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summary
SIGNAL & NOISE IN MEDICINE

SOME DATA ANALYSIS STEPS

MINING EXAMPLES

WRAP-UP
this talk won’t cover:

● general machine learning 
○ you already had plenty of it in these 

days
● deep/shallow/convolutional/adversarial/

... neural networks
○ same as above

● clustering
○ very important but no time...
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data mining is ... 
the short answer:

● TO FIND MEANING WITHIN A DATASET

which often includes

● TO FORECAST FUTURE IMPLICATIONS
● TO FIND AFFINITIES AND DIFFERENCES

and always imply

● DECISIONS ON METHODS & PARAMETERS
● HYPOTHESES TESTING

DATA are not just a [large] bunch of numbers

They ...

● have qualities/provenance
● have heterogeneity
● are related to a model 

○ implicit / explicit / qualit. / quant.
● come with extra-DATA knowledge 

○ metadata
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● Observations
○ Direct / indirect 
○ Derived from previous experiments / better 

estimates of current theories
● Theory

○ One or more models, depend on free parameters
○ Few parameters = happy physicist

● Experiment
○ Designed to verify key aspects of theory, 

prove/disprove models
○ Typical paradigm: Out = signal + noise
○ Reproducibility is a key factor

● Data analysis
○ Designed to extract “signal” from “noise” [filters]
○ Experiment characterization [noise]
○ Estimate model parameters [from signal]
○ Error estimation relatively simple

● Observations
○ Direct: Clinical practice

● Theory
○ No comprehensive models
○ Highly complex system
○ Subsystem interactions and history not negligible

● Experiment
○ Clinical trials (in vitro, in vivo, ….)
○ Typical paradigm: improvement / 

no-improvement
○ Reproducibility is rarely achieved

● Data analysis 
○ Designed to extract “improvement probability”
○ Strong a-priori assumptions
○ What is “noise”? 
○ Error estimation generally difficult

physics medicine
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signal & noise
Noise

Random fluctuations that obscure or do not 
contain meaningful data or other information

Signal

Those meaningful data or other information, 
which are interesting to us

the meaning depends on the goal
 

Always ask yourself what is the relevant information that might be present in your data
Only then can you define what signal and noise really are ...



Andrea Chincarini

example / Positron Emission Tomography

line of response (LOR) for unscattered 
photons Physical process: 511 keV γ photons

Noise → dark current, quantum efficiency, alignment, crystal 
uniformities, impurities, ...

Signal → num. of events (counts in coincidence received on the 
detector)



Noise → electronics, calibration issues, algorithm parameters, 
models, displaced intensity

Signal → 3D intensity map (image), the nicest one … but which one?

ToF, scatter correction, spatially 
variant PSF compensation

CT (X-ray) tissue dependent 3D 
attenuation, motion compensation, 
reconstructing algorithm



PathologicalHealthy

Noise → comorbidities, pathological models, templates, human 
experience, ...

Signal → likelihood of showing a pathological pattern

injection protocol,
scanner acquisition settings

Image analysis,
clinical evaluation, 
metadata
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noises in medicine
● ACQUISITION

○ Protocol (resolution, calibration, ...) 
○ Scanner/site quality issues (B-field 

inhomogeneities, electronic noise…)
○ Patient artefacts (movements, implants, 

medications, …)
● PROCESSING

○ Image reconstruction algorithm
○ Signal is deduced by comparison among 

cohorts → method selection is important
○ Information degradation due to sub-optimal 

processing
○ Depends on assumptions on “signal”

● PHYSIOLOGICAL
○ Confounding variables (age, sex, education, 

general anamnesis,…) 
○ History (comorbidities, unrecalled events, …)

● STANDARDS
○ What is our standard? Clinical evaluation? 

Autoptic studies?
○ Group mixing (clinical assessment is not 100% 

accurate)
○ Group purity (comorbidity, who is a 

“Normal/healthy control” )
○ Data provenance / population sampling

● MODEL
○ Data interpretation depends on pathology 

model
○ Critical decision about the prognosis
○ Analysis validation, inclusion/exclusion 

criteria

stochastic-like
bias

systematic



what about the 
signal?



