
Python Introduction Course: introductionPython Introduction Course: introduction
With emphasis on data-science problems

This course is available on
Contact me: (mailto:andrea.dotti@gmail.com)

Geant4 Course at the 16th Seminar on Software for Nuclear, Sub-nuclear and Applied
Physics, Porto Conte, Alghero (Italy), 26-31 May 2019. (https://agenda.infn.it/event
/17240/)

gitlab (https://gitlab.com/andreadotti/pyalghero2019)

IntroductionIntroduction

The whoThe who
I am a (HEP) physicist as background, I worked at CERN and SLAC/Stanford:

Geant4 Collaboration member: parallelization, HPC, physics validationA.
ATLAS Experiment member: simulations and data-analysisB.
Worked briefly at LCLS-II: off-line software designC.

1.

I have recently moved to the private sector and I am working as a data scientist2.

I am very lucky to have had the opportunity to see both sides of data-analysis and large
data-analytics. I program in C++ and Python with the latter used (mainly) for data-analysis.

The WhyThe Why
Python is one of the fastest growing programming language (among the

 in industry, the second most active on
, and number 4 on

).
It is getting more and more traction for science and basic research problems (see

,
,

), thus it is a good moment to learn it.

I am not an expert of Python, but I hope to be able to give you:

Some insights on the programming language itself1.
A feeling of what python is good for (and what is not good for)2.
Examples and applications to the problem of data-science3.

most populars
(https://www.businessinsider.com/the-10-most-popular-programming-languages-
according-to-github-2018-10?IR=T#4-php-7) github
(https://octoverse.github.com/2017/) stackoverflow
(https://insights.stackoverflow.com/survey/2019)

here
(https://arxiv.org/abs/1807.04806) here (https://developer.ibm.com/dwblog/2018/use-
python-for-scientific-research/) here (https://www.stat.washington.edu/~hoytak
/blog/whypython.html)

The HowThe How
I will complement, especially for the data-science applications, the ML lectures. Refer to
these lectures for specific questions on ML techniques. I will show some basic techniques
used in the field of data science

The course is organized in lectures and hands-on.

All the material is available on .gitlab (https://gitlab.com/andreadotti/pyalghero2019)

Python LanguagePython Language

Python is an interpreted, high-level, general-purpose programming
language. Created by Guido van Rossum and first released in 1991,
Python's design philosophy emphasizes code readability with its
notable use of significant whitespace. Its language constructs and
object-oriented approach aims to help programmers write clear,
logical code for small and large-scale projects. Python is
dynamically typed and garbage-collected. It supports multiple
programming paradigms, including procedural, object-oriented,
and functional programming. Python is often described as a
"batteries included" language due to its comprehensive standard
library.

)
From Wikipedia (https://en.wikipedia.org
/wiki/Python_(programming_language)

Interpreted languageInterpreted language
The python interpreter reads the input (interactive or in a script) and executes each line of
code sequentially. A python distribution comes with a REPL (Read Evaluate Print Loop)
shell. E.g.:

Which will give you:

Technical notes, for this course, use the provided VM and in each
new terminal type:
conda activate course
python

Python 3.7.3 (default, Mar 27 2019, 22:11:17)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

the >>> sequence is the python prompt, type a command and see the result, for example:

Hint:Type Ctrl+D to exit, or type quit() .

a = 3+2
print(a)

Interpreted languageInterpreted language
Other (python) shells are available, for example to simplify/improve the user-experience,
for example IPython (ipython), or GUIs (jupyter integration).

We will talk about these in the next slide deck.

High-levelHigh-level
Python strongly abstracts the specific hardware details.

This means that on one side it makes easier to program (e.g. no explicit memory
handling, forget about new/delete)
On the other side the interpreter must work more to translate user input to machine
code, this fact together with the interpreted nature of it, makes the code slower
compared to a lower-level programming language (e.g. C++).

Python is not a good language for performance critical applications. Use a lower level
language instead.
It is a very good prototype language. E.g. do you want to experiment with a new project,
especially one that requires a lot of data analytics? Probably it is a good idea to create a
proof of principle and a prototype in python.

