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Von Neumann architecture
• From Wikipedia:
• The von Neumann architecture 

is a computer design model 
that uses a processing unit and 
a single separate storage 
structure to hold both 
instructions and data.

• It can be viewed as an entity 
into which one streams 
instructions and data in order 
to produce results
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Von Neumann architecture
• Metrics:
• Instructions/second  (MIPS)
• Operations/second   (FLOPS)

• Latency
• How long takes to finish a job

• Throughput 
• The amount of items processed 

per unit of time (or dollar, watts)

• How to speed it up?

• How to scale it up?
• How can I do more (with less)
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Modern “server” architectures
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Simple server diagram

• Multiple components which 
interact during the execution 
of a program:
• Processors/cores

• w/private caches
• I-cache, D-cache

• Shared caches
• Instructions and Data

• Memory controllers
• Memory (non-uniform)
• I/O subsystem

• Network attachment
• Disk subsystem
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Single Core Architecture
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Back End
Execution 
Engine
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Interlude: performance counters
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Performance Metrics
• All modern processors are instrumented with “performance 

counters” that measure essentially everything that is happening
• Unfortunately there is no standard: each new processor usually 

comes with a whole lot of new counters with new names…
• Here I try to use those of the two types of processors we use for 

exercise: Intel Ivy-Bridge and Skylake-X
• Tool exists to abstract counters into a sort of standard architecture
• On Linux: perf and its wrappers

• Vendors (Intel, AMD, IBM, NVidia) provide also their own tools  
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Architecture:  front end
Feeds “decoded” instructions to the 
scheduler

Affected by instruction non-locality 
(iCache-miss, iTLB misses) and 
misspredicted branches

Main metrics:
L1-icache-load-misses (icache.ifdata_stall )

Cycles where a code fetch is stalled due to L1 
instruction cache miss.
branch-misses (br_misp_retired.all_branches) 

This event counts all mispredicted branch 
instructions retired.
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Architecture: Out of order scheduler

Main metric:
rs_events.empty_cycles

This event counts cycles during which the reservation station (RS) is empty
RS == Unified scheduler
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Out-of-order (OOO) scheduling
• Most modern processors use OOO scheduling

• This means that they will speculatively execute instructions ahead of 

time (Xeon: inside a “window” of ~150 instructions)

• In certain cases the results of such executed instructions must be 

discarded

• At the end, there is a difference between “executed instructions” and 

“retired instructions”

• One typical reason for this is mispredicted branches

• (compiler or developers can also transform the code to be branchless)
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Potential problem with OOO:

A lot of extra energy is needed!

Interestingly: ARM has two designs:

A53 (low power, in-order), A57 (high power, OOO)

Bad speculation



How to help the frontend

• Avoid complex branching patterns
• Keep code local (inline)
• Keep loop short (so they fit in µop cache)
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Architecture: Backend

Computational engine

Affected by 

• instruction dependency

• instruction parallelism

• pipelining

• Memory access

• Latency of “heavy instructions”

• div sqrt

• Vectorization

Main Metrics:

uops_executed.stall_cycles
This event counts cycles during which no uops were dispatched from the Reservation Station (RS) 

uops_executed.thread

Number of uops to be executed each cycle.

cycle_activity.stalls_mem_any

Execution stalls while memory subsystem has an outstanding load.

arith.divider_active 

Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.
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Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example (on an Intel Xeon processor) 
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants

• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more 

Latencies in the Core micro-architecture (Intel Manual 
No. 248966-026 or later).
AMD processor latencies are similar.

http://www.agner.org/optimize/instruction_tables.pdf

As of Haswell:
FMA (5 cycles)
As of Skylake:
SIMD ADD, MUL,FMA: 4 cycles
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Instruction pipelining

• Instructions are broken up into stages.
• With a one-cycle execution latency (simplified):

• With a three-cycle execution latency:

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
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Latencies and serial code (1)
• In serial programs, we typically pay the 

penalty of a multi-cycle latency during 
execution:
• In this example:

• Statement 2 cannot be started before 
statement 1 has finished

• Statement 3 cannot be started before 
statement 2 has finished 

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

d = a + e;  // Statement 2

f = fabs(d);   // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Latencies and serial code (1)
• In serial programs, we typically pay 

the penalty of a multi-cycle latency 
during execution:
• In this example:

• Statement 2 cannot be started before 
statement 1 has finished

• Statement 3 cannot be started before 
statement 2 has finished 

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

f = b + e;
d = a + f;  // Statement 2

f = fabs(d);   // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - W-B- - EX-1

I-F I-D W-BEX-1 EX-2 EX-3
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Latencies and serial code (2)

• Observations:
• Even if the processor can fetch and decode a new instruction every 

cycle, it must wait for the previous result to be made available
• Fortunately, the result takes a ‘bypass’, so that the write-back stage does 

not cause even further delays

• The result: CPI is equal to 3
• 9 execution cycles are needed for 3 instructions!

