
Introduction to
Parallel Programming

Felice Pantaleo
CERN Experimental Physics Department

felice@cern.ch

2

Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best teaching

standards!

2

https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing

3

Previously, in Moore's Paradise

● The main contribution to the gain in microprocessor
performance at this stage came by increasing the clock
frequency.

● Applications’ performance doubled every 18 months
without having to redesign the software or changing the
source code

4

Moore's Law (ctd.)

5

Moore's Law (ctd.)

6

Moore's Law (ctd.)

7

Back on Earth
● The power dissipated by a processor scales as

● Q number of transistors
● C capacity
● V voltage across the gate
● f the clock frequency
● I current
● In the early 2000s, the layer of silicon dioxide

insulating the transistor’s gate from the channels
through which current flows was just five atoms thick
and could not be shrunk anymore

8

“The party isn't exactly over, but the police have arrived, and the music
has been turned way down” (P. Kogge, IBM)

9

10

fetch, decode, execute

● The basic operation that every Processing Unit (PU) has to
process is called instruction and the address in memory
containing the instruction is saved

● A Program Counter holds the address of the next instruction
● fetch: the content of the memory stored at the address pointed

by the Program Counter is loaded in a Instruction Register
and the Program Counter is increased to point to the next
instruction’s address

● decode: the content of the Instruction Register is interpreted to
determine the actions that need to be performed

● execute: an Arithmetic Logic Unit performs the decoded
actions.

11

Serial computation
● Software traditionally written for serial computation:
● the sequence of instructions that forms the problem is

executed by one Processing Unit (PU)
● every instruction has to wait for the previous one to be

completed before its execution can start
● at any moment in time, only one instruction may execute

12

Parallel computation

● In parallel computation, if two instructions have no
data dependency, they can be executed in parallel, at
the same time, by two PUs

13

Pizza Wall

● How many cooks does a pizzeria need to achieve the
best production rate possible?

● If all the ingredients are in the same fridge and there is
only one oven? Maybe 1, 2, 64, infinity?

14

Mitigating the Pizza Wall

● Reuse of ingredients and tools which are used often:
put them on a small table close to you

● Increase the frequency of travels to the fridge
● Increase the amount of ingredients you transfer from

the fridge
● If ingredients are located all in the same box in the

fridge, you can carry more of them with a single
transfer

15

Memory Wall

● How many PUs does a program need to achieve the
best performance possible?

16

Mitigating the Memory Wall

● Reuse data and instructions: data and instructions which are
used often are stored in a on-chip memory called cache.

● Increase the memory transfer speed: this can be done by
increasing frequency, which is limited by the power wall.

● Increase the amount of data to transfer: memory transfers
have overheads, which can become negligible if more
memory is transferred in one instruction.

● Improve the access pattern to memory: if more processing
units are reading adjacent memory locations, they can all be
fed by a single memory transfer.

17

Embarrassingly parallel problems

yi=fi(xi)

18

Embarrassingly parallel problems (ctd.)
Examples:
● Linear Algebra
● Image Processing
● Monte Carlo Simulation
● Bruteforce
● Weather forecast
● Random number generation
● Encryption
● Software compilation

19

Terminology
● Granularity: size of tasks
● Scheduling: order of assignment of tasks
● Mapping: assignment of tasks to a PU
● Load balancing: the art of making the computation of multiple tasks end at the same

time
● Barrier: a checkpoint at which all the parallel workers should wait for the last one.
● Speedup: time of the serial application/time of the parallel application
● Efficiency: Speedup/# of PUs
● Race condition: When the result of execution depends on sequence

and/or timing of events. Result could be incorrect if this is not taken in
consideration

● Critical section: Only one worker per time can enter.

20

Flynn's Taxonomy

Classification of computers describes four classes in both serial
and parallel contexts:
● SISD - Single Instruction stream - Single Data stream

– A single processor computer that executes one stream of instructions
on one set of data. Single-core processors belong to this class.

● SIMD - Single Instruction Stream - Multiple Data stream
– A multiprocessor where each processing unit executes the same

instruction stream as the others on its own set of data.
– A set of processors shares the same control unit, and their execution

differs only by the different data elements each processor operates on.

21

Flynn's Taxonomy (ctd.)

● MISD - Multiple Instruction stream - Single Data stream
– Each processing element of the multiprocessor executes its own

instructions, but operates on a shared data set.
● MIMD - Multiple Instruction stream - Multiple Data

stream
– Each processing element executes its own instruction stream

on its own set of data.
● SIMT - Single Instruction - Multiple Thread

– SIMD is combined with multithreading: we will see this with
GPUs

22

Patterns for Parallel Programming
Parallel programming is not easy:
Apparently simple problems can hide many traps!