Is python really slow?Is python really slow?
Python usually provides a very rich set of libraries and it supports C-binding allowing for
offloading computationally heavy parts of the code to optimized routines.
Hint: if you know that you have a computationally expensive routine, check if it is available
in some libraries, it is probably well optimized (e.g. do not write your own linear algebra
functions, use scipy.linalg). Hint: some popular libraries or extension even come with

GPU support to speed up the calculations if you have access to the hardware (e.g.
tensorflow vs tensorflow-gpu).

General PurposeGeneral Purpose
Python can be used for a rich set of applications:

Web applications1.

Data gathering and manipulation1.

Scientific computation1.

Data science1.

Traditionally, python is considered a glue language, used to coordinate programs (possibly
written in other languages) and to manipulate the input and output from one to the other (a
pipeline). Consider it, for this aspect, as a bash on steroids.

However the growing number of specialized libraries (e.g. the scientific python stack),
powerful visualization tools and rich I/O capabilities, has made it very popular among data
scientist and for scientific computations.

HistoryHistory
Implementation started in 1989
Python 2.0 released in October 2000
Python 3.0 released in December 2008

Python 3.0 is not backward compatible: a program written for python 2 may not run in
python 3 out of the box (and vice versa). python3 is getting more and more traction and ver.
2 will retire :soon (https://pythonclock.org/)

If you are starting now with python, go directly to version 3, if you are still at 2, start
migration!

Some more conservative linux distributions tend to have older python interpreter
installed (e.g. CentOS-7 includes python 2.7)
We'll see how to avoid this problem and use a more recent python interpreter (hint:
conda to the rescue)

Getting PythonGetting Python

The version number specifies the capabilities of the system (i.e. what the interpreter
can understand) and the content of the python standard library (that comes with the
interpreter)
A distribution is a packaging of an interpreter and a selection of libraries. For
example the one, the

 -optimized for performances- one, and specialized ones, like
, are all distributions

official CPython (https://python.org) PyPy
(https://www.pypy.org/)
Anaconda (https://anaconda.org/)

Python code organizationPython code organization
Code is written in modules: a file containing functions, global variables, classes. Differently
from C++ and Geant4, usually one module contains more than one class/function all
related to each other (it would be like if in Geant4 all classes related to EM Bremsstrahlung
are in a single file). Note: in python there is no .hh/.cc distinction (no forward

declaration), in C++ terminology everything is inlined.

In [1]: #Import a single module and use a function in it
import os
print(os.uname())
IT is possible to import a single function from a module. And (optionally chang
e its name)
from os import uname as un
print(un())

A package is a directory containing one or more modules (or sub-packages). The directory
must contain a special file __init__.py that tells python that the directory is a package.

The content of the file can tailor the package behavior (see
 for details).

here (https://docs.python.org
/2/tutorial/modules.html#packages)

In [2]: #Import a package
import numpy
#Import a module from a package
import numpy.random as rnd
print("Call 1:",rnd.binomial(10,0.5))
#Import a function
from numpy.random import binomial
print("Call 2:",binomial(10,0.5))
#Depending on how the __init__ file is written it is possible to:
from numpy.random import *
print("Call 3:",binomial(10,0.5))
#I do not recomment import * since you may have name clashes...

Call 1: 6
Call 2: 6
Call 3: 6

Since we are here...Since we are here...
Python has a built-in function help(...) that can be very useful:

In [3]: help(binomial)

Help on built-in function binomial:

binomial(...) method of mtrand.RandomState instance
 binomial(n, p, size=None)

 Draw samples from a binomial distribution.

 Samples are drawn from a binomial distribution with specified
 parameters, n trials and p probability of success where
 n an integer >= 0 and p is in the interval [0,1]. (n may be
 input as a float, but it is truncated to an integer in use)

 Parameters

 n : int or array_like of ints
 Parameter of the distribution, >= 0. Floats are also accepted,
 but they will be truncated to integers.
 p : float or array_like of floats
 Parameter of the distribution, >= 0 and <=1.
 size : int or tuple of ints, optional
 Output shape. If the given shape is, e.g., ``(m, n, k)``, then
 ``m * n * k`` samples are drawn. If size is ``None`` (default),
 a single value is returned if ``n`` and ``p`` are both scalars.
 Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

 Returns

 out : ndarray or scalar
 Drawn samples from the parameterized binomial distribution, where
 each sample is equal to the number of successes over the n trials.

