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summary

this talk won’t cover:

e general machine learning

o you already had plenty of it in these
days
e deep/shallow/convolutional/adversarial/
.. neural networks

o same as above

e cClustering
o veryimportant but no time...

SIGNAL & NOISE IN MEDICINE

SOME DATA ANALYSIS STEPS

MINING EXAMPLES

WRAP-UP
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data mining is ...

the short answer: DATA are not just a [large] bunch of numbers

e TO FIND MEANING WITHIN A DATASET

which often includes They ..

e T[O FORECAST FUTURE IMPLICATIONS

e have qualities/provenance
e TO FIND AFFINITIES AND DIFFERENCES

have heterogeneity
are related to a model

o implicit / explicit / qualit. / quant.
e DECISIONS ON METHODS & PARAMETERS e come with extra-DATA knowledge
e HYPOTHESES TESTING ©  metadata

and always imply



physics

Observations

(@]

O

Direct / indirect
Derived from previous experiments / better
estimates of current theories

Theory

O

(@]

One or more models, depend on free parameters
Few parameters = happy physicist

Experiment

O

O

(@]

Designed to verify key aspects of theory,
prove/disprove models

Typical paradigm: Out = signal + noise
Reproducibility is a key factor

Data analysis

O

(@)
o
(@)

Designed to extract “signal” from “noise” [filters]
Experiment characterization [noise]

Estimate model parameters [from signal]

Error estimation relatively simple
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medicine

Observations
o  Direct: Clinical practice
Theory
o  No comprehensive models
o  Highly complex system
o  Subsystem interactions and history not negligible
Experiment
o Clinical trials (in vitro, in vivo, ....)
o  Typical paradigm: improvement /
no-improvement
o  Reproducibility is rarely achieved
Data analysis
o  Designed to extract “improvement probability”
o  Strong a-priori assumptions
o What is “noise™?
o  Error estimation generally difficult



sighal & noise
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Noise

Random fluctuations that obscure or do not
contain meaningful data or other information

Signal

Those meaningful data or other information,
which are interesting to us

YOU DIDNT
ANSWER MY

Dilbert.com DilbertCartoonist@gmail.com

I TRIED TO
READ IT BUT THE
SIGNAL—TO—-NOISE
RATIO WAS TOO

the meaning depends on the goal

Always ask yourself what is the relevant information that might be present in your data
Only then can you define what signal and noise really are ...
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example / Positron Emission Tomography

line of response (LOR) for unscattered
photons

Physical process: 511 keV y photons

Signal — num. of events (counts in coincidence received on the
detector)

Noise — dark current, quantum efficiency, alignment, crystal
uniformities, impurities, ...




£

PET with CT

KA CT (X-ray) tissue dependent 3D
attenuation, motion compensation,
reconstructing algorithm

cT PET

ToF, scatter correction, spatially
variant PSF compensation

' B FBP
rS S £ rS
|

BW 0.6 cycles/cm BW 1.0 cycles/cm BW 0.6 cycles/cm BW 1.0 cycles/cm
5" order 7" order 5" order 7" order

Signal — 3D intensity map (image), the nicest one ... but which one?

Noise — electronics, calibration issues, algorithm parameters,

models, displaced intensity < P PN 29

! BW 1.0 cycles/cm BW 0.6 cycles/cm BW 1.0 cycles/cm BW 0.6 cycles/cm
| 7" order 5" order 7" order 5" order




Image analysis,
clinical evaluation,
metadata

injection protocol,
scanner acquisition settings

Signal — likelihood of showing a pathological pattern

Healthy l Pathological

Noise — comorbidities, pathological models, templates, human ’
experience, ...




noises Iin medicine

e ACQUISITION

(@]

O

O

Protocol (resolution, calibration, ...)
Scanner/site quality issues (B-field
inhomogeneities, electronic noise...)
Patient artefacts (movements, implants,
medications, ...)

e PROCESSING

O

(@]

(@]

Image reconstruction algorithm

Signal is deduced by comparison among
cohorts — method selection is important
Information degradation due to sub-optimal
processing

Depends on assumptions on “signal”

e PHYSIOLOGICAL

O

O

Confounding variables (age, sex, education,
general anamnesis,...)
History (comorbidities, unrecalled events, ...)
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e STANDARDS

O

O

What is our standard? Clinical evaluation?
Autoptic studies?

