Computing Architecture and its
Impact on Application Performance

Vincenzo Innocente
CERN
CMS Experiment

ESC, Bertinoro, October 2019

= 2
v = — oA~y
7 I B - Ny TP '.':ll!
- e b N
o oo — o -
-
-
. - .
[| ;
i t
_ e e =
i . s -
S E ¥ =
v .
. -
. 3

High Performance Computing
for High Energy Physics

Computing Architecture

Von Neumann architecture

Algorithms and Data Structures

Instructions

Data

Results

Input

Processing

* From Wikipedia:

* The von Neumann architecture
is a computer design model
that uses a processing unit and
a single separate storage
structure to hold both
instructions and data.

* It can be viewed as an entity
into which one streams
instructions and data in order
to produce results

Von Neumann architecture

Algorithms and Data Structures

Instructions

Data

Results

Input

Processing

e Metrics:

* Instructions/second (MIPS)
* Operations/second (FLOPS)

* Latency
* How long takes to finish a job

* Throughput

¢ The amount of items processed
per unit of time (or dollar, watts)

* How to speed it up?

* How to scale it up?
* How can | do more (with less)

Modern “server” architectures

Simple server diagram

Socket o Socket 1
Co | Ca EZI: Ca
C2 | C3 C2 | C3
C4 | Cg C4 | Cg
Shared Shared
cache cache
Mem-ctl Mem-ctl

Memory

10/20/19

N/

* Multiple components which
interact during the execution
of a program:

* Processors/cores

* w/private caches
* |-cache, D-cache

Interconnect

1/O bus

Shared caches
— * Instructions and Data

Memory Memory controllers
* Memory (non-uniform)
* |/O subsystem
* Network attachment
Intel Nehalem * Disk subsystem

VI Architecture @ESC

Single Core Architecture

10/20/19

Enhanced Processor Core

Instruction Fetch and 32kB Front End
Pre Decode Instruction Cache Execut"on

e el temon,
Memory
Decode
2"d Level TLB
Rename/Allocate L3 and beyond

256kB

2™ | evel Cache
Retirement Unit

(ReOrder Buffer)

Back End
= Execution

Execution Units Engine

Reservation Station

DTLB

32kB
Data Cache

VI Architecture @ESC

Interlude: performance counters

Performance Metrics

* All modern processors are instrumented with “performance
counters” that measure essentially everything that is happening

* Unfortunately there is no standard: each new processor usually
comes with a whole lot of new counters with new names...

* Here | try to use those of the two types of processors we use for
exercise: Intel Ivy-Bridge and Skylake-X

* Tool exists to abstract counters into a sort of standard architecture
* On Linux: perf and its wrappers

* Vendors (Intel, AMD, IBM, NVidia) provide also their own tools

Architecture: front end

Feeds “decoded” instructions to the
scheduler

Haswell

Affected by instruction non-locality
(iCache-miss, iTLB misses) and
misspredicted branches

)) 6 Instructions
Main metrics:

L1-icache-load-misses (icache.ifdata_stall)
Cycles where a code fetch is stalled due to L1

instruction cache miss.

branch-misses (br_misp_retired.all_branches)

This event counts all mispredicted branch
instructions retired.

4 pops
32B
10/20/19 VI Architecture @ESC

Architecture: Out of order scheduler

Haswell (56 pop Decode Queue

)

4 uops\l\

(192 Entry Reorder Buffer (ROB)

)

|
! ¥ ! ¥

168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer

]

! ! ! ! !

(60 Entry Unified Scheduler

)

Main metric:
rs_events.empty_cycles
This event counts cycles during which the reservation station (RS) is empty

RS == Unified scheduler

10/20/19 VI Architecture @ESC

12

Out-of-order (OOO) scheduling

* Most modern processors use OOO scheduling

a+=1 * This means that they will speculatively execute instructions ahead of
time (Xeon: inside a “window” of ~150 instructions)
l * In certain cases the results of such executed instructions must be
discarded
ifa>?2
Frontend —» Reorder . ——» Execute —| Retire
/ \ for dependencies

t Bad speculation J

X +=2 X += 1

« Atthe end, there is a difference between “executed instructions” and

\ / “retired instructions”
d =X

* One typical reason for this is mispredicted branches

* (compiler or developers can also transform the code to be branchless)

