VIII International Course

Detectors and Electronics for High Energy Physics, Astrophysics, Space and Medical Applications INFN – Laboratori Nazionali di Legnaro, April 1-5 2019

Pixel Front-end Electronics for High Time Resolution

Adriano Lai – INFN Sezione di Cagliari

Istituto Nazionale di Fisica Nucleare

Forewords

As it is impossible to teach advanced subjects in 1 hour, I decided to set this lecture on basic concepts and suitable to "non-specialists".

The subject is very interesting and full of subtleties – (a) completely different approach(es) could have been possible

I apologize to "specialists" if they find this lecture usuless

I hope to give some useful hints to the others

Pixels with timing: What are we talking about

Vertex detectors with timing: Phase-2 ATLAS-CMS vertex detector + 30 ps rms per pixel \rightarrow Vertex detectors from 2030 (LHCb) and beyond (future colliders?)

Target specifications:

Sensors:

→ "Native" or intrinsic time resolution of 20-30 ps rms (proven as possible) → Active area: tipically 50x50 μ m2 (ATLAS, CMS, LHCb) – Vertex detectors In timing layers we can reach wider sizes

Electronics (@ Vertex)

 \rightarrow High particle rates (1-3 GHz/cm²)

 \rightarrow High data bandwidth (10's of Gb/s per chip, some Tb/s per detector)

→ Low power (mainly to limit max power dissipation) 100-300 mW/cm² ATLAS-CMS W/cm² LHCb (better cooling system) → 10 to 50 μ A per pixel

Many of the issues above are already "under control" (e.g. ATLAS/CMS RD53 device(s)), but...

Reference: RD53A, the best beast* *as of today

Biasing, controls and digital fast readout

Analog FE scheme(s) in RD53A

- Source: L. Demaria TREDI 2019 25/2/19
- 1. Signal charges fast Feedback Capacitance (Cf);
- 2. A stable current discharges Cf, making the signal duration linearly dependent wrt charge;
- 3. Discriminator determines when the signal is above threshold : Time over Threshold
- 4. a clocked counter counts the ToT

	Input	lleak to sensor	Feedback- current	Discriminator	Threshold pixel tuning	ToT-count clock
Linear FE	single ended	Krummenacher		Asynchronous	4-bit trimming DAC	40 MHz chip clock
Diff FE	differential	LCC circuit	IFF	Asynchronous	5-bit trimming DAQ	40 MHz chip clock
Synch FE	single ended	Krummenacher		Synchronous with BX	Autozero Pulse 200ns@abort gap	20-400 MHz local clock

Analog FE scheme(s) in RD53A

... But we want time and highly resolved time

- 1. Signal charges fast Feedback Capacitance (Cf);
- 2. A stable current discharges Cf, making the signal duration linearly dependent wrt charge;
- 3. Discriminator determines when the signal is above threshold : Time over Threshold
- 4. a clocked counter counts the ToT

	Input	lleak to sensor	Feedback- current	Discriminator	Threshold pixel tuning	ToT-count clock
Linear FE	single ended	Krummenacher		Asynchronous	4-bit trimming DAC	40 MHz chip clock
Diff FE	differential	LCC circuit	IFF	Asynchronous	5-bit trimming DAQ	40 MHz chip clock
Synch FE	single ended	Krummenacher		Synchronous with BX	Autozero Pulse 200ns@abort gap	20-400 MHz local clock

Old_good times: CSA+ semi-Gaussian filter

Pixel F/E Electronics for High Time Resolution – A. Lai – VIII Int. Course on Detectors and Electronics – LNL 1-5 April 2019

Time walk effect on signal

CSA+CR-RCⁿ output: Constant T_{peak}, Amplitude proportional to charge ToA depends on amplitude (or deposited charge) ToA "walks" = Time Walk (TW)

TW can be minimized

- \rightarrow Using lower V_T as possible
- → Correcting by ToT (~ proportional to amplitude)
- → Using Constant Fraction Discrimination

σ_t : from amplitude to time noise

Uncertainty (fluctuation) in voltage threshold crossing \rightarrow time resolution

What "makes" σ_t ?

