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Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best teaching 

standards!
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https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing


3

Previously, in Moore's Paradise

● The main contribution to the gain in microprocessor 
performance at this stage came by increasing the clock 
frequency. 

● Applications’ performance doubled every 18 months 
without having to redesign the software or changing the 
source code
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Moore's Law (ctd.)
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Moore's Law (ctd.)
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Moore's Law (ctd.)
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Back on Earth
● The power dissipated by a processor scales as

● Q number of transistors
● C capacity
● V voltage across the gate
● f the clock frequency
● I current
● In the early 2000s, the layer of silicon dioxide 

insulating the transistor’s gate from the channels 
through which current flows was just five atoms thick 
and could not be shrunk anymore
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“The party isn't exactly over, but the police have arrived, and the music 
has been turned way down” (P. Kogge, IBM)
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fetch, decode, execute

● The basic operation that every Processing Unit (PU) has to 
process is called instruction and the address in memory 
containing the instruction is saved 

● A Program Counter holds the address of the next instruction
● fetch: the content of the memory stored at the address pointed 

by the Program Counter is loaded in a Instruction Register 
and the Program Counter is increased to point to the next 
instruction’s address

● decode: the content of the Instruction Register is interpreted to 
determine the actions that need to be performed

● execute: an Arithmetic Logic Unit performs the decoded 
actions.
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Serial computation
● Software traditionally written for serial computation:
● the sequence of instructions that forms the problem is 

executed by one Processing Unit (PU)
● every instruction has to wait for the previous one to be 

completed before its execution can start
● at any moment in time, only one instruction may execute
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Parallel computation

● In parallel computation, if two instructions have no 
data dependency, they can be executed in parallel, at 
the same time, by two PUs
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Pizza Wall

● How many cooks does a pizzeria need to achieve the 
best production rate possible?

● If all the ingredients are in the same fridge and there is 
only one oven? Maybe 1, 2, 64, infinity?
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Mitigating the Pizza Wall

● Reuse of ingredients and tools which are used often: 
put them on a small table close to you

● Increase the frequency of travels to the fridge
● Increase the amount of ingredients you transfer from 

the fridge
● If ingredients are located all in the same box in the 

fridge, you can carry more of them with a single 
transfer
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Memory Wall

● How many PUs does a program need to achieve the 
best performance possible? 



16

Mitigating the Memory Wall

● Reuse data and instructions: data and instructions which are 
used often are stored in a on-chip memory called cache.

● Increase the memory transfer speed: this can be done by 
increasing frequency, which is limited by the power wall.

● Increase the amount of data to transfer: memory transfers 
have overheads, which can become negligible if more 
memory is transferred in one instruction.

● Improve the access pattern to memory: if more processing 
units are reading adjacent memory locations, they can all be 
fed by a single memory transfer.
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Embarrassingly parallel problems

yi=fi(xi)
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Embarrassingly parallel problems (ctd.)
Examples:
● Linear Algebra
● Image Processing
● Monte Carlo Simulation 
● Bruteforce
● Weather forecast
● Random number generation
● Encryption
● Software compilation
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Terminology
● Granularity: size of tasks
● Scheduling: order of assignment of tasks
● Mapping: assignment of tasks to a PU
● Load balancing: the art of making the computation of multiple tasks end at the same 

time
● Barrier: a checkpoint at which all the parallel workers should wait for the last one.
● Speedup: time of the serial application/time of the parallel application
● Efficiency: Speedup/# of PUs
● Race condition: When the result of execution depends on sequence

and/or timing of events. Result could be incorrect if this is not taken in 
consideration

● Critical section: Only one worker per time can enter.
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Flynn's Taxonomy

Classification of computers describes four classes in both serial 
and parallel contexts:
● SISD - Single Instruction stream - Single Data stream

–  A single processor computer that executes one stream of instructions 
on one set of data. Single-core processors belong to this class.

● SIMD - Single Instruction Stream - Multiple Data stream 
– A multiprocessor where each processing unit executes the same 

instruction stream as the others on its own set of data. 
– A set of processors shares the same control unit, and their execution 

differs only by the different data elements each processor operates on.
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Flynn's Taxonomy (ctd.)

● MISD - Multiple Instruction stream - Single Data stream 
– Each processing element of the multiprocessor executes its own 

instructions, but operates on a shared data set.
● MIMD - Multiple Instruction stream - Multiple Data 

stream
–  Each processing element executes its own instruction stream 

on its own set of data.
● SIMT - Single Instruction - Multiple Thread

– SIMD is combined with multithreading: we will see this with 
GPUs
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Patterns for Parallel Programming
Parallel programming is not easy:
Apparently simple problems can hide many traps! 
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Reduce

Reduction is a very common pattern in parallel computing:
● Large input data structure distributed across many PU
● Each PU computes a tally of its input
● These tally values are combined to produce the final result

Examples:
● The sum of the elements of an array
● The maximum/minimum element of an array
● Find the first occurrence of x in an array
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count number of 5s

array[N]

numberOf5 = 0

for i in [0,N[:

   if array[i] == 5

       numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

  beg = workerId*N/nWorkers

  end = beg + N/nWorkers

  for i in [beg,end[:

         if array[i] == 5:

            numberOf5++
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Data Hazards

Threads within a process share the same address space but 
not their execution stack
Pro: Threads can communicate using shared memory
Cons: Data Hazards if threads are not synchronized
Data hazards usually occur when threads modify data in 
different points in the instruction pipeline and the order 
of reading and writing operation matters (data 
dependence)
● Read-After-Write (RAW)
● Write-After-Read (WAR)
● Write-After-Write (WAW)
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Data Hazards