 See Also

 scipy.stats.binom : probability density function, distribution or
 cumulative density function, etc.

 Notes

 The probability density for the binomial distribution is

 .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

Documentation is written together with the code as comments. If you follow some specific
rules (see) you get pretty
nicely formatted documentation (

):

here (https://docs.python-guide.org/writing/documentation/)
tools exist to create documentation from code

(https://wiki.python.org/moin/DocumentationTools)

In [1]: def foo():
'''

 This is the documentation.

 It is written as multi-line comment
 '''

This is a single line comment
return

help(foo)

Help on function foo in module __main__:

foo()
 This is the documentation.

 It is written as multi-line comment

Let's get startedLet's get started

Firing-up the python interpreterFiring-up the python interpreter
Type python to enter the interactive python interpreter. quit() (or Ctrl+d) to

quit

If you want to execute a script (a file containing some python code) type at the shell
prompt:
python myscript.py

You can execute python commands without entering the python interpreter:

Modules may also be executed as scripts, in such a case:

But you can enter interactive mode after importing a module, or executing
commands:

The -i should come before -m. Whatever follows the name of the module is passed

as arguments to it!

python -c "print(3+2)"

python -m os

pyton -i -m os

A note on encoding and scriptsA note on encoding and scripts
Scripts, by default, are encoded in UTF-8 (terminal and font must support special character
if you use them). You can specify a different encoding adding this special comment line as
the first line in your .py file:

If you use UNIX shebangs this line can be put as second, as in:

-*- coding: cp1252 -*-

#!/usr/bin/env python
-*- coding: cp1252 -*-

The first python session: variables, types and dataThe first python session: variables, types and data
structuresstructures

Let's start the python interpreter and define some variables:

In [5]: #This is a comment
a = 3 #This is an integer, this is a comment on the same line
b = 2.3 #This is a float (actually a double 64-bits in C++)
print('a is of type {}, b is of type {}'.format(type(a), type(b)))
print('a value is {}, while b\'s is {}'.format(a, b))

a is of type <class 'int'>, b is of type <class 'float'>
a value is 3, while b's is 2.3

= is the assignment operator: assigns the rhs to the variable on the lhs (e.g. n = 3)

Arithmetic operations are the usual ones: +, -, *, /
Important: Division / returns a float (e.g. 5 / 2 returns 2.5) in python3 but not

always in python2 (e.g. 5 / 2 returns 2, while 5./2. returns 2.5). Remember this is
you are porting code from 2 to 3!
In python3 // is the floor operation (e.g. 5 // 2 returns 2).

% is the reminder operator

** is the exponent operator

Talking of variables...Talking of variables...
Python is an inferred, dynamically and strongly typed language. This means:

Variable types are guessed by the interpreter (like using everywhere auto in

C++11)

The same variable name can be re-used for another type
IMPORTANT: the variable name is just a name, pointing to an underlying
object, that has a specific type

In [6]: a = 1 #a is an int
print(type(a))
a = "abc" #Now a points to a string
print(type(a))

<class 'int'>
<class 'str'>

Memory is automatically managed, and you can think of everything like an instance of a
class:

In [7]: a = 3
#Print memory address id(..) in hexadecimal format hex(...)
print(hex(id(a)))

In [8]: a = 3.2
print(hex(id(a)))

Note the two addresses are different, even if the variable name is the same, python
interpreter takes care of cleaning the memory, when not needed anymore.

Side Note: In an interactive session, you do not need to write print to show the return

value of the last statement. E.g. writing a directly at the interpreter is equivalent to

print(a) .