Potential problem with OOO:
A lot of extra energy is needed!
Interestingly: ARM has two designs:
As53 (low power, in-order), A7 (high power, OOO)
10/20/19 VI Architecture @ESC

13

How to help the frontend

* Avoid complex branching patterns

» Keep code local (inline)
» Keep loop short (so they fit in pop cache)

|POI‘t°|POI‘t1|POI‘t2|POI‘t3|POI’t4|POI‘t5|POI’tGIPOI’t7|
| | — 1 | | l

. - Integer Integer Load Load Store R nteger Integer Store
rchitecture: Backen]| e [(D (D [P | [
Integer Int;ger Store Stt:re T ~——" Integer Integer
Shift LEA Address Address LEA Shift
Computational engine vectnt | [vector Vec Int ?
Affected by e e]
* instruction dependency ‘nir | | PsaD shtfe
* instruction parallelism Vector | | String Vector
. pl pe | | n | n g I;ggllcal ,(Comlpj Logical
Vec FM
¢ Memory access <§f"j
) Maltiply = Intel’s Haswell micro-architecture can
Latenc.yof heavy instructions Intel’s H Il mi hitect
* divsgrt o execute four instructions in parallel
e \ectorization o (across eight ports) in each cycle.
Integer
MUL
Main Metrics: - ,
uops_executed.stall_cycles :

This event counts cycles during which no uops were dispatched from the Reservation Station (RS)
uops_executed.thread

Number of uops to be executed each cycle.
cycle_activity.stalls_mem_any

Execution stalls while memory subsystem has an outstanding load.
arith.divider_active

Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.
10/20/19 VI Architecture @ESC 15

X86 vectors for Floating Point (FP)

Max Vector FP-SP Introduced in
° FP width elements |processor

128-bit

- Single Precision (SP) AVX 256-bit FP only 8 Sandy Bridge

. 32_bits (2nd gen Core)

. : AVX2 256-bit (adds 8 Haswell

8 eleme-nts in AVX2 integer, FMA) (4t gen Core)

= ‘float’inC AVX512 512-bit 16 Skylake Server
- Double Precision (Xeon Scalable)

" 64-bits

= 4 elements in AVX2
= ‘double’in C

Real-life latencies

10/20/19

* Most integer/logic instructions have a one-cycle
* For example (on an Intel Xeon processor)
* ADD, AND, SHL (shift left), ROR (rotate right)
* Amongst the exceptions:
* IMUL (integer multiply): 3
* IDIV (integer divide): 13 — 23
* Floating-point latencies are typically multi-cycle
* FADD (3), FMUL (5)

* Same for both x87 and SIMD double-precision variants

* Exception: FABS (absolute value): 1
* Many-cycle, no pipepine : FDIV (20), FSQRT

execution latency:

As of Haswell:
FMA (5 cycles)
As of Skylake:
SIMD ADD, MUL,FMA: 4 cycles

(27)

e Other math functions: even more

Latencies in the Core micro-architecture (Intel Manual
No. 248966-026 or later).
AMD processor latencies are similar.

http://www.agner.org/optimize/instruction_tables.pdf

VI Architecture @ESC

17

Instruction pipelining

* Instructions are broken up into stages.
* With a one-cycle execution latency (simplified):

TR E

* With a three-cycle execution latency:

10/20/19 VI Architecture @ESC

Latencies and serial code (1)

* In serial programs, we typically pay the
penalty of a multi-cycle latency during

execution:
* In this example:

* Statement 2 cannot be started before

statement 1 has finished

» Statement 3 cannot be started before

statement 2 has finished

I-F | I-D | EX-1|EX-2| EX-3|EX-4|EX-5|W-B

-E | ID| - | - | - | - |EXa

EX-2

W-B

double a, b, ¢, d, e, f;
b=2.0;c=3.0; e =4.0;

a=Db*c; [/Statementa

d=a+e; /[Statement 2

f = fabs(d); //Statement3

EX-1

W-B

10/20/19

VI Architecture @ESC

Latencies and serial code (1)

* In serial programs, we typically pay
the penalty of a multi-cycle latency
during execution:

* In this example:

10/20/19

* Statement 2 cannot be started before

statement 1 has finished

« Statement 3 cannot be started before

statement 2 has finished

double a, b, ¢, d, e, f;
b=2.0;c=3.0; e =4.0;
a=Db*c; [/Statementa

fa\b+e;
d=a+f; //Statement 2

f = fabs(d); //Statement3

I-F | I-D | EX-1|EX-2| EX-3|EX-4|EX-5|W-B
I-F | I-D |EX-1|EX-2| EX-3|W-B
I-F | I-D EX-1|EX-2|EX-3|W-B
I-F | I-D EX-1|W-B

VI Architecture @ESC

20

Latencies and serial code (2)

I-F | I-D | EX-1|EX-2| EX-3|EX-4|EX-5|W-B

I-F | I-D - - = - |EX-1|EX-2|EX-3|W-B

I-F | I-D - - - - - - |EX-21|W-B

* Observations:

 Even if the processor can fetch and decode a new instruction every
cycle, it must wait for the previous result to be made available

* Fortunately, the result takes a ‘bypass’, so that the write-back stage does
not cause even further delays

* Theresult: CPlis equal to 3
* g execution cycles are needed for 3 instructions!

* A good way to hide latency is to [get the compiler to] unroll (vector)
loops !

10/20/19 VI Architecture @ESC

How to help the backend

* Keep data at hand (see next section and memory lecture)

* Vectorize (see lecture)
* Recast loop to help the compiler to vectorize

* Avoid divisions and sqrt! (see FP lecture)

* Once all this done
* Recast expressions to avoid dependencies and increase ILP

Memory architecture

Cache/Memory Hierarchy

* From CPU to main memory on
a recent Haswell processor

* With multicore, memory
bandwidth is shared
between cores in the same

processor (socket)

Main metrics:
La-dcache-loads, L1-dcache-load-misses
LLC-loads, LLC-load-misses (LastLevelCache)

mem_load_retired.l1_hit
mem_load_retired.l2_hit

(R:64B + W:32B)/1c

mem_load_retired.I3_hit
mem_load_retired.[3_miss

Lal L1D |
(32 KB) (32 KB) 4C latency
T Lo T R: 64B/1c
(256 KB) 11c latency
32B/1c for all cores
> 21c¢ latency
Shared L3
(~20 MB)

offcore_requests.all_requests

offcore_requests_outstanding.demand_data_rd_ge_6

cycle_activity.stalls_mem_any

10/20/19

Local/remote memory

(large, but typically non-uniform)

VI Architecture @ESC

~24 B/c for all cores
> 200c latency

c=cycle

24

Latency Measurements (example)

* Memory Latency on Sandy Bridge-EP 2690 (dual socket)

* go ns (local) versus 150 ns (remote)

«Memory

10/20/19

(G aeket o Socket 1
Co | Ca Eg: Ca
C2 | C3 C2 | C3
C4 | Cg C4 | Cg
Shared Shared
cache cache
Mem-ctl Mem-ctl

Interconnect
I/O bus | _.__.-

o — - — - — -

VI Architecture @ESC

- — — — —
o—*

e @ e 8 @ s e @ e e @ e @
*

25

Recent architectures

The numbers we looked at were "Random load latency stride=16 Bytes" (LMBench).

Mem

Hierarchy

L1 Cache (cycles)

L2 Cache (cycles)

L3 Cache 4-8 MB(cycles)
16 MB (ns)

32-64 MB (ns)

Memory 96-128 MB (ns)

Memory 384-512 MB (ns)

10/20/19

IBM POWERS Intel Broadwell Intel Broadwell
Xeon E5-2640v4 Xeon E5-2699v4
DDR4-2133 DDR4-2400
3 4 4
13 12-15 12-15
27-28 (8 ns) 49-50 50
55 ns 26 ns 21 ns
55-57 ns 75-92 ns 80-96 ns
67-74 ns 90-91 ns 96 ns
89-91 ns 91-93 ns 95 ns
Source AnandTech

VI Architecture @ESC

26

Cache lines (1)

* When a data element or an instruction is requested by the
processor, a cache line is ALWAYS moved (as the minimum
quantity), usually to Level-1

I I | requested | I I I I |

* A cachelineis a contiguous section of memory, typically 64B
in size (8 * double) and 64B aligned

* A 32KB Level-1 cache can hold 512 lines (NOT 32K random bytes)

* When cache lines have to be moved come from memory

* Latency is long (~100 cycles)
* Itis even longer if the memory is remote

* Memory controller stays busy (~8 cycles)

Cache lines (2)

 Good utilisation is vital

* When only one element (4B or 8B) element is used inside the
cache line:
* Alot of bandwidth is wasted!

| l | requested | l l l l !