Overlooking data hazards can lead to the corruption of the 
shared state (race condition)
Tricky to debug since the result depends on the timing 
between concurrent threads: unpredictable!
When a piece of code is clean of data hazards, it is said to be 
thread-safe.
The easiest ways to avoid conflicts in critical sections is to 
grant access one thread at a time: mutex (mutual exclusion)
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count number of 5s

array[N]

numberOf5 = 0

for i in [0,N[:

   if array[i] == 5

       numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

  beg = workerId*N/nWorkers

  end = beg + N/nWorkers

  for i in [beg,end[:

         if array[i] == 5:
            lock()

            numberOf5++ 
            unlock()  
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Performance
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Performance
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Contention
● Conflicting Data Updates Cause Serialization and 

Delays:
● Massively parallel execution cannot afford serialization
● Contentions in updating critical data causes 

serialization
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Mitigating contention

Contention can be mitigated with:
● Privatization
● Transformation of the access pattern

● Avoid frequent “phone calls” to the global memory and 
read/write the data locally as much as possible before 
updating the global value

● Make use of registers and shared memory for aggregating 
partial results

● Requires storage resources to keep copies of data structures
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count number of 5s

array[N]

numberOf5 = 0

for i in [0,N[:

   if array[i] == 5

       numberOf5++

return numberOf5

numberOf5 = 0

nWorkers = 4

count5(array, workerId):

  privateResult = 0

  beg = workerId*N/nWorkers

  end = beg + N/nWorkers

  for i in [beg,end[:

         if array[i] == 5:

            privateResult++ 

     lock()

     numberOf5 += privateResult

     unlock()
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Privatization

The T=8 version does not take half of the time w.r.t. 
T=4... Why?
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Amdahl's Law

The maximum theoretical throughput is limited by 
Amdahl's Law:
● Every program contains a serial part
● Only one PU can execute the serial part
● The speedup using p PUs is given by

 
●  If f  is the fraction of the program that runs serially, the 

parallel execution time is given by:  
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Amdahl's Law (ctd.)
The speed-up becomes
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Mitigating Amdahl's Law: 
Gustafson's Law
● Amdahl’s Law assumes that a problem can be split in a number of independent chunks n that 

can be processed in parallel and that this number is fixed
● Many times, the increase of the size of a problem does not correspond to a growth of the 

sequential part
– increasing the size of the problem does not change the time spent executing the sequential 

part, and only affects the parallel portion
● Let f (n) be the sequential code fraction of the program

● f(n) decreases to 0 when n approaches infinity. 
● The maximum speedup is then given by:

It's still worth to learn parallel computing: computations involving arbitrarily large data sets can 
be efficiently parallelized!
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Mother-child parallelism
When thinking about possible parallel solutions:
● How to partition the problem
● How to share information
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Data Partitioning

y i=f i(range (x i ,δ))
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Partitioning
● Static:

– all information available before computation starts
– use off-line algorithms to prepare before execution time
– Run as pre-processor, can be serial, can be slow and expensive

● Dynamic:
– information not known until runtime
– work changes during computation (e.g. adaptive methods)
– locality of objects can change (e.g. particles move)
– use on-line algorithms to make decisions mid-execution
– must run side-by-side with application
– should be parallel, fast, scalable. 
– Incremental algorithm preferred (small changes in input result in 

small changes in partitions)

Why? In order to minimize idle time.
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Load balancing
Sometimes dividing the input data in two does 
not mean that the load has been also divided in 
two.

Example:
Total load: 100
● If 5 workers take 20 

each
– Speedup 5

● If 1 worker takes 50
– Speedup 2
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Partitioning and Load Balancing
● Assignment of application data to processors for 

parallel computation
● Applied to grid points, elements, matrix rows, particles

Non-uniform data 
distributions
● Highly concentrated spatial

data areas
● Astronomy, medical 

imaging,

computer vision, rendering

If each thread processes the 
input data of a given spatial 
volume unit, some will do a 
lot more work than others
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Divide et Impera
When you don't have any idea on how to approach the 
parallelization of a problem, try Divide et Impera
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Load Imbalance
Sometimes load imbalance could also be caused 
by some underestimated consideration

● Example:

int N = 1000;
for(int i=0; i<N; ++i){
...
}
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Load Imbalance
Sometimes load imbalance could also be caused 
by some underestimated consideration

● Example:

i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1)) 

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}
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Load Imbalance

● The last thread executes the remainder
i_start = my_id * (N/num_threads);
i_end = i_start + (N/num_threads);
if (my_id == (num_threads-1)) 

i_end = N;
for (i = i_start; i < i_end; i++) {
...
}

● If the number of threads is 32, each thread will execute 31 
instructions

● The last thread will execute 8 more instructions
● Try to extrapolate to a bigger number of iterations and of 

threads!
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Conclusion
Parallel computing becomes useful when:
● The solution to our problem takes too much time 

(Amdahl's Law)
● The size of our problem is big (Gustafson's Law)
● The solution of our problems is poor, we would like to 

have a better one
Three steps to a better parallel software:

1.Restructure the mathematical formulation
2.Innovate at the algorithm and data structure level 
3.Tune core software for the specific architecture
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Think... think again

● Think about the problem you are trying to solve
● Understand the structure of the problem
● Apply mathematical techniques to find solution
● Map the problem to an algorithmic approach
● Plan the structure of computation

– Be aware of in/dependence, interactions, bottlenecks
● Plan the organization of data

– Be explicitly aware of locality, and minimize global data
● Finally, write some code! (this is the easy part )
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