrical accep. (m2sr) 0.3 0.09 1



NEUTRON DETECTOR

• Principal task: 
◦ Enhance e/p separation 

• Geometry: 

◦ 4 Boron-doped plastic scintillator plates 
◦ Dimension (single plate): 19.5 cm x 19.5 cm x 1 cm 

• Detection technique: 

◦ Neutrons that enter the scintillator undergo the 
capture 

 
10Be + n →7 Li + α + γ



CHALLENGES WITH AN HIGH COSMIC-RAY BACKGROUND
THE GAMMA-RAY SELECTION

• The main sources of background are cosmic-
ray protons and electrons: 

• Protons: 105 @ E > 100 GeV 

• Electrons: 103 @ E > 100 GeV  

• How do we remove such components? 

• Shower profile 

• Interactions in all sub-detectors 



CHALLENGES WITH AN HIGH COSMIC-RAY BACKGROUND
THE GAMMA-RAY SELECTION

• Each sub-detector contributes in the PID 

• Pre-selection: geometrical cuts 

• First step: reject hadronic component 
(protons, heavier nuclei) 

• Second step: reject charged component 
(electrons, remaining protons and nuclei)



CHALLENGES WITH AN HIGH COSMIC-RAY BACKGROUND
PARTICLE IDENTIFICATION

Gamma-rayElectronProton

• Step 0: the reconstructed track must cross all sub-detectors



SEPARATE ELECTROMAGNETIC AND HADRONIC COMPONENTS USING SHOWER PROFILE
e/p separation

• Particle showers initiated by electrons (gamma) and protons (nuclei) involve different 
interactions with the medium  

• Projections in the XZ and YZ planes give 2D sections of the shower profile



SEPARATE ELECTROMAGNETIC AND HADRONIC COMPONENTS USING SHOWER PROFILE
e/p separation

Proton with ~150 GeV deposit (XZ view)Electron with ~150 GeV deposit (XZ view)

• The BGO calorimeter is the main sub-detector for e/p separation 

• Projections in the XZ and YZ planes give 2D sections of the shower profile 

• Can be treated as images, with additional information on the energy 
deposit 

• e/p separation can be treated as a binary classification problem 

• How we can make the most of it?

x

yz



DEEP LEARNING FOR IMAGE CLASSIFICATION
CONVOLUTIONAL NEURAL NETWORKS (CNN)

• CNNs are powerful architectures in deep learning used for image 
classification, pattern recognition, object detection (and more...) 

• Projections in the XZ and YZ planes of the calorimeter are used as images 
(matrices) with 7x22 pixels (elements) 

• As additional information, each pixel is weighted with the value of the 
deposited energy in the bar 

• The network input is an image (matrix) with shape (7,22,1) 

Input image (7,22)

Convolutional Layer 1

Max Pooling

Convolutional Layer 2

Fully-connected layer

Softmax

S B
PoS(ICRC2017)764



THE CONVOLUTION LAYER

• A kernel (shaded area) slides across the input matrix (light blue). At each step, a linear combination between the kernel 
elements and the matrix elements is computed, defining the weights for the new feature map 

• Some technicalities : 

• Stride: step size for kernel scanning across the matrix 

• Zero padding: a null-weights frame to control the feature-maps size 

• After using N kernels, the output is a 4-D tensor with shape (7,22,1,16)



MAX POOLING

• Similar to convolution but performs a downsample of the data object 

• Pooling comes in two variants: Max pooling and Average pooling 

• Two main advantages: 

• A 2x2 max pooling removes about 75% of network parameters 

• Reduces the pattern always to a region of interest where the information is maximized, providing a basic form of 
spatial invariance

13 6 7

15 3 2
29 1 6

63 7 4

5 7

9 7

2x2 kernel



CNN - FEW MORE INGREDIENTS

• Fully-connected layer: at this stage, a flattening operation transforms the 4-D tensor in a 2-D vector. Then the 
product with a weights matrix downsamples the object to a 2 elements vector 

• Softmax: outputs from the fully-connected layer are difficult to interpret, so one can apply the function: 

for J classes, to convert the scores into a probability in the range [0,1]. 