0x10d4985e0

0x11142af18

String typeString type
Strings are enclosed in '...' or "..." . Multi-line literals are allowed using

"""...""" / '''...''' as in the following example:

In [9]: str1 = "A string"
str2 = 'Another string'
print(str1)
print(str2)
print("""First line
Second line
Third line
""")

A string
Another string
First line
Second line
Third line

String manipulation is supported with + (concatenation) and * (repetition), as in:

In [10]: a = 'First string, '
b = 'Second string'
print(a+b)
print(3*"abc")

First string, Second string
abcabcabc

Special character can be escaped with \ (e.g. \n to produce a new line). Unless the string

is a raw string, in such a case the \ are interpreted as character:

In [11]: str1 = 'Special \t character'
str2 = r'A raw string with special \n character' #Note the r'...'
print(str1)
print(str2)

Special character
A raw string with special \n character

Strings can be indexed and sliced:

In [12]: message = "A message"
#First and third characters
print(message[0])
print(message[2])
#Last and second to last characters
print(message[-1])
print(message[-2])
#Substring from 4rd to 5th characters (0-indexed up to 6 excluded)
print(message[3:6])
#Substring from beginning to 2nd character
print(message[:3])
#Substring from 6th to the end
print(message[5:])

A
m
e
g
ess
A m
sage

Side note: f-stringsSide note: f-strings
Python3 has a special f(ormatted)-string construct:

In [13]: variable = 3
fstring = f'An f-string: {variable}, look at me!'
print(fstring)

In a f-string, the {...} characters are replaced with the value of the variable name.

An f-string: 3, look at me!

Lists, tuples and dictionariesLists, tuples and dictionaries
There is a number of containers data structures:

list are read/write containers of objects that can be indexed, sliced and much more

In [14]: alist = [1, 2, 3, 4]
list3 = [1, 3.3, "aaa", 3+3j]

tuples are read-only compounds objects, useful to write compact code
(packing/unpacking)

In [15]: atuple = (1, 2, 3, "aaa") #() are actually not needed
(first, second, third, fourth) = atuple #also here () are not needed

dictionaries are collections of key/value pairs

In [16]: dict1 = { 'value1' : 3.2 , 'value2' : "msg", 'value3' : [1,2,3] }
dict2 = dict(value1=3.2, value2="msg", value3=[1,2,3])
dict3 = { #python can accept constructs on multiple lines

'value1' : 3.2,
'value2' : "msg",
'value3' : [1,2,3]

}

More on listsMore on lists
Lists are probably the most useful data structure in python, let's see few more details,
starting from some common methods:

In [17]: a = [1,2,3]
a.append(4)
a

In [18]: b = [5,6,7]
a.extend(b)
a

Out[17]: [1, 2, 3, 4]

Out[18]: [1, 2, 3, 4, 5, 6, 7]

In [19]: last = a.pop()
print(last)
a

In [20]: del a[3]
a

In [21]: a.remove(5)
a

Out[19]:

7

[1, 2, 3, 4, 5, 6]

Out[20]: [1, 2, 3, 5, 6]

Out[21]: [1, 2, 3, 6]

A list comprehension consists of brackets containing an expression followed by a for clause,
then zero or more for or if clauses:

In [22]: [x**2 for x in range(10)]

In [23]: [x**2 for x in range(10) if x%2 == 0]

Out[22]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Out[23]: [0, 4, 16, 36, 64]

I use often the following two:

In [24]: list(enumerate(["a","b","c"]))

In [25]: list(zip(["a","b","c"],[10,20,30]))

Out[24]: [(0, 'a'), (1, 'b'), (2, 'c')]

Out[25]: [('a', 10), ('b', 20), ('c', 30)]

Lists can be transversed with:

In [26]: alist = [1, 3, 5, 7]
for e in alist:

#do something
pass

In [27]: alist = [0,1,2,3,4,5,6,7,8,9,10]
alist[2]

In [28]: alist[-1]

In [29]: alist[2:4]

In [30]: alist[2:8:2]

Out[27]: 2

Out[28]: 10

Out[29]: [2, 3]

Out[30]: [2, 4, 6]

More on dictionariesMore on dictionaries
In [31]: d = { "a":3, "b":5 }

assert(d["a"]==3)
d.update({"c":6,"a":2})
d

In [32]: #This has changed between python2 and python3
for k,v in d.items():

print(k,"is",v)