Group mixing (clinical assessment is not 100%
accurate)

Group purity (comorbidity, who is a
“Normal/healthy control”)

Data provenance / population sampling

e MODEL

o

Data interpretation depends on pathology
model

Critical decision about the prognosis
Analysis validation, inclusion/exclusion
criteria

stochastic-like

INFN




what about the
signal?
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symptoms, signs & markers

status index

symptom

departure from normal function or
. feeling which is noticed by a patient.

. 7 It is subjective, non-specific and
Ve cannot be measured directly (i.e. pain)

—>
\

Diseased

P ¢ sign
. : objective pathological feature
7’

L. observable by others (i.e. clinicians)
progression index P * either directly or by means of clinical
. examination

P overall health line

Healthy

Time



biomarkers

there are a sufficient number of observations
the statistical evidence is strong (cohorts, sensitivity,
specificity,...)
it works within a comprehensive pathological model
longitudinal studies show at least correlation

o diagnosis / prognosis

Andrea Chincarini

def.1: an objective indication of medical state
observed from outside the patient which can
be measured accurately and reproducibly.

def.2. any substance, structure, or process
that can be measured in the body or its
products and influence or predict the
incidence of outcome or disease

biomarkers stand in contrast to medical symptoms,
which are limited to those indications of health or
illness perceived by patients themselves or read by
trained personnel.

INFN
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assumptions & pathology models

e pathology models are the medical
counterpart of theories in physics

e unfortunately, they are mostly qualitative
assessment relying on several
assumptions and often limited data

e Yet, itis possible (and useful) to integrate
them into our data analysis

A good analysis plan includes models and
assumptions in it. This approach allows to test
deviations from the theory and allows a more
informed analysis

assumptions example:

Space
o Pathology manifestation is characterized by a
“common signature” in the data and throughout the
subjects
Time
o Pathology development is slow [quick] with respect to
other physiological variabilities
Linearity
o Comorbidity is additive
Survival
o Comorbidity is multiplicative
Derivative
o The path from normalcy to pathological state can be
modeled as a “smooth, continuous” transition so that
we can use the two extremes as reference
Sampling
o Our sample is a good/bad representative of the whole
population

INFN



Andrea Chincarini INFN

abstraction

CTRL
cohort

Measuring is the core concept for a biomarker.
This is where data mining comes into play

Raw information is often too coarse and

“dirty” to be useful Pathologic
cohort

Abstraction is really important. It is the
approach to the data where we embed extra
knowledge (models, qualitative information,
etc.) and clean our data so that we can
properly apply analysis techniques.

Clean data

Embed pathology models and extra info
Make data commensurable

Find common traits within cohorts

Find differences between them

Test and validate

Abstraction is often implemented as multiple pre-processing
steps, which often include feature extraction, dealing with missing
data and typically imply dimensionality reduction techniques.

o AN
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missing data

ﬁ” in hO|eS Deleting Rows (Listwise
Deletion)
° Missing at Random (MAR) Pairwise Deletion
o  missing at random means that the propensity for g Doeton
a data point to be missing is not related to the - Deleting Columns

missing data, but it is related to some of the
observed data

e  Missing Completely at Random (MCAR) ' . [
o the fact that a certain value is missing has _ without Seasonality | sample imputation
nothing to do with its hypothetical value and with Data
the values of other variables. | TimeSeries |  DatawithTrenag | e meroRten
Problem without Seasonality

° Missing not at Random (MNAR)
o missing value depends on the hypothetical value
or on another variable (e.g. females generally _Da‘av;::;f:;fw&with ::::::ﬂ::mm
don’t want to reveal their ages! missing value in
age variable is impacted by gender variable)

) Make NA as level,
o Imputation = Categorical Mu!ti;':le Imputation,
) . ) . ) _ General Logistic Regression
In the first two cases, it is safe to remove the data with missing values depending upon their | Problem
occurrences, while in the third case removing observations with missing values can produce a Mean, Median, Mode,
bias in the model. So we have to be really careful before removing observations. Note that el Multiple imputatlor;
Linear Regression

imputation does not necessarily give better results.
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dimensionality reduction

Find the data representation (space) such that some notable examples
the contrast between signal and noise is
maximized. e Linear

o SVD, PCA

o  Factor Analysis, Ind. Component An.