Pixel F/E Electronics for High Time Resolution – A. Lai – VIII Int. Course on Detectors and Electronics – LNL 1-5 April 2019

 $\sigma_{t}^{2} = \sigma_{jitter}^{2} +$

Uncertanties to t measurement: Classification (factorization) of contributions

Depends on intrinsic noise σ_n from sensor and amplifier and on amplifier speed, which varies in a competitive way. The subtlest one

$$\sigma^{2}_{\text{Time Walk}}$$
 +
 $\sigma^{2}_{\text{Disuniformity}}$ +
 $\sigma^{2}_{\text{Landau Noise}}$ +

Depend only on fluctuations due to sensor geometry and signal amplitude variations (differences in energy deposits). Independent of front-end noise

Depends only on electronics. On general grounds, it is not a relevant contribution to the final resolution. It can become important when issues of area and consumption budget come into the game (as happens for pixels)

 σ_n and $\sigma_t (\sigma_{iitter})$

From now on we will indicate σ_{jitter} as σ_{t_j} focusing on the interplay between sensor and electronics and leaving aside the other contributions to time resolution, to be optimized separately*

*indeed, $\sigma_{\text{Time Walk}}$ will come back to bother us soon !

Pixel F/E Electronics for High Time Resolution – A. Lai – VIII Int. Course on Detectors and Electronics – LNL 1-5 April 2019

The simplest possible read-out circuit(s)

Induced current pulses on the sensor electrodes "experimentally" are almost "abstractions" – to be measured they must be necessarily modified (processed) Athough the simulator models the sensor capacitance, it is not even considered, as we are "measuring" the current with an ideal zero impedance Amperometer

The sensor is well modeled by a current (signal) source and a capacitor

In practice, any component you will connect, it will have some finite impedance

The transimpedance (un)amplifier

$$I_{in} \rightarrow V_{out}$$

Leakage: $\sigma^2_{leak} = 2qI_{leak}BW$

Depends on Sensor. Here considered as negligible

Thermal: $\sigma^{2}_{\text{therm}} = 4kTR_{in}BW = kT/C$ (see below)

- At small R_{in} the V signal tends to follow the induced current shape. The signal width follows the t_c (collection time of charge carriers, t_c ~ 350 ps in this special case)
- Increasing R_{in}, the V signal approximates an ideal integrator, with V_{max} ≈ Q_s/C_s. T_{peak} tends to t_c. The only capacitance here is C_s, so T_{peak} ~ time needed to charge C_s at I ~ const

Pixel F/E Electronics for High Time Resolution – A. Lai – VIII Int. Course on Detectors and Electronics – LNL 1-5 April 2019

Amplifier, BW & noise

In principle, the impedance un-amplifier with high R_{in} would fit our needs. Of course this is practically unadequate: to trasmit the information we need a larger signal and a low-impedance driver, that is a true amplifier stage

R_{in} is now seen as the input impedance of the amplifier. Introducing an amplifier stage means introducing additional poles in the system transfer function, thus changing the signal shape dramatically What should be the amplifier BW for optimal time resolution?

Single pole network: signal rise time (t_r) and Band Width

RC circuit

Maximize t_r and minimize noise

 \rightarrow Noise and speed are competitive effects \rightarrow optimization

A note on BW (Δf) (skip it now)

∆f

Interval of frequency corresponding to the base of a rectangle having the same area of the effective power gain of the system

$$\Delta f = \frac{1}{A_{vo}^2} \int_0^\infty \left| A_v(f) \right|^2 df$$

If the system has one pole (e.g. a Pass Bass Filter):

$$\Delta f = \int_{0}^{\infty} \frac{df}{1 + (f/f_2)^2} \xrightarrow{f=f_2 \tan \vartheta} \Delta f = \int_{0}^{\pi/2} \frac{f_2 \sec^2 \vartheta d\vartheta}{1 + \tan^2 \vartheta} = f_2 \int_{0}^{\pi/2} d\vartheta = \frac{\pi}{2} f_2$$

(normalized to 1)

Simple RC stage: f₂ = 3dB frequency

Have we eventually found the ideal amplifier for timing ?