Out[31]: {'a': 2, 'b': 5, 'c': 6}

a is 2
b is 5
c is 6

In [33]: d = { x: x**2 for x in range(5)}
d

In [34]: d = dict(a=1, b=2, c=3)
d

Out[33]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Out[34]: {'a': 1, 'b': 2, 'c': 3}

Finally a useful data structure is set , a collection of unique values. I use this data

structure only exclusively to get the list of the unique elements in a list:

In [35]: a = list(range(5))
a.extend(range(5))
a

In [36]: s = set(a)
s

Out[35]: [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]

Out[36]: {0, 1, 2, 3, 4}

Control flowControl flow

if statement statement
In [37]: x = 2.3

if x > 10:
print("x is large")

elif x > 5:
print("x is not so large")

else:
print("x is small")

Since we are hereSince we are here
Note the indentation: In C++ you use curly brackets {} to delimit code blocks. In python

you use indentation (one of the basic
 is code readability). Python interpreters and IDEs will help you with

code indentation, but if you do not respect it, you will get errors or, worse, wrong behavior.
A command line tool like pylint can help you check a module/script respects code

standards. It is worth trying it out if you need to share the code with someone else.

principles of python (https://www.python.org
/dev/peps/pep-0020/)

x is small

for statement statement
In [38]: alist = ["one", "two", "three"]

message = ""
for element in alist:

message = message + "," + element
#Python is coincise, the same can be achieved using the method
#join of str object:
message = ",".join(alist)

break and continue have the same behavior as in C/C++, in addition for supports

the else clause, as in the example:

In [2]: prime_numbers = list()
for n in range(2, 10):

for x in range(2, n):
if n % x == 0:

n is not a prime number, we have found a factor
break

else:
#Note here else is alligned with for, not the if!
loop fell through without finding a factor
prime_numbers.append(n)

#Python is also functional (this is not a good idea, do you know why?):
prime_numbers = filter(

lambda n: 0 not in map(lambda x: n%x , range(2,n)),
range(2,10)

)

pass statement statement
This statement does nothing: it is useful when the syntax requires something, but there is
nothing to do, usually used to create an empty class or a stub for a method to be
implemented in the future:

In [40]: class MyClass:
#TODO: Stop procrastinating and get to work!
pass

Input/OutputInput/Output

Writing formatted stringsWriting formatted strings
We have already seen f-strings, r-strings and normal strings:

In [41]: str1 = "A string"
str2 = r"A raw string, with special characters like \n"
somespecialval = 3
#Error if somespecialval is not already defined
str3 = f"An f-string {somespecialval}"

This is the old "C-printf" style, still valid to format a string:

In [42]: str4 = "Some string with a value inside %d"%3.2
str4

Out[42]: 'Some string with a value inside 3'

Strings can be formated via the .format method (preferred):

In [3]: "A string with a first {} and a second {} value".format(3,4)

In [44]: str1 = "Look here: {0}, {1}".format(1,2)
str2 = "Look here: {1}, {0}".format(1,2)
print(str1)
print(str2)

In [4]: from math import pi
"A formatted string {0:.3f}".format(pi)

Out[3]: 'A string with a first 3 and a second 4 value'

Look here: 1, 2
Look here: 2, 1

Out[4]: 'A formatted string 3.142'

An interesting use case for .format is if you need to print some values from a dictionary:

In [46]: d = dict(first=1., second="a", third=3)
"A use case where I print only part of the info {first} and {second}".format(**d)

Out[46]: 'A use case where I print only part of the info 1.0 and a'

Reading filesReading files
Let's focus here on reading text files. If you need to do data manipulation there are other
formats you may consider that usually come with a dedicated I/O module (e.g. Excel, to
matlab, to HDF5).