e Non linear
o  manifold embedding
o t- Distributed Stochastic Neighbor
Embedding (t-SNE)
o autoencoders
e Feature selection
o random forest (RF)
o  greedy algorithms
* Missing Value Ratio o correlation filters

» Low Variance Filter

« High Correlation Filter
« Random Forest

« Backward Feature Extraction « Factor Analysis
« Forward Feature Selection « Principal Component
Analysis

* Independent Compone
Analysis

The selection of the appropriate space is
usually the key to a successful data mining

* ISOMAP
* t-SNE
« UMAP
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data as table

after the abstraction layer we are often left “DATA AS TABLE” is the most common
with a table. here is where core data analysis processed format in data mining

techniques live
descriptive statistics

ROC analysis

variables feature selection

[Enter filter text |

Location Gagingstation | River | Level |  Date | Average maxium waterlevel | Average minimum water level | Water level | Hydrograph | A .

1 Achleiten Achleiten Donau 400 cm |2016-06-08 11:30 - - Unknown _ ganglinien390 C | Qssi fl ers
2 Passau lizstadt Passau lizstadt Donau 614cm  2016-06-080%:15 827 cm 418cm Normal ‘ganglinien294
3 Passau Donau Passau Donau Donau 616cm  2016-06-0809:30 832 cm 403 cm Normal ganglinien170
4 Vilshofen Vilshofen Donau 413cm |2016-06-0810:15 555 cm 209 cm Normal  gengliniend94 | H
5 Hofkirchen Hofkirchen Donau |397cm | 2016-06-080%:00 557 cm 196 cm Normal  gengliniens76 Clu Ste rin g
6 Deggendorf Deggendorf Donau 414cm  2016-06-0811:30 615cm 192 cm Normal ‘ganglinien344
7 Pfelling Pfelling Donau 497 cm  2016-06-08 0%:15 697 cm 268 cm Normal jangliniend92 . . . . .
e e S e — e linear / non-linear multivariate anal ysis
9 Patter Patter Donau 413cm | 2016-06-08 10:00 601 cm 307 cm Normal  ganglinien266
10 Schwabelweis Schwabelweis Donau 358cm  2016-06-08 11:45 520 cm 283 cm Normal ‘gangliniend28 . .
11 Eiserne Bracke Eiserne Bricke Donau  (320cm |2016-06-0809:15 501 cm 195 cm Normal | ganglinien500 p red | C‘t I O n S

Niederwinzer Niederwinzer Donau |504cm | 2016-06-06 04:00 - Unknown  ganglinien122

13 Oberndorf Oberndorf Donau  308cm  2016-06-08 11:45 |518 cm 157 cm Normal .ganglinien186
14 Kelheimwinzer Kelheimwinzer Donau 353cm  2016-06-0811:45 516cm 257 cm Normal  gangliniend3s

samples

15 Ingolstadt Luitpoldstrasse |Ingolstadt Luitpoldstrasse Donau  302cm | 2016-06-08 07:15 - - Unknown | ganglinien288 e
16 Schona Schona Ebe  173cm |2016-06-0811:30 641 cm 91cm Normal  ganglinien568
17 Pima Pirma Ebe  199cm 2016-06-08 11:15 614 cm 110 cm Normal | ganglinien358
18 Dresden Dresden Ebe  167cm |2016-06-0811:30 |574cm 78cm Normal  ganglinien280
19 Meissen Meissen Ebe  224cm |2016-06-0811:15 637 cm 126 cm Normal | ganglinien150
20 Riesa Riesa Ebe  239cm |2016-06-0811:30 635 cm 148 cm Normal  gangliniend0d

21 Muhlberg Mahlberg Ebe  (262cm |2016-06-0811:15 684 cm 177em Normal | ganglinien198
2 Torgau Torgau Ebe  167cm |2016-06-0811:30 623 cm 70cm Normal  ganglinien160
23 Pretzsch-Mauken Pretzsch-Mauken Ebe  165cm |2016-06-0811:15 584 cm Tlem Normal | ganglinien162
24 Elster Elster Ebe  165cm |2016-06-0811:15 514cm 60.cm Normal  ganglinien140
25 | Wittenberg Wittenberg Ebe  (233cm |2016-06-0811:45 543 cm 114cm Normal | gengliniend36 | v

Import data | | Export data | | Map legend
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the provenance systematic