Andrea Chincarini

symptoms, signs & markers
He

al
th
y

Di
se
as
ed

Time

symptom
departure from normal function or 
feeling which is noticed by a patient.
It is subjective, non-specific and 
cannot be measured directly (i.e. pain)

sign
objective pathological feature 
observable by others (i.e. clinicians) 
either directly or by means of clinical 
examination

overall health line

status index 

progression index 
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biomarkers
If ...

● there are a sufficient number of observations
● the statistical evidence is strong (cohorts, sensitivity, 

specificity,...)
● it works within a comprehensive pathological model
● longitudinal studies show at least correlation 

○ diagnosis / prognosis

def.1: an objective indication of medical state 
observed from outside the patient which can 
be measured accurately and reproducibly. 

def.2: any substance, structure, or process 
that can be measured in the body or its 
products and influence or predict the 
incidence of outcome or disease

biomarkers stand in contrast to medical symptoms, 
which are limited to those indications of health or 
illness perceived by patients themselves or read by 
trained personnel.

causality / correlation
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assumptions & pathology models
● pathology models are the medical 

counterpart of theories in physics
● unfortunately, they are mostly qualitative 

assessment relying on several 
assumptions and often limited data

● Yet, it is possible (and useful) to integrate 
them into our data analysis

A good analysis plan includes models and 
assumptions in it. This approach allows to test 
deviations from the theory and allows a more 
informed analysis

assumptions example:

● Space
○ Pathology manifestation is characterized by a 

“common signature” in the data and throughout the 
subjects

● Time
○ Pathology development is slow [quick] with respect to 

other physiological variabilities
● Linearity

○ Comorbidity is additive
● Survival

○ Comorbidity is multiplicative
● Derivative

○ The path from normalcy to pathological state can be 
modeled as a “smooth, continuous” transition so that 
we can use the two extremes as reference

● Sampling
○ Our sample is a good/bad representative of the whole 

population
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abstraction
Measuring is the core concept for a biomarker. 
This is where data mining comes into play

Raw information is often too coarse and 
“dirty” to be useful

Abstraction is really important. It is the 
approach to the data where we embed extra 
knowledge (models, qualitative information, 
etc.) and clean our data so that we can 
properly apply analysis techniques.

Abstraction is often implemented as multiple pre-processing 
steps, which often include feature extraction, dealing with missing 
data and typically imply dimensionality reduction techniques.

1. Clean data
2. Embed pathology models and extra info
3. Make data commensurable
4. Find common traits within cohorts
5. Find differences between them
6. Test and validate

CTRL 
cohort

Pathologic 
cohort
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missing data
fill in holes 

● Missing at Random (MAR)
○ missing at random means that the propensity for 

a data point to be missing is not related to the 
missing data, but it is related to some of the 
observed data

● Missing Completely at Random (MCAR)
○ the fact that a certain value is missing has 

nothing to do with its hypothetical value and with 
the values of other variables.

● Missing not at Random (MNAR)
○ missing value depends on the hypothetical value 

or on another variable (e.g. females generally 
don’t want to reveal their ages! missing value in 
age variable is impacted by gender variable)

In the first two cases, it is safe to remove the data with missing values depending upon their 
occurrences, while in the third case removing observations with missing values can produce a 
bias in the model. So we have to be really careful before removing observations. Note that 
imputation does not necessarily give better results.
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dimensionality reduction
Find the data representation (space) such that 
the contrast between signal and noise is 
maximized. 

The selection of the appropriate space is 
usually the key to a successful data mining

some notable examples

● Linear
○ SVD, PCA
○ Factor Analysis, Ind. Component An.

● Non linear
○ manifold embedding
○ t- Distributed Stochastic Neighbor 

Embedding (t-SNE)
○ autoencoders

● Feature selection
○ random forest (RF)
○ greedy algorithms
○ correlation filters
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data as table
after the abstraction layer we are often left 
with a table. here is where core data analysis 
techniques live 

“DATA AS TABLE” is the most common 
processed format in data mining

● descriptive statistics
● ROC analysis
● feature selection
● classifiers
● clustering
● linear / non-linear multivariate analysis
● predictions
● ...

sa
m

pl
es

variables
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Systematic error due to data acquisition, 
treatment, internal quality and pre-processing 
protocols that is related to a categorical 
variable (typically the acquisition site). 

Provenance systematic is very difficult to 
eliminate “a-priori” and it must always be 
considered in the analysis as a co-factor.

