Helical metals and insulators in interacting Dirac matter

Habib Rostami

H.R., E. Cappelluti, and A. V. Balatsky, Phys. Rev. B 98, 245114 (2018)

Outline

- Introduction: theory and experiment
- Interaction induced helical insulator and metal
- Berry curvature: sheet singularity
- Landau level spectrum

Dirac Matter

$d=2 \quad$ Graphene, TI surface states,..

$$
\mathcal{H}=v \sigma \cdot \mathbf{k}=v\left(k_{x} \sigma_{x}+k_{y} \sigma_{y}\right)
$$

Dirac Point

$d=3$ Weyl semimetals such as TaAs compounds,...

$$
\mathcal{H}=v \sigma \cdot \mathbf{k}=v\left(k_{x} \sigma_{x}+k_{y} \sigma_{y}+k_{z} \sigma_{z}\right)
$$

Helical insulators and metals

$$
\begin{aligned}
& \hat{\Sigma}(\mathbf{k})=\Delta \frac{\hat{\sigma} \cdot \mathbf{k}}{k} \\
& \hat{\mathcal{H}}_{\boldsymbol{k}}=\hbar v k \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{k}}+\Delta \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{k}}, \\
& \hat{\mathcal{H}}_{\boldsymbol{r}}=\hbar v \hat{\boldsymbol{\sigma}} \cdot\left[-i \boldsymbol{\nabla}+\frac{i k_{\circ}(d-1)}{2 \pi^{d-1}} \int d^{d} \boldsymbol{s} \frac{\boldsymbol{s} \exp \{\boldsymbol{s} \cdot \boldsymbol{\nabla}\}}{s^{d+1}}\right] \\
& \text { - Helicity operator } \\
& \hat{h}=\hat{\sigma} \cdot \hat{\mathbf{k}} \quad\left[\hat{\mathcal{H}}_{k}, \hat{h}\right]=0 \\
& \text { - Lifshitz transition: } \\
& \text { Dirac point } \rightarrow\left\{\begin{array}{l}
\text { gapped } \\
\text { nodal circle/sphere }
\end{array}\right. \\
& \text { "Fermi surface changes its topology" }
\end{aligned}
$$

Massless gap opening in graphene

L. Benfatto and E. Cappelluti, PRB 78, 115434 (2008)

Inversion symmetry:

Massive gap

$$
\hat{\Sigma}(\mathbf{k})=-V \sum_{\mathbf{k}^{\prime}, i \omega_{n}} F\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \hat{G}\left(\mathbf{k}^{\prime}, i \omega_{n}\right) e^{i \omega_{n} 0^{+}}
$$

Anisotropic scattering

$$
F\left(\phi-\phi^{\prime}\right)=\Theta\left(\phi_{c}-\left|\phi-\phi^{\prime}\right|\right) \quad, \quad \phi_{c}<\pi
$$

$\hat{\Sigma}(\mathbf{k}) \propto \Lambda^{2} \sin \left(\phi_{c}\right) \hat{\sigma} \cdot \hat{\mathbf{k}}$

Spontaneously symmetry breaking $\hat{H}(\mathbf{k})=\hat{H}_{0}(\mathbf{k})+T \sum_{\mathbf{p}, n} \frac{V(\mathbf{k}-\mathbf{p})}{i \omega_{n} \hat{I}-\hat{H}(\mathbf{k})}$.
E. Cappelluti et al, AdP, 526, 387(2014)

$$
\alpha=e^{2} /\left(\epsilon_{0} \hbar v\right)
$$

Critical coupling constant

$$
\begin{aligned}
& \alpha_{\text {massless-gap }} \geq 1.76 \\
& \alpha_{\text {masive-gap }} \geq 0.46
\end{aligned}
$$

Weyl Mott Insulator

Hatsugai-Kohmoto's model (1992)

$$
\mathbf{p}_{1}+\mathbf{p}_{\mathbf{2}}=\mathbf{p}_{\mathbf{3}}+\mathbf{p}_{\mathbf{4}}
$$

$$
\hat{V}_{e e}=\frac{V}{2} \sum_{\boldsymbol{k}}\left(\hat{\psi}_{\boldsymbol{k}}^{\dagger} \hat{\psi}_{\boldsymbol{k}}-1\right)^{2}
$$

$$
\mathbf{r}_{1}+\mathbf{r}_{2}=\mathbf{r}_{3}+\mathbf{r}_{4}
$$

T. Morimoto and N. Nagaosa, Scientific Reports 6, 19853 (2016)

$$
\mathcal{H}=\sum_{\mathbf{k}}\left\{\hbar v k\left(n_{\mathbf{k}+}-n_{\mathbf{k}-}\right)+\frac{V}{2}\left(n_{\mathbf{k}+}+n_{\mathbf{k}-}-1\right)^{2}\right\}
$$

$n_{\mathbf{k} \pm}=c_{\mathbf{k} \pm}^{\dagger} c_{\mathbf{k} \pm} \quad$ where \pm corresponds to the cones with opposite helicity.