Systematic error due to data acquisition,

treatment, internal quality and pre-processing

. . group A
protocols that is related to a categorical K-
variable (typically the acquisition site). groupIB
Provenance systematic is very difficult to ]
eliminate “a-priori” and it must always be oL & o
considered in the analysis as a co-factor.

group B

In medical data, the typical provenance error

is much greater than the signal
9 9 (AcAD ~ (BB > (B-A)
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typical process

Criterion value

Without
disease

N TP
FN rp

Testresult

Phuysics,

Site]alel] Image Clinical Information
o scanner, ) - Data set Raw data
contribution protocols modality input theory 107 - 108 DoF
Processing Quality Normaliza Characteriza Feature Classifier abstraction / model
assessment tion tion extraction 10" - 10° DoF
Acquisition ) : Processing, Data Marker
noises Pl el Gold standard processing Sellelsizelnelere
1-2 DoF
Raw data Synthesis
() o o MARKER

Abstraction
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which can be complicated as needed...

Tissuespecific  2ole density maps as Jeat
density maps N

Wy
Supervised/un: ised Reduced feat
feature reduction

Atlas-based methods Single-set adaptive ROIs = : A _
1234560
e y ructura o Functional MRI .

S R Multiple-sets adaptive ROIs
L Adaptive-ROI st n sets concatenated

-------------------------- . —

rowez [\ L

n

Structural MRI

/[ st compinea
|| afer separatety
/ ]

R()IE\‘éln K D
=

h 4

............... Cortical surface

Surface map

Cortical Sups supervised
T | et | n R R
h 4 w 4 w

Atlas-based methods

733455 s I Fi I F, ' ..... |Fn-1| Fan |

14
G Co

Features of pre-defined - H
r:gh:ln: (c.g.pvr:Iu:le, :mpei C1 v — w
MR section it [ Combining results

hippocampus

-
Final prediction (AD/MCI/CN/sMCI/pMCI) Final prediction (AD/MCI/CN/sMCI/pMCI)

Pre-
D defined
regions

-I::j Hippocampus features |
| =
\Biologically selected features!




example #1

working with mixed data types

The European DLB* dataset

N=183 samples (patients) diagnosed in 9
European clinical centers

e Dbrain FDG-PET scans
e various metadata

PS. for this disease, 183 patients in Europe is the
largest dataset to date ...

*Dementia with Lewy Bodies
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the E-DLB dataset

4 “core clinical features” 0/1 analysis questions:
e [PARK] parkinsonism e s there a significant relationship
e [VH] visual hallucinations between PET uptake and the core clinical
o [CFL] cognitive fluctuations features?
e [RBD] REM-behavior disorder e if so, does this relationship has a distinct
spatial characteristics (pattern)?
no “pure” samples (patients always show e can we find common traits to a single
mixed symptoms) core clinical feature?

Annals of Anofmcaljournatof @ " @ e can we use this trait as a way to
g discriminate / diagnose patients?

N E R L Y Association and the
Child Neurology Society

Research Article

Metabolic patterns across core features in dementia with lewy
bodies

Silvia Morbelli MD, PhD g, Andrea Chincarini PhD, Matthias Brendel MD, Axel Rominger MD, Rose
Bruffaerts MD, PhD, Rik Vandenberghe MD, PhD, Milica G. Kramberger MD, PhD ... See all authors -

First published: 25 February 2019 | https://doi.org/10.1002/ana.25453



assess data properties

look for missing data/outliers and

Ste p 'l decide how to handle them

embed hypotheses

clean & normalize transform data into a normative space

and intensity
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properties

dataset consists in N=183 samples (patients)
diagnosed in 9 European clinical centers

heterogeneous data / sample consists of

e a4 3D matrix
o) FDG-PET image, each center with its
own dimension and SNR
e 6 categorical items
Code Centre eyes Gender Age  Education  MMSE  Parkin o center, gender, protocol, presence of
core clin. features

' GEN-DLB- 30! genova closed m 70 8 26 i . E .