In medical data, the typical provenance error 
is much greater than the signal 

the provenance systematic

group A

group B

group A

group B

K

H

(AK-AH) ~ (BK-BH) > (Bj-Aj)
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typical process

Signal
contribution

Physics, 
scanner, 
protocols

Image 
modality

Clinical
input

Information 
theory Data set

Processing Quality 
assessment

Normaliza
tion

Characteriza
tion

Feature 
extraction Classifier

Noises Acquisition 
noises Physiological Processing,

Gold standard
Data 

processing Gold standard

MARKER

Raw data

Abstraction

Synthesis

Raw data
107 - 108

 DoF

abstraction / model
101 – 103 DoF

Marker 
1-2 DoF
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which can be complicated as needed...



example #1

The European DLB* dataset

N=183 samples (patients) diagnosed in 9 
European clinical centers

● brain FDG-PET scans
● various metadata

P.S. for this disease, 183 patients in Europe is the 
largest dataset to date …

working with mixed data types

*Dementia with Lewy Bodies
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the E-DLB dataset
4 “core clinical features” 0/1

● [PARK] parkinsonism
● [VH] visual hallucinations  
● [CFL] cognitive fluctuations 
● [RBD] REM-behavior disorder

no “pure” samples (patients always show 
mixed symptoms) 

analysis questions:

● is there a significant relationship 
between PET uptake and the core clinical 
features?

● if so, does this relationship has a distinct 
spatial characteristics (pattern)?

● can we find common traits to a single 
core clinical feature?

● can we use this trait as a way to 
discriminate / diagnose patients? 



step 1

assess data properties

look for missing data/outliers and 
decide how to handle them

embed hypotheses

transform data into a normative space 
and intensity

clean & normalize
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properties
dataset consists in N=183 samples (patients) 
diagnosed in 9 European clinical centers

heterogeneous data / sample consists of

● a 3D matrix
○  FDG-PET image, each center with its 

own dimension and SNR
● 6 categorical items 

○ center, gender, protocol, presence of 
core clin. features

● 1 discretized item
○ MMSE neuropsychological test

● 2 continuous variables 
○ age, education
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filling missing data with imputation
assumed missing data model: MNAR (missing 
not at random) because of strong link with 
center

set a limit on data 
reconstruction 

skip samples with too many
missing

validate final results 
with the original subset 
of complete data

decision tree 
for categorical var.

multivariate linear 
regression for cont. var.

train on complete data subset

estimate the [model dependent] 
most likely outcome 

for missing data

sa
m

pl
es

data table

original

filled

missing



Andrea Chincarini

intensity normalization: linear/non-linear 
scaling of the data to calibrate values on a 
reference norm

it sets the “unit of measures” for all data

it typically requires a reference measured in 
the same condition as the data

spatial & intensity normalization
spatial registration: iterative process 
mapping  two domains

● The map is a transformation matrix depending 
on a set of free parameters (d.o.f.)

● A metric is defined to measure how similar is 
the mapped domain (moving) to the target 
domain (fixed, template)

● Metric is minimized over d.o.f. 

Final space is that of the template. 

For instance we have now ~5 x 105 voxels for 
all images

normalization is akin to resample and scale 
your data on a uniform grid

RAW

REGISTERED

TEMPLATE
metric+

optimizer

displacement field



step 2
embed extra knowledge

map into feature space

model informationabstract
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embed knowledge

we want to embed the following notions into the analysis

● PET information has a typical spatial coherence length 
○ due to PSF and - more importantly - brain regions anatomy

● Intensity variation pattern *should* be related with clinical features
● ~ 5 x 105 voxels are too unbalanced with respect to 171 samples

solution: 

● use PCA eigenvectors as guide for relevant intensity-range 
● partition volume using coherence length 
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mapping into feature space
first 20 eigenvectors (then spatial frequencies 
become higher than the inverse length)

for each eigenvector:

zscore normalization to provide compactness 
and link to PCA variability

embed EV info v into coordinates
[x y z v] for k-means clustering

compact clusters which follow the EV 
gradient information

~ 500 partitions per EV 
(due to spatial coherence)

EV

clusters
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model

we apply now the multivariate linear model for each cluster in a partition 

<mean intensity in ROI> = Σj effectj x covariatej + residual

output: significance (p-values), effect size* for each
covariate

no quadratic / interaction effect for now. 
a simpler model is more robust (keep in mind n. of samples). test residuals for Gaussianity...

