
Python Introduction Course: simplifying pythonPython Introduction Course: simplifying python
programmingprogramming
With emphasis on data-science problems

This course is available on
Contact me: (mailto:andrea.dotti@gmail.com)

Geant4 Course at the 16th Seminar on Software for Nuclear, Sub-nuclear and Applied
Physics, Porto Conte, Alghero (Italy), 26-31 May 2019. (https://agenda.infn.it/event
/17240/)

gitlab (https://gitlab.com/andreadotti/pyalghero2019)

Packages locationPackages location

We have seen that a module or package can be used in a python session via:

In [2]: import numpy as np

But where does the file(s) of a package actually reside?
When an import statement is executed there are several paths where the package is
searched for (similarly to how PATH or LD_LIBRARY_PATH search paths work for

binaries and libraries on linux).

In [4]: import sys
sys.path

In [5]: np.__file__

A module, when imported, is searched in order in the list of paths. The current directory is
by default added as the first search path. The directory site-packages usually contains

the distribution modules and packages. Note that often packages can come in egg format

(all files of a packaged are zipped together with meta-data files).

Out[4]: ['/mnt/d/Andrea/Work/PyAlghero2019/Slides',
 '/home/adotti/anaconda3/envs/pycourse/lib/python37.zip',
 '/home/adotti/anaconda3/envs/pycourse/lib/python3.7',
 '/home/adotti/anaconda3/envs/pycourse/lib/python3.7/lib-dynload',
 '',
 '/home/adotti/anaconda3/envs/pycourse/lib/python3.7/site-packages',
 '/home/adotti/anaconda3/envs/pycourse/lib/python3.7/site-packages/IPython/ext
ensions',
 '/home/adotti/.ipython']

Out[5]: '/home/adotti/anaconda3/envs/pycourse/lib/python3.7/site-packages/numpy/__init
__.py'

Changing search pathChanging search path
You can add or modify the path search in two ways, directly from a python program,
manipulating the sys.path list:

In [11]: import sys
from os.path import join
sys.path.append(join('home','adotti','work'))
sys.path[-1]

On *NIX systems You can also define the environment variable PYTHONPATH before
starting a python session to extend the search path.

Out[11]: 'home/adotti/work'

Installing packagesInstalling packages

pip and virtualenvpip and virtualenv
The (Python Package Index) is a repository of published python
packages (currently more than 180.000 projects) that can be easily installed.
The oldest way to install a package is to use easy_install that comes with the python

setuptools . For example, to install the python package pip for the whole system you

can do:

PyPI (https://pypi.org/)

#Don't do that
sudo easy_install pip

pip is a more flexible way to interact with PyPI. It usually comes with all python

distributions and thus you do not need to install it. The command line utility allows for the
installation/removal of packages, for example to install the package numpy for the whole

system you can do:

pip will take care of dependencies installing them for you.

#Don't do this
sudo pip install numpy

The most appreciated feature of pip is the possibility to specify a

 that contains the list of packages
and versions you need to be installed in one go:

requirements file

(https://pip.readthedocs.io/en/1.1/requirements.html)

cat requirements.txt
MyApp
Framework==0.9.4
Library>=0.2

pip install -r requirements.txt

A python environment can be reproduced:

pip freeze > requirements.txt

virtualenvvirtualenv
virtualenv solves a very specific problem: it allows multiple Python projects that have
different (and often conflicting) requirements, to coexist on the same computer.
It also allows to install packages without the need to have super-user privileges (i.e. no
sudo needed).

sudo pip install virtualenv
cd ~/myproject
virtualenv myenv

This will create an environment (a directory) called myenv that contains a python

distribution that can be activated:

Now the specified packages are installed in a subdirectory of myenv creating an isolated

environment. You can deactivate the environment with:

cd ~/myproject
source myenv/bin/activate
pip install -r requirements.txt

myenv/bin/deactivate

Anaconda distributionAnaconda distribution
The is maintained by a private company
(Anaconda Inc.), it provides a free and open-source distribution tailored to data science.

Similarly to pip/virtualenv it provides a package and environment manager.

Linux, MacOS and Windows are all supported
The support is not limited to python, but also to notably R and in general any binary
package (e.g. Qt, GCC,...)

Anaconda distribution (https://anaconda.org/)

After installing anaconda distribution, similarly to pip packages can be installed (globally)

with:

conda install numpy

However usually packages are installed in environments:

conda env create myenv
conda activate myenv
conda install numpy
conda deactivate

Similarly to pip all needed packages can be specified via a file (in YAML format):

cat environment.yml
name: myenv
dependencies:
- python=3
- numpy

conda env create -f environment.yml
conda activate myenv
...
conda deactivate

This tutorialThis tutorial
For this tutorial we have pre-installed anaconda on the school VM. We have also created an
environment with all python code that is needed. Remember to activate the

 with:

This should be done in each new terminal. Note the name of the environment, prefixed to
the terminal prompt.

environment
(https://gitlab.com/andreadotti/pyalghero2019/blob/master/environment.yml)

conda activate course

IPython interpreterIPython interpreter

Instead of the default interpreter, ipython provides additional features, very useful in

interactive sessions:

Improved command line navigation (similar to a shell/terminal)
Syntax highlight
Auto completion: press Tab-key with an incomplete word/command to see

suggestions
Call system program from interpreter with ! (e.g.: !pwd). Note the form mydir =
!pwd
Improved history handling. Including: type the first characters of an old command,
press Up-key to auto complete line to most recent matching line

Retrieve the last computed result with _ or with _<N> for output N
Magic functions, extensions to IPython that can improve interactive sessions. Some
examples:

%magic help on magic subsystem itself

%timeit python-code-goes-here will time the python line,

repeating it a large number of times to improve precision
%bookmark create favorite folders to easily cd into them

%cd change the current directory

%logstart/%logstop start/stop logging of interactive session and save

it to a file
%pycat similar to cat but syntax highlight as python code

Jupyter notebooksJupyter notebooks

JupyterJupyter
A GUI, served in a browser, to operate on notebook style documents: interactive cells where
code can be written and executed dynamically.

Initially developed for python, now supports many programming languages. The kernels run
the code (it's a ipython interpreter in our case), receive output from the browser input

and send back output.

Installation via conda:

conda activate <env>
conda install jupyter
#Other useful packages
conda install jupyter_contrib_nbextensions nbconvert nb_conda nb_conda_kernels

Start jupyter with:

conda activate <env> #If needed
jupyter notebook

DemoDemo

Sharing notebooksSharing notebooks
Jupyter is very popular and several ways to share notebooks exist. It should be noted that
when a notebook is executed the output of code cells is stored in meta-data, thus it can be
rendered:

Gitlab and github render a notebook as expected:

They are based on

Online services provide interactive execution of notebooks on premise/cloud
resources (,

,
)

example (https://gitlab.com
/andreadotti/pyalghero2019/blob/master/Slides/Exercise-01-Solution.ipynb)

nbviewer (https://nbviewer.jupyter.org/)

MyBinder (https://mybinder.org/) Microsoft Azure
(https://notebooks.azure.com/) Google Colaboratory
(https://colab.research.google.com/notebooks/welcome.ipynb)

Sharing of notebooks often requires writing and using containers. Check out
 if you need them.

this project
(https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html)