23

Reduce

Reduction is a very common pattern in parallel computing:
● Large input data structure distributed across many PU
● Each PU computes a tally of its input
● These tally values are combined to produce the final result

Examples:
● The sum of the elements of an array
● The maximum/minimum element of an array
● Find the first occurrence of x in an array

24

count number of 5s

array[N]

numberOf5 = 0

for i in [0,N[:

 if array[i] == 5

 numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

 beg = workerId*N/nWorkers

 end = beg + N/nWorkers

 for i in [beg,end[:

 if array[i] == 5:

 numberOf5++

25

Data Hazards

Threads within a process share the same address space but
not their execution stack
Pro: Threads can communicate using shared memory
Cons: Data Hazards if threads are not synchronized
Data hazards usually occur when threads modify data in
different points in the instruction pipeline and the order
of reading and writing operation matters (data
dependence)
● Read-After-Write (RAW)
● Write-After-Read (WAR)
● Write-After-Write (WAW)

26

Data Hazards

Overlooking data hazards can lead to the corruption of the
shared state (race condition)
Tricky to debug since the result depends on the timing
between concurrent threads: unpredictable!
When a piece of code is clean of data hazards, it is said to be
thread-safe.
The easiest ways to avoid conflicts in critical sections is to
grant access one thread at a time: mutex (mutual exclusion)

27

count number of 5s

array[N]

numberOf5 = 0

for i in [0,N[:

 if array[i] == 5

 numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

 beg = workerId*N/nWorkers

 end = beg + N/nWorkers

 for i in [beg,end[:

 if array[i] == 5:
 lock()

 numberOf5++
 unlock()

28

Performance

29

Performance

30

Contention
● Conflicting Data Updates Cause Serialization and

Delays:
● Massively parallel execution cannot afford serialization
● Contentions in updating critical data causes

serialization

31

Mitigating contention

Contention can be mitigated with:
● Privatization
● Transformation of the access pattern

● Avoid frequent “phone calls” to the global memory and
read/write the data locally as much as possible before
updating the global value

● Make use of registers and shared memory for aggregating
partial results

● Requires storage resources to keep copies of data structures

32

count number of 5s

array[N]

numberOf5 = 0

for i in [0,N[:

 if array[i] == 5

 numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

 privateResult = 0

 beg = workerId*N/nWorkers

 end = beg + N/nWorkers

 for i in [beg,end[:

 if array[i] == 5:

 privateResult++

 lock()

 numberOf5 += privateResult

 unlock()

33

Privatization

The T=8 version does not take half of the time w.r.t.
T=4... Why?

34

Amdahl's Law

The maximum theoretical throughput is limited by
Amdahl's Law:
● Every program contains a serial part
● Only one PU can execute the serial part
● The speedup using p PUs is given by

● If f is the fraction of the program that runs serially, the

parallel execution time is given by:

35

Amdahl's Law (ctd.)
The speed-up becomes

36

Mitigating Amdahl's Law:
Gustafson's Law
● Amdahl’s Law assumes that a problem can be split in a number of independent chunks n that

can be processed in parallel and that this number is fixed
● Many times, the increase of the size of a problem does not correspond to a growth of the

sequential part
– increasing the size of the problem does not change the time spent executing the sequential

part, and only affects the parallel portion
● Let f (n) be the sequential code fraction of the program

● f(n) decreases to 0 when n approaches infinity.
● The maximum speedup is then given by:

It's still worth to learn parallel computing: computations involving arbitrarily large data sets can
be efficiently parallelized!

37

Mother-child parallelism
When thinking about possible parallel solutions:
● How to partition the problem
● How to share information

38

Data Partitioning

y i=f i(range (x i ,δ))

39

Partitioning
● Static:

– all information available before computation starts
– use off-line algorithms to prepare before execution time
– Run as pre-processor, can be serial, can be slow and expensive

● Dynamic:
– information not known until runtime
– work changes during computation (e.g. adaptive methods)
– locality of objects can change (e.g. particles move)
– use on-line algorithms to make decisions mid-execution
– must run side-by-side with application
– should be parallel, fast, scalable.
– Incremental algorithm preferred (small changes in input result in

small changes in partitions)

Why? In order to minimize idle time.

40

Load balancing
Sometimes dividing the input data in two does
not mean that the load has been also divided in
two.

Example:
Total load: 100
● If 5 workers take 20

each
– Speedup 5

● If 1 worker takes 50
– Speedup 2

41

Partitioning and Load Balancing
● Assignment of application data to processors for

parallel computation
● Applied to grid points, elements, matrix rows, particles

Non-uniform data
distributions
● Highly concentrated spatial

data areas
● Astronomy, medical

imaging,

computer vision, rendering

If each thread processes the
input data of a given spatial
volume unit, some will do a
lot more work than others

42

Divide et Impera
When you don't have any idea on how to approach the
parallelization of a problem, try Divide et Impera

43

Load Imbalance
Sometimes load imbalance could also be caused
by some underestimated consideration

● Example:

int N = 1000;
for(int i=0; i<N; ++i){
...
}

44

Load Imbalance
Sometimes load imbalance could also be caused
by some underestimated consideration

● Example:

i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1))

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}

45

Load Imbalance

● The last thread executes the remainder
i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1))

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}

● If the number of threads is 32, each thread will execute 31
instructions

● The last thread will execute 8 more instructions
● Try to extrapolate to a bigger number of iterations and of

threads!

46

Conclusion
Parallel computing becomes useful when:
● The solution to our problem takes too much time

(Amdahl's Law)
● The size of our problem is big (Gustafson's Law)
● The solution of our problems is poor, we would like to

have a better one
Three steps to a better parallel software:

1.Restructure the mathematical formulation
2.Innovate at the algorithm and data structure level
3.Tune core software for the specific architecture

47

Think... think again

● Think about the problem you are trying to solve
● Understand the structure of the problem
● Apply mathematical techniques to find solution
● Map the problem to an algorithmic approach
● Plan the structure of computation

– Be aware of in/dependence, interactions, bottlenecks
● Plan the organization of data

– Be explicitly aware of locality, and minimize global data
● Finally, write some code! (this is the easy part)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	page8 (1)
	page8 (5)
	Slide 45
	Slide 46
	Slide 47