' GEN-DLB- 33" genova open f 81 5 5 1 ® 1 discretized item

' GEN-DLB- 43! genova open f 78 5 25 o]

' GEN-DLB-05' genova open f 7> 5] 17 1 o i
o, e il : = 2 z 1 MMSE neuropsychological test
' GEN-DLB-10' genova open f 71 8 22 1 : :

S Lo ek ¥ z : = 3 e 2 continuous variables

' GEN-DLB- 13" genova open f 72 8 28 0

o age, education
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filling missing data with imputation

assumed missing data model: MNAR (missing R decision tree
not at random) because of strong link with e = for categorical var.

N K i
1 child split_/\ /N 2" child split

center =5 :E E EE R,

multivariate linear

set a limit on data 0 =® regression for cont. var.
reconstruction N .
“ ' <— original "
skip samples with too many i )
missing - filed  —— train on complete data subset
R
validate final results 5 = T missing Q- estimate the [model dependent]
with the original subset :: i 1:: il most Iikel_g (?utcome
of complete data ], . for missing data
10|+ 180

0 10 0 10
nz=121 nz=57
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spatial & intensity normalization

spatial registration: iterative process
mapping two domains

® The mapis atransformation matrix depending
on a set of free parameters (d.o.f.)

e A metricis defined to measure how similar is
the mapped domain (moving) to the target
domain (fixed, template)

e  Metric is minimized over d.of.

Final space is that of the template,

For instance we have now ~5 x 10° voxels for
all images

normalization is akin to resample and scale
your data on a uniform grid

intensity normalization: linear/non-linear
scaling of the data to calibrate values on a
reference norm

it sets the “unit of measures” for all data

it typically requires a reference measured in
the same condition as the data

displgcement field

metric+
optimizer

INFN



embed extra knowledge

Ste p 2 map into feature space

model information

abstract
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embed knowledge

we want to embed the following notions into the analysis

e PET information has a typical spatial coherence length
o due to PSF and - more importantly - brain regions anatomy

e Intensity variation pattern *should* be related with clinical features
e ~5x10° voxels are too unbalanced with respect to 171 samples

solution:

e use PCA eigenvectors as guide for relevant intensity-range
e partition volume using coherence length
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Mapping into feature space

first 20 eigenvectors (then spatial frequencies for each eigenvector:

become higher than the inverse length)
zscore normalization to provide compactness

and link to PCA variability

embed EV info v into coordinates
[X y z v] for k-means clustering

compact clusters which follow the EV
gradient information

~ 500 partitions per EV
(due to spatial coherence)
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we apply now the multivariate linear model for each cluster in a partition

<mean intensity in ROI> = Zj eﬂfectj X coveuriatej + residual

? Bo..Bs ~ _ tstat pvalue
\I I’ //
1
clinical core features, demographics, / I' /
H Coefficients 4 * ‘
dependent variable etc. Eottmace std. Error[¢vatae | FGTE
(Intercept) [85086.39| 15265.49| -5.57 .00000012266 ***
engineSize 102.85 15.38 6.69 .00000000049 ***
paron | | om| | ower~
R 3 3 . . * 1?ngth -37.91 54.19| -0.70 0.4854 =
output: significance (p-values), effect size* for each = 20 = =

Signif, codess § "™ J000 = gL RSB " RL "L

.
OVO rl O ‘te Residual standard error: 3300 on 141 degrees of freedom
(: observations deleted due to missinan

s
Adjusted R-squared: 0.811

no quadratic / interaction effect for now.
a simpler model is more robust (keep in mind n. of samples). test residuals for Gaussianity...

*rate of change in the dependent variable for a unit change in the covariate



estimate parameters

Ste p 3 extract knowledge

validate assumptions

analyze
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estimate significant RO

spatial mean of effects and p-values

for each voxel, average p-values and effects over all partitions to get a robust
map

partition average avoid fluctuations due to multiple comparison (i.e. Bonferroni
correction)

Parkinsonism oo CogFluct 0.002
>~ . o o 0 0 A 30 2.5 s o™ i 2 %a Vi Vi - patch
< ’ I WO @ @ @ U NrNrvY S I voxel
‘ ‘ ‘ ‘ ‘ c’o o‘o o.' Y oo 'ln ’-]\ & j\ A j\ 4 j\ 4 "\ 4 ~v’~\ 4 -'7\ { -;-\
A A A v\ W\ V. oo v w e \w \w \w
” " ” " LI\ LN ZPN OTN CT\ AN BN RN Iy averaged
y W /\/~/~/\J~J\J b«hb\.\.‘.\.\.\. : p-value maps
ld\ lv\ -'\ “ ‘ . :
N J b J J » 7 7 o+ v N o S W b N > % W -