• Training and optimization: The CNN is trained on samples of Monte Carlo electrons and protons in the 
energy range 1 GeV - 10 TeV (up to 100 TeV for protons). The optimization function is the cross-entropy: 

• The optimizer algorithm used is ADAM (gradient-descent based)

S(yi) =
eyi

∑J
j=1 eyj

D(S, L) = − ∑
i

Lilog(Si)



CNN APPLICATION

• The trained CNN is used independently with the XZ and YZ 
view of each event 

• The output score obtained from each CNN is combined 
via majority voting to determine the final event score 

• Average voting resulted in a more effective approach 
than majority voting 

• We add another classifier that uses data in a more 
“classic”way, in order to improve the overall e/p 
separation

XZ view YZ view

CNN CNN

Average 
score

Final CNN score

Is this enough? No!



RANDOM FOREST CLASSIFIER

Is this enough? No!

•N trees (estimators) in the forest 

• For each tree, a random subset of data is 
selected  

•At each node, a random subsample of z 
variables is selected 

•The variable and cut that maximize the 
purity of the sample are chosen

•The Random Forest is trained with a total of N = 1000 estimators 

•Z = 3 random variables are used for each node 

•The Gini Index is used as objective function to train each estimator node 



• A total of 9 variables defined on the BGO calorimeter 
data are used. 

• The energy released in the NUD is added to this variables 

• All these variables have been selected with the same RF 
classifier from a larger sample

RANDOM FOREST CLASSIFIER

CNN 
XZ

CNN 
YZ

Average 
score

Average 
score

RF

Final e/p score
Proton contamination 

10-4 @ 99% eff.

PoS(ICRC2017)764



SEPARATING ELECTRONS AND PHOTONS IN THE ELECTROMAGNETIC COMPONENT

e/ɣ separation

• Once selected the electromagnetic component (e-/e+/ɣ) we want to remove the charged component 

• The PSD and the  first layer of the STK can be used as powerful veto system 

• One main effect limits the veto efficiency: back-scattering (aka backsplash)

PoS(ICRC2017)764



SEPARATING ELECTRONS AND PHOTONS IN THE ELECTROMAGNETIC COMPONENT

e/ɣ separation

• In the high energy range for the gamma-rays (> 1GeV), the backsplash effect is not negligible 

• Simple cut-based analysis may not be very effective —> we introduce another RF classifier for e/ɣ separation 

• A total of 12 variables has been defined using region of interests of the PSD around the particle track, and 
from the STK. 

• Same RF configuration used for the e/p separation



Gamma-ray selection - RESULTS
• In the high energy range for gamma-rays (> 1GeV), the backsplash effect is not negligible 

• Simple cut-based analysis may not be very effective —> we introduce another RF classifier for e/ɣ separation 

• A total of 12 variables has been defined using region of interests of the PSD around the particle track, and 
from the STK. 

• Same RF configuration used for the e/p separation
Kolmogorov-Smirnov test 

0.72 (S) - 0.76 (B)

PoS(ICRC2017)764



Gamma-ray selection - RESULTS

• The thresholds from the overall selection have been tuned to obtain a trade-off where the expected 
contamination rate from electrons is at the level of the extragalactic isotropic emission 

• The proton contamination after the 2 selections is reduced at a level lower than 10-7

Trigger effect Backsplash effect

PoS(ICRC2017)764



Gamma-ray selection - RESULTS

• An overall selection efficiency of 68% with an electron contamination of 10-3-10-4 in 1 GeV - 10 TeV 

• An average of 110 photons/day observed 

PoS(ICRC2017)764



Gamma-ray selection - RESULTS

• An overall selection efficiency of 68% with an electron contamination of 10-3-10-4 in 1 GeV - 10 TeV 

• An average of 110 photons/day observed 

CTA-102

Vela
Geminga

Crab

PoS(ICRC2017)764



Summary

• A complete machine learning-based particle identification pipeline can be implemented in a 
space-based detector with very good performance 

• Each detector can give a peculiar contribute to the selection and multiple different approaches 
can be combined 

• Imaging detectors like the DAMPE BGO calorimeter are very suitable environments to apply 
pattern recognition deep learning architectures like Convolutional Neural Networks 

• Multivariate algorithms can improve the performance of classic cut- based selections 

• The ML gamma-ray selection in DAMPE  has an high level of purity over the cosmic-rays 
background components 

• DAMPE is a good laboratory for this application, that can be scaled-up to more complex 
detector systems 

Take-home message: Machine Learning is not magic. Identify the physics-driven problem, choose 
the best approach, and have fun!


