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Outline

• Standard Cosmological Model: assumptions, solutions 
and issues


• Inhomogeneous Cosmologies: an overview


• Inhomogeneous Cosmologies and Cosmological principle


• Analytical fractal model



Standard Cosmological Model 
Basic Assumptions

• General Relativity holds on largest scales


• No special points in the Universe


• On larger scales sources are perfect fluids with pressure 
and density related by an equation of state

p = w ρ



Standard Cosmological Model 
Direct Successes

• Expansion already known since the 20’s of XX century


• Blackbody spectrum of Cosmic Microwave Background 
(CMB) measured in 60’s



Standard Cosmological Model 
Problems and Solutions

• CMB is too isotropic on larger angular scales: Inflation


• The observed matter is not enough for Structure 
Formation: Dark Matter


• Local sources are more far than expected: Dark Energy



Standard Cosmological Model 
Status of Art

• Given these above-mentioned facts, the Standard 
Cosmological Model fits data with the aim of a small 
number of parameters to be tuned with data


• Among all of them, just 3 parameters are needed to study 
local sources: ΩΛ0 Ωm0 H0



Dark energy + Dark matter

Dark matter
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ΩΛ0 = 0.685 and Ωm0 = 0.315



However…

• The parameters we have introduced so far have been 
determined just by a data fitting


• We do not have idea about what Dark Energy and Dark 
Matter are made of


• The previous fit does not take into account the presence 
of structures on cosmological scales



Adding structures in the model

• Indeed we know that structures are not only present but 
also understood as the growth of the seeds of quantum 
fluctuations during the inflation


• Homogeneity and isotropy are meant to be valid only in 
an averaged sense





1) What do we mean by 
“averaged”?

• Observational approach: the averages are taken over the 
observables of interest


• Geometrical approach: the averages are performed over 
the metric tensor


• In the latter case, given the second-order non-linear 
behavior of the Einstein equations, the evolution of an 
averaged metric tensor is not the same as the average of 
the evolved metric tensor (Buchert-Ehlers commutation 
rules and their generalization)



2) How do we treat these 
deviations from homogeneity?
• Perturbative framework: the observational approach 

indicates that these perturbations are not enough to 
change our view on       (Ben-Dayan, Gasperini, Marozzi, 
Nugier, Veneziano, 2013)


• Perturbative framework: some still debated results about 
the geometrical approach indicates that the average over 
inhomogeneities is not able to mimic the effect of       
(Green, Wald)


• What about exact GR solutions for inhomogeneous 
models?

ΩΛ0

ΩΛ0



Exact inhomogeneous solvable 
models

• There are very few classes of inhomogeneous analytical 
solutions of cosmological interest (Szekeres, Bianchi)


• The ones we are about to talk about refer to the so-called 
Lemaitre-Tolman-Bondi (LTB) models 



LTB models (1)

• These models consider a generalization of FRW where the 
metric tensor is radially inhomogeneous


• Moreover the energy-tensor      is still considered to be a 
perfect fluid, where pressure and density may be radially 
inhomogeneous as well


• However this assumption allows only matter radial 
inhomogeneities, thanks to the Bianchi identity 

ds2 = − dt2 + X2(t, r) dr2 + A2(t, r) dΩ2

Tμν

w ρ′�(t, r) = 0



LTB models (2)

• In this framework Einstein equations provide the evolution 
of the metric given by


•

·A2 + k
A2

+
2 ·A ·A′� + k′�

AA′�
= 8πG Ttt

·A2 + 2A ··A + k
A2

= 8πG Trr

X =
A′ �

1 − k(r)



What do we get for these 
models?

• The solutions of the field equations for a pure matter 
energy tensor depend on the choice of the free functions


• The interesting thing is that these solutions can fit the 
SnIa data (Alnes, Amarzguioui, Celerier, Enqvist)


• However they require that the observer must live too 
close to the center of a local giant void to fit properly also 
the CMB data (Alnes, Amarzguioui)

A0(r) M(r) k(r)



Intermediate summary

• Perturbative approaches rely on the choice of a maximally 
symmetric background: perturbations are defined with 
respect to it


• Exact solutions seem to be highly constrained by 
observations and provide fine-tuning conditions which 
look unnatural



LTB models vs Standard 
Cosmological Model

• General Relativity holds on largest scales: true in both 
descriptions


• No special points in the Universe: true only in Standard 
Cosmological Model


• On larger scales sources are perfect fluids: true in both 
descriptions



Restoring the Cosmological 
Principle for inhomogeneous models

• The appearance of a privileged observer is a strong 
constraint on the interpretation of these models when I try 
to describe local structures surrounding the observer


• However what happens if we try to restore the 
cosmological principle in a statistical sense but we relax 
the hypothesis of a perfect fluids?