INFN



Andrea Chincarini INFN

patterns

this is the axis onto which we project our

data %

patterns = [ effect / const ] |p-value < threshold ;

the pattern is a normalized vector with
dimensionality = 3D image ),




Andrea Chincarini INFN

discriminators and classifiers

we can think of images and patterns as vectors in space significance of a t-test over the projection
p-value = 0.0011 p-value = 0.0001 p-value = 0.0001 p-value = 0.0002
70 e * 20
g 140 § 60 § -40 g 10
projection adjusted for £ 120 F ;g 5 -50 ER
all other covariates g E I z
2100 ERS 2 Z 10
= v = =
< < 20 < 70 =
80 10 20
+ -80
0 1 .
their scalar product gives the projection v covariates EE;
patterns

N 390§ «@eald 068

GORRL OVHHO HBHBO
QOO0 QOOLD OO0
o0 Sddee QOO0e

pattern intensity

-0.5




gauge the effect size
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Centre: leuven to monaco —_—— ‘ Centre: genova to monaco —e— ‘
Gender: ftom I Gender: o m —e_ pattern effect size severely
Age: 53 to 87 Age: 53 to 87 T limited by clinical covariates
Education: 3 to 22 Education: 3 to 22
MMSE: 5 to 30 MMSE: 5 to 30 —_——
Parkinsonism: 0 to 1 == Parkinsonism: 0 to 1 —e—
Visual: 0 to 1 e — Visual: 0 to 1 —e—
CogFluct: 1 to 0 —— CogFluct: 1 to 0 —e—
RBD: 0 to 1 - RBD: 0 to 1 4o
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
Effect Effect
CFL RBD
Centre: brescia to lubljiana —_—— ‘ Centre: leuven to linkping *e—.
Gender: f to m ﬂf Gender: f to m —e—
Age: 53 to 87 —e— Age: 53 to 87 —_—
Education: 3 to 22 —e— Education: 3 to 22 —e—
MMSE: 5 to 30 ——e— MMSE: 5 to 30 —e—-—
Parkinsonism: 1 to 0 —e— pattern is specific to the Parkinsonism: 0 to 1 —e—
Visual: 0 to 1 — clinical core feature Visual: 0 to 1 —
CogFluct: 0 to 1 ‘ —o— CogFluct: 1 to 0 —e—
RBD: 0 to 1 5 RBD: 0 to 1 | —o
-30 20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
Effect Effect

INFN



INnference on new data

cohort statistics vs. single sample prediction

o
=2}
=]

p-value = 0.0003

Adjusted pattern

p-value = 0.0011

o
o

sensitivity
°
>

o
N

o

AUC=0.76

o

0.5
1-specificity

g 280 &
Q
8
g
- 260
[}
2
= 240
< +
220 +
0 1
VH
1
0.8
E’ 0.6
:g AUC=0.69
504
177]
0.2
0
0 0.5

1-specificity

Adjusted pattern

sensitivity

-140

-150

'
—
D
f=}

-170

[T
S ©® ®
S S &

o
©

o
[N]

p-value = 0.0026

<
o

o©
>

=

CFL

o

AUC=0.68

o

0.5
1-specificity
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p-value = 0.0007

'
—
(=)
f=}

-160

Adjusted pattern

e
%
S o

why? think about effects

o
©

o
o

AUC=0.65

sensitivity
©
o

0.2

0 0.5 1
1-specificity

INFN




more useful
techniques elationship

causality

a glimpse on..
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texture
scalar values are not the only interesting 50% black and 50% white distribution of pixels
property. relationships (textures, pattern) can
be much more meaningful Three different images with the same intensity

distribution, but with different textures
here again the metric use to define the
relationship is arbitrary

Texture provides information in the spatial
arrangement of colours or intensities in an
image.