• A good way to hide latency is to [get the compiler to] unroll (vector) 
loops !

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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How to help the backend

• Keep data at hand (see next section and memory lecture)
• Vectorize (see lecture)
• Recast loop to help the compiler to vectorize

• Avoid divisions and sqrt!  (see FP lecture)
• Once all this done
• Recast expressions to avoid dependencies and increase ILP
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Memory architecture
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Cache/Memory Hierarchy
• From CPU to main memory on 

a recent Haswell processor

• With multicore, memory 
bandwidth is shared 
between cores in the same 
processor (socket)

c = cycle

Processor Core

(Registers)

Local/remote memory

(large, but typically non-uniform)

R: 64B/1c

11c latency

~24 B/c for all cores

> 200c latency

(R:64B + W:32B)/1c

4c latency

Shared L3

(~20 MB)

32B/1c for all cores

> 21c latency

L2

(256 KB)

L1D

(32 KB)

L1I

(32 KB)
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Main metrics:

L1-dcache-loads, L1-dcache-load-misses 

LLC-loads, LLC-load-misses (LastLevelCache)

mem_load_retired.l1_hit

mem_load_retired.l2_hit
mem_load_retired.l3_hit

mem_load_retired.l3_miss

offcore_requests.all_requests

offcore_requests_outstanding.demand_data_rd_ge_6

cycle_activity.stalls_mem_any



Latency Measurements (example)
• Memory Latency on Sandy Bridge-EP 2690 (dual socket)

• 90 ns (local) versus 150 ns (remote)

Interconnect

I/O bus

Shared
cache

C2 C3

C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory

Socket 0 Socket 1

C0T0
C0T1C0 C1

C2 C3

10/20/19 VI  Architecture@ESC 25



Recent architectures

Source AnandTech
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Cache lines (1)

• When a data element or an instruction is requested by the 

processor, a cache line is ALWAYS moved (as the minimum 

quantity), usually to Level-1

• A cache line is a contiguous section of memory, typically 64B 

in size (8 * double) and 64B aligned

• A 32KB Level-1 cache can hold 512 lines (NOT 32K random bytes)

• When cache lines have to be moved come from memory

• Latency is long (~100 cycles)

• It is even longer if the memory is remote

• Memory controller stays busy (~8 cycles)

10/20/19 VI  Architecture@ESC 27

requested



Cache lines (2)
• Good utilisation is vital
• When only one element (4B or 8B) element is used inside the 

cache line:
• A lot of bandwidth is wasted!

• Multidimensional C arrays should be accessed with the last index 
changing fastest:

• Pointer chasing (in linked lists) can easily lead to “cache thrashing” 
(increased memory traffic)

requested

for (i = 0; i < rows; ++i)
for (j = 0; j < columns; ++j) 

mymatrix [i] [j]   += increment;
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for (auto & p : container) // vector or list
p->x += increment;     // of pointers

for (auto & p : container) // by value
p.x += increment;

for (auto & x : container.xs) // by “column”
x += increment;



Prefetching
• Fetch a cache line before it is requested

• Hide latency of load
• Up to six loads “in flight” in parallel

• Normally done by the hardware
• Especially if processor executes Out-of-order
• Requires a regular access pattern (typically sequential)

• Also done by software instructions
• Especially when In-order
• Taken care by the compiler in particular in loops
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How to help Memory Access

• Locality is vital:

• Spatial locality – Use all elements in the line

• Temporal locality – Complete the execution whilst the elements 

are certain to be in the cache

• Help prefetching

• Prefer sequential access patterns

• Use all (6,8) prefetcher  

Programming the memory hierarchy is an art in itself.
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Measuring performance

• Any measurement requires a methodology
• http://www.brendangregg.com/methodology.html

• Traditional Methodology: stall analysis
• http://assets.devx.com/goparallel/17775.pdf

• ”New” approach: TopDown
• http://www.cs.technion.ac.il/~erangi/TMA_using_Linux_perf__Ahmad_Yasin

.pdf
• https://github.com/andikleen/pmu-tools/wiki/toplev-manual

• http://cs.haifa.ac.il/~yosi/PARC/yasin.pdf
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