
Vincenzo Innocente
CERN

CMS Experiment

ESC, Bertinoro, October 2019

Computing Architecture and its
Impact on Application Performance

Computing Architecture

10/20/19 VI Architecture@ESC 2

Von Neumann architecture
• From Wikipedia:
• The von Neumann architecture

is a computer design model
that uses a processing unit and
a single separate storage
structure to hold both
instructions and data.

• It can be viewed as an entity
into which one streams
instructions and data in order
to produce results

DataInstructions

Results

Algorithms and Data Structures

Input

Processing

10/20/19 VI Architecture@ESC 3

Von Neumann architecture
• Metrics:
• Instructions/second (MIPS)
• Operations/second (FLOPS)

• Latency
• How long takes to finish a job

• Throughput
• The amount of items processed

per unit of time (or dollar, watts)

• How to speed it up?

• How to scale it up?
• How can I do more (with less)

DataInstructions

Results

Algorithms and Data Structures

Input

Processing

10/20/19 VI Architecture@ESC 4

Modern “server” architectures

10/20/19 VI Architecture@ESC 5

Simple server diagram

• Multiple components which
interact during the execution
of a program:
• Processors/cores

• w/private caches
• I-cache, D-cache

• Shared caches
• Instructions and Data

• Memory controllers
• Memory (non-uniform)
• I/O subsystem

• Network attachment
• Disk subsystem

MemoryInterconnect

I/O bus

Shared
cache

C2 C3

C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory

Socket 0 Socket 1

C0T0
C0T1C0 C1

C2 C3

Intel Nehalem

10/20/19 VI Architecture@ESC 6

Single Core Architecture

10/20/19 VI Architecture@ESC 7

Back End
Execution
Engine

10/20/19 VI Architecture@ESC 8

Interlude: performance counters

10/20/19 VI Architecture@ESC 9

Performance Metrics
• All modern processors are instrumented with “performance

counters” that measure essentially everything that is happening
• Unfortunately there is no standard: each new processor usually

comes with a whole lot of new counters with new names…
• Here I try to use those of the two types of processors we use for

exercise: Intel Ivy-Bridge and Skylake-X
• Tool exists to abstract counters into a sort of standard architecture
• On Linux: perf and its wrappers

• Vendors (Intel, AMD, IBM, NVidia) provide also their own tools

10/20/19 VI Architecture@ESC 10

Architecture: front end
Feeds “decoded” instructions to the
scheduler

Affected by instruction non-locality
(iCache-miss, iTLB misses) and
misspredicted branches

Main metrics:
L1-icache-load-misses (icache.ifdata_stall)

Cycles where a code fetch is stalled due to L1
instruction cache miss.
branch-misses (br_misp_retired.all_branches)

This event counts all mispredicted branch
instructions retired.

10/20/19 VI Architecture@ESC 11

Architecture: Out of order scheduler

Main metric:
rs_events.empty_cycles

This event counts cycles during which the reservation station (RS) is empty
RS == Unified scheduler

10/20/19 VI Architecture@ESC 12

Out-of-order (OOO) scheduling
• Most modern processors use OOO scheduling

• This means that they will speculatively execute instructions ahead of

time (Xeon: inside a “window” of ~150 instructions)

• In certain cases the results of such executed instructions must be

discarded

• At the end, there is a difference between “executed instructions” and

“retired instructions”

• One typical reason for this is mispredicted branches

• (compiler or developers can also transform the code to be branchless)

10/20/19 VI Architecture@ESC 13

Potential problem with OOO:

A lot of extra energy is needed!

Interestingly: ARM has two designs:

A53 (low power, in-order), A57 (high power, OOO)

Bad speculation

How to help the frontend

• Avoid complex branching patterns
• Keep code local (inline)
• Keep loop short (so they fit in µop cache)

10/20/19 VI Architecture@ESC 14

Architecture: Backend

Computational engine

Affected by

• instruction dependency

• instruction parallelism

• pipelining

• Memory access

• Latency of “heavy instructions”

• div sqrt

• Vectorization

Main Metrics:

uops_executed.stall_cycles
This event counts cycles during which no uops were dispatched from the Reservation Station (RS)

uops_executed.thread

Number of uops to be executed each cycle.

cycle_activity.stalls_mem_any

Execution stalls while memory subsystem has an outstanding load.

arith.divider_active

Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.

10/20/19 VI Architecture@ESC 15

?

?

10/20/19 VI Architecture@ESC 16

Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example (on an Intel Xeon processor)
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants

• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more

Latencies in the Core micro-architecture (Intel Manual
No. 248966-026 or later).
AMD processor latencies are similar.

http://www.agner.org/optimize/instruction_tables.pdf

As of Haswell:
FMA (5 cycles)
As of Skylake:
SIMD ADD, MUL,FMA: 4 cycles

10/20/19 VI Architecture@ESC 17

Instruction pipelining

• Instructions are broken up into stages.
• With a one-cycle execution latency (simplified):

• With a three-cycle execution latency:

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

10/20/19 VI Architecture@ESC 18

Latencies and serial code (1)
• In serial programs, we typically pay the

penalty of a multi-cycle latency during
execution:
• In this example:

• Statement 2 cannot be started before
statement 1 has finished

• Statement 3 cannot be started before
statement 2 has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

d = a + e; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

10/20/19 VI Architecture@ESC 19

Latencies and serial code (1)
• In serial programs, we typically pay

the penalty of a multi-cycle latency
during execution:
• In this example:

• Statement 2 cannot be started before
statement 1 has finished

• Statement 3 cannot be started before
statement 2 has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

f = b + e;
d = a + f; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - W-B- - EX-1

I-F I-D W-BEX-1 EX-2 EX-3

10/20/19 VI Architecture@ESC 20

Latencies and serial code (2)

• Observations:
• Even if the processor can fetch and decode a new instruction every

cycle, it must wait for the previous result to be made available
• Fortunately, the result takes a ‘bypass’, so that the write-back stage does

not cause even further delays

• The result: CPI is equal to 3
• 9 execution cycles are needed for 3 instructions!