Texture is characterized by the spatial
distribution of intensity levels in a
neighborhood.
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relationship

relationship (distance)
matrix

distance B
Mij-d(xi,xj) Y : |
X.
J 0.25
very useful for
patterns, networks,
clustering, ...

depends on the distance:

25

A: euclidean & = (2, — z0)(zs — 1)’

. H (ms _Es)(mt _Et)’
dss =1-
B: correlation V(@e =25 (zs —2o) v/ (@ —21) (x —21)

C: chebyshev dye = max{las; — 2}

disto:nce e

0.5

20 40 60 80 100 120 140 160 180

INFN



causality

relationship based on a distance is
symmetrical

d(xi,xj):d(xj,xi)

causality analysis can infer dominance in the
dynamic of a variable over another

A

Cgs_e it ) .
C<X|’XJ)¢C(XJ’XI) Bidirectional coupling

Caseii: v

Unidirectional coupling

can test assumptions
and models

Example 1:
Extemal forcing of

non-coupled variables
Example 2:
Complex model \ l

very powerfull but use with
caution

a

Fig. 4. Model causal networks. (A) Schematics of causal networks: two base cases and two model
examples showing external forcing of noncoupled variables. (B) Cross-map results for example 1: external Fig 2.
forcing of noncoupled variables. Cross-correlation erroneously suggests that X and Y are interacting,
whereas cross mapping correctly shows that there is no interaction. (€) Cross-map results for the complex
five-species model example. All significant (P < 0.05) mappings are given and indicate that species 1, 2,
and 3 (the subsystem in the circle) all interact mutually (case i), but interact only
extemal forcing variables with respect to 4 and 5 (case i), which do not interact directly themselves.
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Most common methods:

e Structural equations
e Granger Causality
e Convergent Cross Mapping

{@PLOS |oxe

, RESEARGH ARTIGLE
. = %2?555?'3'"’" Causality Analysis: Identifying the Leading
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are selected (empty cirdles, Y, right) and their distances, di, to Y, are determined. For each neighbor point, it6 contemporaneous point in the driver
M, is (empty circles, X;, left). The weighted average of these points, X, is compared with X., the true
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exa m p ‘ e #2 amyloid accumulation patterns

application of relationship
matrix to graph & clustering




amyloidosis patterns

accumulation patterns in amyloidosis

qualitative model indicates amyloid
accumulation in the brain as a monotonic
function of time

histopathological studies show that

amyloid load slowly grows in the brain

from the most central parts towards

the periphery

we can’t follow a subject throughout his life with
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Timeline of changes in the ageing brain

[ Clinical presentation | [ _Cellular pathology |

(1) Age- {Le Vascular, p o1 DNA oll colls

(2) ONA repa! being
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{4 Freperatie ORA darnage i neurons
(8) Ectopic cell cycle in neurons.
mmllw neurons
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Amyloid burden

Magnitude
|

Grey matter/neuron

2 Cognition

Myelin volume

Age (years old)

amyloid scans = we have only cross-sectional data — ergodic theorem



embed hypotheses
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parcellate brain into ROIs and measure the
amyloid load for each ROI

do this for a number of samples (patients)
that include all amyloid loads (from the most
negative to the most positive)

MNI template: 25 contralateral ROIs

samples

ROl

PCA scores on 1st eigenvector to
determine the transition

data matrix

consensus clustering

Machine Leaming
1y 2003, Volume 52, lske 1-2,pp 91-118 | Citeas

iy 200, volume 5 ops1-118 i
Consensus Clustering: A Resampling-Based Method for . N N
Class Discovery and Visualization of Gene Expression re-ordered relationsh P matrix
Microarray Data = b
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networks

degree-of-order peaks in the transition
several graphs properties to investigate

degree of order p

average amyloid load

amyloid uptake transition dominates the connectivity
graph. almost all connections lost after plateaul

now we can look for specific/unique patterns
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accumulation path as rank distance

consensus clustering applied to
the transposed data matrix

metric: Spearman correlation (rank)

we can test possible positivization paths:
do all patients become amyloid-positive in the
same way?
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patient (sorted)

if we couple it with the sigmoid model...

patient a

20

patient b

patient (sorted)

40

60

80

140

5 1015 20 25
ROI cluster 1

patient ¢
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load difference
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model validation
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you can verify models and assumptions, for instance:
take the amyloid accumulation model...

tested with all three 18F amyloid tracers, ~500 scans, 2
quantification methods

gold standard: consensus visual reading (5 ind. clin.)
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conclusion

learn to know your data

embed as much information as
possible into your analysis

don’t skip on cleaning, normalizing and
dim. reduction (data abstraction)

aim for the most informative analysis
technique

keep it simple, don’t just fall into the
most fashionable technique