In [47]: inf = open("afile.txt","r")
inf.readline()

In [48]: inf.readline()

In [49]: inf.readline()

In [50]: inf.close()

Out[47]: 'A line\n'

Out[48]: 'Another line\n'

Out[49]: ''

It is good practice to use the following construct to operate on files (because it is safer in
case of errors), after the with block, the file is closed automatically:

In [51]: with open("afile.txt","r") as f:
for line in f:

print(line)

A line

Another line

Often in physics we want to read a file containing numerical values (note that we will see
more efficient ways to do this):

In [52]: v1s = list()
v2s = list()
with open("afile.csv","r") as f:

for line in f:
v1, v2 = line.split(",")
v1s.append(float(v1))
v2s.append(float(v2))

print(v1s)
print(v2s)

[10.0, 3.0]
[20.0, 5.2]

Writing data to filesWriting data to files

A file object, opened with 'w' option has the method .write :

In [53]: with open("outfile.txt","w") as f:
f.write("Some text\n")

A python module called pickle can be used to store/read python data structures:

In [54]: import pickle
d = dict(key1="ABC", key2=3.2, key3=[1,2,3,4])
with open("outfile.pkl","wb") as f: #b is for binary, more efficient

pickle.dump(d,f)

In [55]: # Read data back:
with open("outfile.pkl","rb") as f:

d_read = pickle.load(f)
d_read

Out[55]: {'key1': 'ABC', 'key2': 3.2, 'key3': [1, 2, 3, 4]}

Finally JSON is an internet standard for data exchange. It is probably worth to note that it
is well supported:

In [56]: d = dict(key1="ABC", key2=3.2, key3=[1,2,3,4])
import json
json.dumps(d) #the 's' here means "dump to string"

In [57]: with open("outfile.json","w") as f:
json.dump(d,f)

In [58]: with open("outfile.json","r") as f:
d_read_j = json.load(f)

assert(isinstance(d_read_j, dict))
d_read_j

Out[56]: '{"key1": "ABC", "key2": 3.2, "key3": [1, 2, 3, 4]}'

Out[58]: {'key1': 'ABC', 'key2': 3.2, 'key3': [1, 2, 3, 4]}

Defining functionsDefining functions

A function is defined with the following syntax def fun_name(arguments): , the

return value is implicitly determined by the return statement.

WARNING different code paths (e.g. if - else statements) could make a function return

different data types

In [59]: def foo(arg1, arg2):
"""A simple function"""
return arg1+arg2

#Note the return type is dynamic:
assert(isinstance(foo(3,2), int))
assert(isinstance(foo("a","b"), str))

Functions can have default arguments, that can be omitted when calling the function:

In [60]: #Note the special value of arg2, of type NoneType
def foo(arg1, arg2=None):

"""A simple function"""
if arg2:

return arg1+arg2
else:

return arg1

Functions can be called with positional and keyword arguments:

In [61]: def foo(arg1, arg2='Value', arg3=None):
pass

foo(100) # 1 positional argument, using 2 defaults
foo(100, "two", 3) # 3 positional arguments
foo(arg2="two", arg1=20) #2 keyword argumnets, note now the order does not matter

A special signature of functions contains (one or both) parameters with a name preceded
by * or ** . Better explained with an example:

In [62]: def foo(arg1, *args, **kwargs):
pass

foo(3, "two", "three", key1 = "value1", key2 = "value2")
Foo's parameter args is the list ["two","three"] and kwargs is a dict { "key1":"
value1", "key2":"value"}

This is very useful to write functions that accepts an arbitrary number of arguments. E.g:

In [63]: def do_something_complex(data, **conf):
"""conf is a 'configuration' dictionary"""
if 'method' in conf and conf['method'] == 'linear':

pass

Lambda expressionsLambda expressions
In python functions are first class citizens, they are objects that can be passed as argument
to other functions:

In [5]: def foo(a, b):
return a+b

def bar(fun, c):
return fun(c,c)

bar(foo,2)

Out[5]: 4

Lambda expressions can be used to create anonymous functions, usually when these are
pretty small:

In [65]: def bar(fun, c):
return fun(c,c)

#Let's make a variant:
fun2 = lambda a,b: a+b+2
print(type(fun2))
bar(fun2, 3)

Out[65]:

<class 'function'>

8

Lambdas are useful in combination with many built-in functions like map , reduce and

filter . For example map accepts as arguments a function and an iterable. It applies the

function to all elements, returning a new iterable. For example:

In [66]: power_of_two = lambda x: 2**x
inp = range(10) # An iterable of all numbers 0..9
out = map(power_of_two, inp)
out

Note that out is not a list, but an instance of an object (an iterable), let's get the list of the

values:

In [67]: list(out)

The extensive use of iterables in python3 is probably its most confusing feature, especially
if you have experience with python2.