* Multidimensional C arrays should be accessed with the last index
changing fastest:

for (i = 0; i < rows; ++1i)
for (j = 0; j < columns; ++3j)
mymatrix [1] []] += increment;

* Pointer chasing (in linked lists) can easily lead to “cache thrashing”
(increased memory traffic)

for (auto & x : container.xs) // by “column”
X += increment;

Prefetching

 Fetch a cache line before it is requested
 Hide latency of load
* Up to six loads “in flight” in parallel

* Normally done by the hardware
* Especially if processor executes Out-of-order
* Requires a regular access pattern (typically sequential)

* Also done by software instructions
* Especially when In-order
* Taken care by the compiler in particularin loops

How to help Memory Access

* Locality is vital:
* Spatial locality —Use all elements in the line
* Temporal locality — Complete the execution whilst the elements
are certain to be in the cache
* Help prefetching
 Prefer sequential access patterns
* Use all (6,8) prefetcher

Programming the memory hierarchy is an art in itself.

Measuring performance

* Any measurement requires a methodology
* http://www.brendangregg.com/methodology.html

* Traditional Methodology: stall analysis

* “"New" approach: TopDown
* http://www.cs.technion.ac.il/~erangi/TMA_using_Linux_perf Ahmad_Yasin

pdf
* https://github.com/andikleen/pmu-tools/wiki/toplev-manual

* http://cs.haifa.ac.il/~yosi/PARC/yasin.pdf

10/20/19 VI Architecture @ESC 31

http://www.brendangregg.com/methodology.html
http://assets.devx.com/goparallel/17775.pdf
http://www.cs.technion.ac.il/~erangi/TMA_using_Linux_perf__Ahmad_Yasin.pdf
https://github.com/andikleen/pmu-tools/wiki/toplev-manual
http://cs.haifa.ac.il/~yosi/PARC/yasin.pdf

Top Level Breakdown

Yes No

Back-end
stall?

Yes Yes No

Backend Frontend
Bound Bound

Uop := micro-operation. Each x86 instruction is decoded into uop(s)
Uop Issue := last front-end stage where a uop is ready to acquire back-end resources IDF

12 Back-end stall := Any backend resource fills up which blocks issue of new uops o e

The Hierarchy' (evample)

____________-———————-—-——'""'CP'U’BBund

Retirmg

Backend Bound

Core Memory Bound

Bound

“Frontend Bad
Bound Speculation

Frontend Band
Latency ~ Width

I

" Branch
Mispred
Microcode #

Sequence

| Machine
Clears

.\

Other l‘

Ports Stores
Utilization | Bound ‘

FP-arith
Divider |
L1 Bound

-VV.‘”'E'-:‘-
(2]
Roeo
- o £ =
2 0ER
CIJI;’~
£ S
v EPo
m Y o
O Ep?
rTEQR
m

|
|
|
|

N
'

aka Compute Bound:
(1) Execution Units (hardware)
(2) Low ILP (software)

[Store fwd blk(|
Contested Acces$

[Data Sharing ‘
JL3 Latency«.

MEM
Bandwidth

. [1] A. Yasin, “A Top-Down Method for Performance Analysis and Counters Architecture”, ISPASS 2014

TMA Top Level for SPEC CPU2006

47.1% 34.8% 18
Retiring Bad_Speculation Frontend Bound mmmm Backend Bound
ianiall R R R R BB BRBRERREREEEREERERERRR
J KRR AN "B EEBRRERERREREREB N
[]

useful uops

Few have high Most Apps are Backend
Bad Speculation Bound, esp. FP

401.bzip2
429.mcf
445.gobmk
456.hmmer
458.sjeng
464.h264ref
473.astar
410.bwaves
416.gamess
433.milc
434.zeusmp
435.gromacs
:36.cactusADM
437 .leslie3d
444.namd
447 .dealll
450.soplex
453.povray
454 calculix
59.GemsFDTD
465.tonto
482.sphinx3

400.perlbench
62.libquantum

471.omnetpp
183.xalancbmk

u-arch bottlenecks do greatly vary across workloads
SPEC CPU2006 v1.2, rate 1-copy, Intel Complier 14 targeting AVX2, Skylake @ 3 GHz IDF

INTEL DEVELOPER FORUM