Charge Sensitive Amplifier

The way to make V_o strictly proportional to charge and independent of C_s

Pixel F/E Electronics for High Time Resolution – A. Lai – VIII Int. Course on Detectors and Electronics – LNL 1-5 April 2019

CSA-like amplifer pros and cons

Pros

- The output behaves similar to an ideal integrator with output proportional to Q_{in} (high V_{max}, good T_r)
- TW is due only to different Q_{in} and is independent on sensor C_s
- In constant-current discharge schemes, the ToT has a good degree of proportionality to Q_{in}, so allows TW correction (T_{peak} is not constant – as it is in CR-RC shapers
- Good performance in terms of noise and power consumption
- It is a well-established solution with wide experience in our design centers

Cons

- TW corrections, based on ToT can be easily done on data, but this is not suitable to real-time response (could be a serious limitation in Real Time processing): realtime corrections on FE?
- Alternatively, a CFD is needed, which is a complex and power-consuming circuit in systems based on dense small pixel matrices
- It does not have theoretically optimal performance

CSA output from RD53A

INFN CSA-like implementation

o-th prototpype: TIMESPOT-Zero

- Output voltage proportional to input charge
- Constant peaking and falling times for better timing
- Low noise

Istituto Nazionale di Fisica Nucleare

- Krummenacher (active) filter: DC current compensation of input leakage current
- Programmable input MOST current (this prototype)
- Cascodes can be switched on/off to improve S/N ratio (this prototype)
- The Slew Rate (dV/dt) can be increased increasing the current in the input stage by different biasing

90.0 Gain mV/fC 199.2 75.0 T_{pk} 11.86 ns 65.0 2.63 mV $\sigma_{\!\!N}$ [sd] 55.0 45.0 35.0 I = 2.5 μA **SNR** 95 ENC 82 e-Jitter = σ_N /Vr 35.0 62* ps *Consumption μΑ 25.0 2.5 Area (LE D. incl.) I = 6.5 μA μm² 37x14 15.0 L. Piccolo – INFN Torino 5.0 Power budget was intentionally kept at its 50.0 25.0 75.0 100.0 125.0 150.0 175 minimum. Cs [fF] We think that there is room σ_t vs C_s(total capacitance of pixel) for a ~ factor x2 **@ Q**_{in} = 2 **fC** SR, however, is approaching saturation

table @ $C_s = 150 \text{ fF}$

single channel core cell charge injection bias cell

- 8 channels integrated
- Core channel consists in a CSA and a Leading Edge discriminator with offset ٠ compensation
- Whole cell sizes $60\mu m \times 150\mu m$ (core cell area = 14 x 37 μm^2 without special care on area ٠ optimization)

Alternatives to CSA-like amps?

CSA with large R_f: High SR, but long decay time !

Highest SR \rightarrow R_f = ∞ , Decay time is virtual ∞ \rightarrow force V level to zero by means of a dedicated switch

- → Chance of TW correction by ToT is lost
- → Solution suitable only either if TW is made negligible or a CFD is integrated in the pixel (more complexity and power)

Alternatives? (2)

A "perfect" transimpedance amplifier?

Low R_{in}. Current amplifier $I_{in} \rightarrow I_{out} = A \times I_{in}$ But an impedance stage is necessary: RC enters however the game

In order to "follow" the input, the amplifier bandwidth has to be large enough, risking to embark too much noise. Difficult solution for relatively small C_s (BW_{amp} >> BW_{Sensor+network})

Specific solutions are being explored (TIMESPOT-1, 2020 – now under design)

Summary on amplifiers for pixels with timing

Target is to fully exploit the intrinsic sensor time resolution (~ 20 ps) within the given power budget (max 20 μ A for front-end stage)

The dilemma: try to beat dispersion with a very steep amplifier response or accept it smoothly and try to compensate it afterwards?

The CSA-like solution with constant slope discharge appears as a good enough solution, difficult to beat, although it does not reach the ideal performance. In particular, it provides an effective way to back-correct for TW using the ToT. Specific algorithms at the pixel level must be developed to obtain real-time time measurements (additional power!).

Alternative solutions can be envisaged and are being explored. Specific system optimization within the given resources is necessary. A "universal" solution is not there!