*rate of change in the dependent variable for a unit change in the covariate 

dependent variable
clinical core features, demographics, 

etc.



step 3
estimate parameters

extract knowledge

validate assumptionsanalyze
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estimate significant ROI
spatial mean of effects and p-values

for each voxel, average p-values and effects over all partitions to get a robust 
map

partition average avoid fluctuations due to multiple comparison (i.e. Bonferroni 
correction)

voxel

averaged 
p-value maps

patch
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patterns

this is the axis onto which we project our 
data 

patterns = [ effect / const ] |p-value < threshold 

the pattern is a normalized vector with 
dimensionality = 3D image
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discriminators and classifiers
we can think of images and patterns as vectors in space

their scalar product gives the projection

projection adjusted for 
all other covariates

significance of a t-test over the projection

patterns

covariates
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gauge the effect size

pattern is specific to the 
clinical core feature

pattern effect size severely 
limited by clinical covariates
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inference on new data

cohort statistics vs. single sample prediction

why? think about effects



more useful 
techniques

a glimpse on...

texture

relationship

causality



Andrea Chincarini

texture
scalar values are not the only interesting 
property. relationships (textures, pattern) can 
be much more meaningful

here again the metric use to define the 
relationship is arbitrary 

Texture provides information in the spatial 
arrangement of colours or intensities in an 
image.

Texture is characterized by the spatial 
distribution of intensity levels in a 
neighborhood.

50% black and 50% white distribution of pixels

Three different images with the same intensity 
distribution, but with different textures
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relationship
relationship (distance)
matrix

Mij=d(xi,xj)

very useful for 
patterns, networks, 
clustering, …

depends on the distance:

A: euclidean
B: correlation
C: chebyshev  

distance A distance B

distance C

xi
xj
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causality
relationship based on a distance is 
symmetrical

d(xi,xj)=d(xj,xi)

causality analysis can infer dominance in the 
dynamic of a variable over another

c(xi,xj)≠c(xj,xi)

can test assumptions 
and models

very powerful! but use with 
caution

Most common methods:

● Structural equations
● Granger Causality
● Convergent Cross Mapping



example #2 amyloid accumulation patterns

application of relationship 
matrix to graph & clustering
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amyloidosis patterns
accumulation patterns in amyloidosis

● qualitative model indicates amyloid 
accumulation in the brain as a monotonic 
function of time

● histopathological studies show that 
amyloid load slowly grows in the brain 
from the most central parts towards 
the periphery

● we can’t follow a subject throughout his life with 
amyloid scans ⇒ we have only cross-sectional data → ergodic theorem
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PCA scores on 1st eigenvector to 
determine the transition

data matrix

consensus clustering  

embed hypotheses
parcellate brain into ROIs and measure the 
amyloid load for each ROI

do this for a number of samples (patients) 
that include all amyloid loads (from the most 
negative to the most positive)

MNI template: 25 contralateral ROIs 

ROI

sa
m

pl
es

re-ordered relationship matrix 

A

B

C
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degree-of-order peaks in the transition
several graphs properties to investigate

networks

A B C

A B C

44

amyloid uptake transition dominates the connectivity 
graph. almost all connections lost after plateau!

now we can look for specific/unique patterns

de
gr

ee
 o

f o
rd

er
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average amyloid load
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path
accumulation path as rank distance

consensus clustering applied to 
the transposed data matrix

metric: Spearman correlation (rank)

we can test possible positivization paths: 
do all patients become amyloid-positive in the 
same way?
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if we couple it with the sigmoid model... 

patient a

patient b

patient c

earlier positivization

late positivization
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model validation
you can verify models and assumptions, for instance: 
take the amyloid accumulation model…

tested with all three 18F amyloid tracers, ~500 scans, 2 
quantification methods 

gold standard: consensus visual reading (5 ind. clin.)



conclusion

learn to know your data

embed as much information as 
possible into your analysis

don’t skip on cleaning, normalizing and 
dim. reduction (data abstraction)

aim for the most informative analysis 
technique

keep it simple, don’t just fall into the 
most fashionable technique