• Let us try to describe the distribution of matter in the 
Universe as a discrete collection of masses rather than a 
perfect fluid


• 1) In a more rigorous way, I impose that the distribution of 
matter in the Universe can be described by a discrete 
matter source field as


• 2) The observer will occupy one of these points


• 3) From any point of the distribution, the observer 
experiences an averaged density decay

ρ( ⃗r ) = ∑
i

mi δ( ⃗r − ⃗ri) ≈ < n(r) >



Physical hints for this model

• A similar behavior on smaller scales has been observed in 
the statistical analysis of galaxy three dimensional surveys 
(Antal, Sylos Labini, Vasilyev, Barishev, 2009)


• This behavior seems to hold up to the physical scale 
given by the volume of the survey


• For r >100 Mpc/h it is still debated whether a transition to 
homogeneity exhibits

< n(r) > ∼ r−γ = rD−3

where γ = 0.9 ± 0.1 for 0.1 < r < 20 Mpc/h
and γ = 0.2 ± 0.1 for 20 < r < 100 Mpc/h



Hybrid model 
Starting equations

• Having this in mind, we speculate that this averaged 
behavior extends on arbitrarily large scales


• Hence, in order to provide an analytical solution within the 
GR framework, we adopt < n(r) > as the density source for 
the Einstein equations


•

·A2 + k
A2

+
2 ·A ·A′� + k′�

AA′�
= 8πG < n(r) >

·A2 + 2A ··A + k
A2

= 0



Hybrid model 
Analytical solution

• Assuming no spatial curvature, we have can get an 
analytical solution for the non-analytical distribution of 
matter


• The two free functions can be set as


•

A(t, r) = A0(r) 1 +
3
2

M(r)
2G A3

0(r)
t

2/3

A0(r) = r

M(r) ≡ 4π ∫S3
P(r)

< n(r) > A′�A2dr = Φ rD



Hybrid model 
Interpretation

• The choice of the free functions is motivated by these 
assumptions


• 1)               implies that we are assuming no spatial curvature, 
no matter how deeply inhomogeneous it may be


• 2)               can be chosen thanks to the freedom that I have 
in redefining the LTB radial coordinate at a given time. Just a 
rescaling of distances


• 3)                takes into account the possible deviation from 
the homogeneous distribution (D = 3), allowing for a fractal 
behavior of matter on larger scales

A0(r) = r

k(r) = 0

D = 3 − γ



Hybrid model 
From solutions to observations (1)

• Provided that an analytical solution for the proposed 
fractal distribution exists, we can analyze the local data 
for SnIa


• In this regards, it is well known that LTB models allows to 
write exactly the luminosity-distance as

dL(t, r) = (1 + z)2A(t, r)



• In order to directly compare with data, last step to do is 
solving the geodesic light-like equations to express the 
luminosity-distance/redshift relation


• which can be solved only numerically

Hybrid model 
From solutions to observations (2)

dt
dz

= −
A′�(t(z), r(z))

(1 + z) ·A′�(t(z), r(z))
dr
dz

=
1

(1 + z) ·A′�(t(z), r(z))
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Hybrid model 
Interpretation (1)

• The analytical solution we found fits well the local SnIa 
data (from UNION2 catalog)


• The value for the fractal dimension is not so far (but 
significantly different) from the homogeneity


• The number of parameters that we have used is the same 
as the one in the Standard Cosmological model


• The related value for    from the best-fit analysis gives  γ
γ = 3 − D = 0.13 ± 0.02



• Despite the fact that we adopt an analytical 
inhomogeneous model, no special points are present in 
our description, differently from the local void 
interpretation of LTB literature


• More interesting, we have assumed no dark energy 
component in our model: it has been enough to allow a 
little deviation from perfect homogeneity

Hybrid model 
Interpretation (2)



Hybrid model 
Next steps (1)

• The proposed solution seems to work very good to be an 
oversimplified model


• More refined suggestions can be done by allowing a 
transition-to-homogeneity scale in the model. This will 
add one more parameter but a study about whether and 
where this transition might happen will be interesting to 
be done



• Other kinds of cosmological probes must be tested but 
the road seems to be promising: the stronger constraint 
from the CMB dipole does not apply here because we do 
not need for a displacement from the center

Hybrid model 
Next steps (2)