$$
|\Omega\rangle \quad, \quad E_{\mathrm{vac}}=V / 2
$$

$$
\left|\Psi_{\mathbf{k} \pm}^{(1)}\right\rangle=c_{\mathbf{k} \pm}^{\dagger}|\Omega\rangle \quad, \quad E_{ \pm}^{\text {single }}= \pm \hbar v k
$$

$$
\left|\Psi_{k}^{(2)}\right\rangle=c_{\mathbf{k}+}^{\dagger} c_{\mathbf{k}-}^{\dagger}|\Omega\rangle \quad, \quad E^{\text {double }}=V / 2
$$

$$
\begin{aligned}
& V>0 \\
& \hat{\Sigma}(\boldsymbol{k})=\frac{V}{2} \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{k}}
\end{aligned}
$$

Hatsugai-Kohmoto's model as an exactly solvable model

Y. Hatsugai and M. Kohmoto, Journal of the Physical Society of Japan 61, 2056 (1992) F. S. Nogueira and E. V. Anda, International Journal of Modern Physics B 10 (1996)

$$
\begin{gathered}
\hat{G}\left(i \omega_{n}, \boldsymbol{k}\right)=\hat{U}_{\boldsymbol{k}}\left[\begin{array}{cc}
\mathcal{G}_{++}\left(i \omega_{n}, \boldsymbol{k}\right) & 0 \\
0 & \mathcal{G}_{--}\left(i \omega_{n}, \boldsymbol{k}\right)
\end{array}\right] \hat{U}_{\boldsymbol{k}}^{\dagger} \\
\left.=\left\{i \omega_{n}-\hbar v \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k}-\hat{\Sigma}\left(i \omega_{n}, \boldsymbol{k}\right)\right)\right\}^{-1} \\
\mathcal{G}_{\lambda \lambda}=\frac{A_{-}}{i \omega_{n}-\lambda \varepsilon_{-}}+\frac{A_{+}}{i \omega_{n}-\lambda \varepsilon_{+}} \\
\begin{array}{l}
A_{ \pm}=\frac{\exp \left\{ \pm \beta \varepsilon_{ \pm}\right\}+1}{2+\exp \left\{-\beta \varepsilon_{-}\right\}+\exp \left\{\beta \varepsilon_{+}\right\}} \\
V>0 \\
V<0 \& \hbar v k>V / 2 \\
\hat{\Sigma}(\boldsymbol{k})=\frac{V}{2} \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{k}} \\
\hat{\Sigma}(\boldsymbol{k})=\frac{V}{2} \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{k}}
\end{array} \\
V<0 \& \hbar v k<V / 2
\end{gathered} \hat{\Sigma}\left(i \omega_{n}, \boldsymbol{k}\right)=\frac{V^{2}}{4} \frac{i \omega_{n}+\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k}}{\left(i \omega_{n}\right)^{2}-(\hbar v k)^{2}} .
$$

T. Morimoto and N. Nagaosa, Scientific Reports 6, 19853 (2016)
H.R., E. Cappelluti, and A. V. Balatsky, Phys. Rev. B 98, 245114 (2018)

Massless gap opening: experiment

Europium (Eu)-induced changes in the $\boldsymbol{\pi}$-band of graphene (G) formed on the $6 \mathrm{H}-\mathrm{SiC}$ (0001) surface

M. Papagno et al, ACS Nano 6, 199 (2012).

Nanotechnolozy 28 (2017) 205201

Single-layer graphene (SLG) grown on a $\operatorname{SiC}(0001)$ substrate by doping low-energy (5 eV) Li^{+}ions

Nanotechnology 28 (2017) 205201

Europium (Eu)-induced changes in the $\boldsymbol{\pi}$-band of graphene (G) formed on the $\mathbf{6 H}-\mathrm{SiC}(0001)$ surface

Maybe Plasmarons!

Observation of Plasmarons in Quasi-Freestanding Doped Graphene Aaron Bostwick et al. Science 328, 999 (2010);

Self-energy for Gaussian interaction profile V(q)

$$
\begin{aligned}
& \hat{V}_{e e}=\frac{1}{2} \sum_{\boldsymbol{q}} V(\boldsymbol{q}) \hat{\rho}(\boldsymbol{q}) \hat{\rho}(-q) \\
& \xi \rightarrow \infty \quad V_{e e}=\frac{V}{2}\left(\sum_{\mathbf{k}} \hat{\psi}_{\mathbf{k}}^{\dagger} \hat{\psi}_{\mathbf{k}}\right)^{2} \\
& \hat{\Sigma}(\boldsymbol{k})=i \int \frac{d \omega}{2 \pi} \int \frac{d^{d} \boldsymbol{q}}{(2 \pi)^{d}} V(\boldsymbol{k}-\boldsymbol{q}) \hat{G}(i \omega, \boldsymbol{q}) \\
& \hat{G}(i \omega, \boldsymbol{q})=-\frac{i \omega+\hbar v \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{q}}{\omega^{2}+(\hbar v q)^{2}}
\end{aligned}
$$

