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NEWS from GW Physics

" Now moving toward O3 LIGO-Virgo joint run (start in 2019)
" Improving detectors and data analysis infrastructures

" Aiming at lowest latency possible



The era of Advanced detectors

" Abbott et al. 2017, “observing scenario” paper, arxiv:1304.0670
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Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with the expected sensitivities given by
the data in Figure 1 for future runs, and the achieved sensitivities in Ol and in O2. There is significant
uncertainty in the start and end times of planned the observing runs, especially for those further in the future,
and these could move forward or backwards relative to what 1s shown above. The plan 1s summarised in



= Abbott et al. 2017, “observing scenario” paper,

The era of Advanced detectors

arxiv:1304.0670
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Fig. 1 Regions of aLIGO (rop lefr), AdV (rop right) and KAGRA (botrom) target strain sensitivities as a
function of frequency. The binary neutron star (BNS) range, the average distance to which these signals
could be detected, is given in megaparsec. Current notions of the progression of sensitivity are given for early,
mid and late commissioning phases, as well as the final design sensitivity target and the BNS-optimized
sensitivity. While both dates and sensitivity curves are subject to change, the overall progression represents
our best current estimates.



NEWS from 02

* GW170814 was the first event observed by LIGO AND Virgo

" Binary black hole merger like the previous events

* Sky localization accuracy thanks to Virgo (from 1160 deg? to 60
deg?)

Dys 250 500 750 1000
M
Meeting




GW170817 detection by LIGO and Virgo

Nunnahzed amplltudf:
* Highest combined SNR (32.4) _:
- - -
Consistent with neutron star merger LIGO-Hanford
Low-spin priors High-spin priors
(x| < 0.05) (x| < 0.89) 100
Primary mass m; 1.36-1.60 Mg 1.36-2.26 My 50
Secondary mass ms 1.17-1.36 My 0.86-1.36 M5
Chirp mass .4 11887555, Mo 11887566, Mo
Mass ratio my/m; 0.7-1.0 0.4-1.0 E
Total mass mqot 2.747 00 M, 2.82047 M, =
Radiated energy E .4 > 0.025Mgc? > 0.025 M c? E‘
Luminosity distance Dy, 40”5, Mpe 40°%, Mpe §
Viewing angle @ < B5° < 56° -]
Using NGC 4993 location < 28~ < 28° =
Combined dimensionless tidal < 300 < 700
deformability A - - GW170104
GV 4
Dimensionless tidal deformability < 800 < 1400 2 vl

A(1.4M,) ; s
[VT151012

GW151226

\

Time (seconds)
" GW150914

GW1708 1;\

LIGO/Vi rgo/NASA/Leo Singer
(Milky Way image: Axel Mellinger)
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Fast detector characterization & machine learning

® Noise in GW detector has a non-stationary components (glitches)

® Detecting and classifying glitches is one of the key aspects for detector
characterization and data analysis

® Image-based technique tested
® Now moving toward an implementation on real data

® Also tested other deep learning approaches that use auxiliary channels



Open data release

® From LIGO Open Science Center (LOSC) to Gravitational Wave Open Science
Center (GWOSC)
— Extended upgrade of the background Python web engine
— New material upgrade
— Virgo contribution integrated in the portal

® Final checks and implementation at Caltech in July (MR secondment)
® \Web portal has been tested and now is online

® | ook at https://www.gw-openscience.org



GWOSC

Gravitational Wave Open Science Center

Getting Started
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Conclusions

® Dawn of multimessenger observations

® Preparaion for O3

® Analysis activities focus on developing new low-latency pipelines to enable
multimessenger observations (e.g. detchar, localization)

® GWOSC released

® Collaboration with Pasadena (M. Isi) on GR physics (US)

® Collaboration with 3@ generation developments (US,Japan)
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