Out[66]: <map at 0x11de6a2e8>

Out[67]: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

On iterablesOn iterables
In python3 many function now returns an iterable instead of the collection. An iterable is
more efficient than the collection itself, but once consumed, it becomes empty:

In [68]: out = map(power_of_two, inp)
for e in out:

print(e, end=",")
print("\n once more:")
for e in out:

print(e, end=",") #Never comes here becouse out has been consumed

In [69]: #If you need to use more than once an iterable you can
1. convert it to the underlying data type:
out = map(power_of_two, inp)
out = list(out)
assert(len(out) == len(inp))
2. Or "clone" the iterable itself:
from itertools import tee
out = map(power_of_two, inp)
it1, it2 = tee(out)

1,2,4,8,16,32,64,128,256,512,
 once more:

Annotating functionsAnnotating functions
In python3 it is possible to document functions specifying the expected type of arguments
and return type. Also local variables can be annotated. However the interpreter will allow a
call with wrong types, this is purely for documentation/readability:

In [70]: def some_complex_function(arg1: int, arg2: str) -> bool:
"""An annotated function

 The first argument should be an integer, and the second a string.
 The function returns a boolean.
 Annotations are used to actually avoid writing this documentation..."""

result: bool = str(arg1)==arg2
return result

assert(some_complex_function(3, "3"))
assert(some_complex_function("a", "a")) #Does not fail because str("3") == "3", bu
t type(arg1)!=int

Classes can be annotated too.

ClassesClasses

Python supports object oriented programming style. However there are few differences
with respect to C++:

All data members are public1.
All methods are virtual2.

In [71]: class MyClass:
"""Class documentation"""
i = 3 #This is a class data member.
def foo(self): #Note the 'self' keyword

"""This is a class method"""
print("Called method foo!")

m = MyClass()
m.foo()

In [72]: m.i

Called method foo!

Out[72]: 3

Class instances can be dynamically extended:

In [73]: m.another_val = 3

In [74]: m.another_val

Out[74]: 3

Constructors exists and is the __init__ method, these are used to initialize instance

data-field. There is (usually) no need for a destructor because memory is not managed
explicitly (see for more).here (https://docs.python.org/3.7/tutorial/classes.html)

In [75]: class MyClass:
"""Class documentation"""
i = 3
def __init__(self, val):

"""Consturctor with one parameter"""
self.value = [val] #An instance data member

m = MyClass(3.14)
m.value

Out[75]: [3.14]

Inheritance exists, with the expected behavior:

In [76]: class Derived(MyClass):
"""A derived class"""
def __init__(self):

MyClass.__init__(self,3.14)#Excplictly call the base class constructor

m = Derived()
m.value

Out[76]: [3.14]

Think twice before writing your own class: if you want just a container for your
(heterogeneous) data, a dict is what you are looking for (maybe with few helper

functions). At least this is 90% of the use-cases for a G4 user. E.g. instead of:

In [77]: class Electron:
m = 511
q = -1
name = "electron"
family = "lepton"
def __init__(self,energy):

self.energy = energy

Use:

In [78]: e1 = dict(m=511,q=-1,name="electron",family="lepton",energy=3)
e2 = e1.copy()
e2.update(dict(energy=2.2))

Private methods/data fields do not exists. However a convention exists, if the field name
starts with an _ character, this is considered implementation details:

In [79]: class MyClass:
"""A class"""
i = 3
_cache = None #Something internal, e.g. a cache
def __init__(self, val):

"""Constructor with one parameter"""
self.value = val

def _update(self):
#some heavy calculation and store an intermediate number
_cache = 3.14

def do_stuff(self):
if not self._cache:

self._update()
#Rest

Finally in pyton3 there is a useful Enum class to provide enumeration functionalities:

In [80]: from enum import Enum

class ParticleName(Enum):
#By convention use all capital letters
ELECTRON = "electron"
PROTON = "proton"

class ProcessType(Enum):

EM = 2
HAD = 4

ParticleName.ELECTRON

Out[80]: <ParticleName.ELECTRON: 'electron'>