• A good way to hide latency is to [get the compiler to] unroll (vector)
loops !

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

10/20/19 VI Architecture@ESC 21

How to help the backend

• Keep data at hand (see next section and memory lecture)
• Vectorize (see lecture)
• Recast loop to help the compiler to vectorize

• Avoid divisions and sqrt! (see FP lecture)
• Once all this done
• Recast expressions to avoid dependencies and increase ILP

10/20/19 VI Architecture@ESC 22

Memory architecture

10/20/19 VI Architecture@ESC 23

Cache/Memory Hierarchy
• From CPU to main memory on

a recent Haswell processor

• With multicore, memory
bandwidth is shared
between cores in the same
processor (socket)

c = cycle

Processor Core

(Registers)

Local/remote memory

(large, but typically non-uniform)

R: 64B/1c

11c latency

~24 B/c for all cores

> 200c latency

(R:64B + W:32B)/1c

4c latency

Shared L3

(~20 MB)

32B/1c for all cores

> 21c latency

L2

(256 KB)

L1D

(32 KB)

L1I

(32 KB)

10/20/19 VI Architecture@ESC 24

Main metrics:

L1-dcache-loads, L1-dcache-load-misses

LLC-loads, LLC-load-misses (LastLevelCache)

mem_load_retired.l1_hit

mem_load_retired.l2_hit
mem_load_retired.l3_hit

mem_load_retired.l3_miss

offcore_requests.all_requests

offcore_requests_outstanding.demand_data_rd_ge_6

cycle_activity.stalls_mem_any

Latency Measurements (example)
• Memory Latency on Sandy Bridge-EP 2690 (dual socket)

• 90 ns (local) versus 150 ns (remote)

Interconnect

I/O bus

Shared
cache

C2 C3

C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory

Socket 0 Socket 1

C0T0
C0T1C0 C1

C2 C3

10/20/19 VI Architecture@ESC 25

Recent architectures

Source AnandTech

10/20/19 VI Architecture@ESC 26

Cache lines (1)

• When a data element or an instruction is requested by the

processor, a cache line is ALWAYS moved (as the minimum

quantity), usually to Level-1

• A cache line is a contiguous section of memory, typically 64B

in size (8 * double) and 64B aligned

• A 32KB Level-1 cache can hold 512 lines (NOT 32K random bytes)

• When cache lines have to be moved come from memory

• Latency is long (~100 cycles)

• It is even longer if the memory is remote

• Memory controller stays busy (~8 cycles)

10/20/19 VI Architecture@ESC 27

requested

Cache lines (2)
• Good utilisation is vital
• When only one element (4B or 8B) element is used inside the

cache line:
• A lot of bandwidth is wasted!

• Multidimensional C arrays should be accessed with the last index
changing fastest:

• Pointer chasing (in linked lists) can easily lead to “cache thrashing”
(increased memory traffic)

requested

for (i = 0; i < rows; ++i)
for (j = 0; j < columns; ++j)

mymatrix [i] [j] += increment;

10/20/19 VI Architecture@ESC 28

for (auto & p : container) // vector or list
p->x += increment; // of pointers

for (auto & p : container) // by value
p.x += increment;

for (auto & x : container.xs) // by “column”
x += increment;

Prefetching
• Fetch a cache line before it is requested

• Hide latency of load
• Up to six loads “in flight” in parallel

• Normally done by the hardware
• Especially if processor executes Out-of-order
• Requires a regular access pattern (typically sequential)

• Also done by software instructions
• Especially when In-order
• Taken care by the compiler in particular in loops

10/20/19 VI Architecture@ESC 29

How to help Memory Access

• Locality is vital:

• Spatial locality – Use all elements in the line

• Temporal locality – Complete the execution whilst the elements

are certain to be in the cache

• Help prefetching

• Prefer sequential access patterns

• Use all (6,8) prefetcher

Programming the memory hierarchy is an art in itself.

10/20/19 VI Architecture@ESC 30

Measuring performance

• Any measurement requires a methodology
• http://www.brendangregg.com/methodology.html

• Traditional Methodology: stall analysis
• http://assets.devx.com/goparallel/17775.pdf

• ”New” approach: TopDown
• http://www.cs.technion.ac.il/~erangi/TMA_using_Linux_perf__Ahmad_Yasin

.pdf
• https://github.com/andikleen/pmu-tools/wiki/toplev-manual

• http://cs.haifa.ac.il/~yosi/PARC/yasin.pdf

10/20/19 VI Architecture@ESC 31

http://www.brendangregg.com/methodology.html
http://assets.devx.com/goparallel/17775.pdf
http://www.cs.technion.ac.il/~erangi/TMA_using_Linux_perf__Ahmad_Yasin.pdf
https://github.com/andikleen/pmu-tools/wiki/toplev-manual
http://cs.haifa.ac.il/~yosi/PARC/yasin.pdf

10/20/19 VI Architecture@ESC 32

10/20/19 VI Architecture@ESC 33

10/20/19 VI Architecture@ESC 34