Pixels with timing: the TDC

benchmarks & limitations

Reaching 20 ps rms on a TDC is not a terrible task. Things are different within limited area and power budgets!

TIMEPIX4: Floorplan

Source: X. Llopart IOP meeting on pixels with timing – October 2017

Chip size 28.16mm x 24.64 mm CMOS 65-nm, under (advanced) stage of design 512 x 448 → 229376 pixels 24.64 mm (448 pixels) Pixel size 55µm x 55µm **Digital periphery** Analog Periphery (800 µm): BandGap + Temperature sensor **Biasing DACs** _ **Monitoring ADC** _ 1 superpixel \rightarrow 2x4 pixels Analog supply 224x64 superpixels **Digital supply** 28.16 mm (512 pixels) 2 x Digital Periphery (400 µm): 8 x 5.12Gbps serializers PLL(s) Analog periphery **Analog supply Digital supply** 2 x Pixel matrix (13.28 mm x 24.64mm): • 256 x 448 pixels 55 µm x 51.875 µm _ 1 superpixel \rightarrow 2x4 pixels 5.68% smaller than 55 µm x 55 µm 224x64 superpixels RDL has to compensate up to 400 µm — 1 TDC shared among 8 FE < 0.2 GHz/cm² Counts **Digital periphery** channels σ_{jitter} ~ 40 ps (5σ) 4 side abutable ! Using TSV 200 ps resolution

TIMEPIX4: on-pixel < 200ps time res.

Source: X. Llopart IOP meeting on pixels with timing – October 2017

- Share a 640MHz VCO among 8-pixels:
 - Oscillation frequency locked (V_{ctrl}) with periphery PLL for PVT control
 - 1.56 ns resolution (as in Timepix3)
 - 195 ps obtained latching the internal VCO phases
- Column eDLL to distribute the 40MHz
 - Controlled skew on the stop signal (<100ps)
 - Minimizes noise from pixel matrix clock distribution

TIMEPIX4: ToA & ToT

CMOS 28-nm

COMUO 91 out red 2 out red 5 out red 6 out rea

- The (two) TDC designs are based on a "ALL digital fully-synthesizable design"
- The DCO is standard-cell based
- DCO is enabled only on the occurrence of a hit for lower noise and consumption

• 1 TDC per pixel is possible Baseline v= 0 Cursor-Baseline v= 298ns						00 00<			
Name (GResB ck 	0 - C 1 1 0 0	Cursor ¢ ▼ ⊾ 000	280ns 290ns	300ns 310ns	320ns 330n	s 340n	000	Itid: Out rest Image: State Stat	15 15 15 15 15 15 15 15 15 15
							Master Clk	40	MHz
top	0	.00226) 🖽	-1 -1				Resolution (LSB)	50	ps
uten switch	n	mu <u>u</u>	E_0.6 E 0.4		╶╌║┑╴║╴╢╴╢╸		Resolution(rms)	15	ps
	ľ		-0.2				NOB	10	bits
••••••• top_internal	0	mW 🖓	-0.5				Area	20X15	μm²
	0	.00226▶ ⊖∦	0.002				Power (conversion)	1.5	mW
							Power (stand-by)	10	μW

TIMESPOT-zero

So-called Giordano's DCO – patented by our group. See for example: S. Cadeddu et al., High Resolution Synthesizable Digitally Controlled Delay Lines, IEEE TNS vol 62 No. 6, Dec 2015 Fully Digitally Controlled Delay Line

f_{out}

Exploits the intrinsic propagation delays of the library gates

Fully synthesizable from schematic + clock distribution directives for place and route.

Easily migrated from 130 nm to 65 nm to 28 nm

Drawback: it feels the leakage current of high speed grade transistors in 28-nm (high power also in stand-by conditions)

Endowing pixel circuits with high resolution timing facilities is a hard task. The task is even harder in real-time systems

Usually, system limitations (power, in particular) oblige to important compromises in performance

Some good solutions exist in principle, but no device having the complete set of specifications exists yet

Passionate work is ongoing in this years to conceive a new concept of tracking detector and realize it within one decade or so

Many thanks for your attention !