$$
V(\boldsymbol{q})=V(2 \pi)^{d} \frac{e^{-\xi|\boldsymbol{q}|^{2}}}{(\pi / \xi)^{d / 2}},
$$

$$
\hat{\Sigma}(\boldsymbol{k})=V C_{d} M\left(1 / 2,1+d / 2,-k^{2} \xi\right) k \sqrt{\xi} \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{k}}
$$

$$
C_{d=2}=1 / 16 \pi^{\frac{3}{2}}, C_{d=3}=1 / 12 \pi^{\frac{7}{2}}
$$

$$
\text { H. R, E. Cappelluti, and A. V. Balatsky, Phys. Rev. B 98, } 245114 \text { (2018) }
$$

Boson-mediated effective interaction

$$
\hat{\mathcal{H}}=\hbar v \sum_{\mathbf{k}} \hat{\psi}_{\mathbf{k}}^{\dagger} \hat{\sigma} \cdot \mathbf{k} \hat{\psi}_{\mathbf{k}}+\hbar \omega_{0} \hat{a}_{0}^{\dagger} \hat{a}_{0}+g \sum_{\mathbf{k}} \hat{\psi}_{\mathbf{k}}^{\dagger} \hat{\Gamma}_{\mathbf{k}} \hat{\psi}_{\mathbf{k}}\left(\hat{a}_{0}^{\dagger}+\hat{a}_{0}\right)
$$

Lang-Firsov transformation

$$
\begin{array}{cc}
\hat{\mathcal{H}}^{\prime}=e^{\hat{S}} \hat{\mathcal{H}} e^{-\hat{S}}, \quad \hat{S}=\frac{g}{\hbar \omega_{0}} \hat{\mathcal{N}}\left(\hat{a}_{0}^{\dagger}-\hat{a}_{0}\right) \quad \hat{\mathcal{N}}=\sum_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}^{\dagger} \hat{\Gamma}_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}} \\
\hat{\psi}_{\boldsymbol{k}}^{\prime}=e^{\hat{S}} \hat{\psi}_{\boldsymbol{k}} e^{-\hat{S}}=\hat{X}_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}} & \hat{X}_{\boldsymbol{k}}=\exp \left[\frac{g}{\hbar \omega_{0}} \hat{\Gamma}_{\boldsymbol{k}}\left(\hat{a}_{0}-\hat{a}_{0}^{\dagger}\right)\right]
\end{array}
$$

$$
\hat{\mathcal{H}}^{\prime}=\hbar v \sum_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}^{\dagger}\left[\hat{X}_{\boldsymbol{k}}^{\dagger} \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k} \hat{X}_{\boldsymbol{k}}\right] \hat{\psi}_{\boldsymbol{k}}-U\left[\sum_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}^{\dagger} \hat{\Gamma}_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}\right]^{2}
$$

$$
U=g^{2} / \hbar \omega_{0}
$$

Boson-mediated effective interaction

$$
\hat{\mathcal{H}}^{\prime}=\hbar v \sum_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}^{\dagger}\left[\hat{X}_{\boldsymbol{k}}^{\dagger} \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k} \hat{X}_{\boldsymbol{k}}\right] \hat{\psi}_{\boldsymbol{k}}-U\left[\sum_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}^{\dagger} \hat{\Gamma}_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}\right]^{2},
$$

$\hat{\Gamma}_{k} \propto \hat{I}$

$$
\hat{X}_{\boldsymbol{k}}^{\dagger} \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k} \hat{X}_{\boldsymbol{k}}=\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k}
$$

$\hat{\Gamma}_{\boldsymbol{k}}=\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{n}} \quad \begin{aligned} \hat{X}_{\mathbf{k}}^{\dagger} \hat{\sigma} \cdot \mathbf{k} \hat{X}_{\mathbf{k}} & =\cosh (2 \hat{B}) \hat{\sigma} \cdot \mathbf{k}+[1-\cosh (2 \hat{B})](\hat{\sigma} \cdot \hat{\mathbf{n}})(\hat{\mathbf{n}} \cdot \mathbf{k}) \\ & -i \sinh (2 \hat{B})(\hat{\mathbf{n}} \times \mathbf{k}) \cdot \hat{\sigma} .\end{aligned}$

$$
\hat{B}=\left[g / \hbar \omega_{0}\right]\left(\hat{a}_{0}-\hat{a}_{0}^{\dagger}\right)
$$

Holstein approximation

$$
\hat{\psi}_{\mathbf{k}}^{\dagger}\left[\hat{X}_{\mathbf{k}}^{\dagger} \hat{\sigma} \cdot \mathbf{k} \hat{X}_{\mathbf{k}}\right] \hat{\psi}_{\mathbf{k}} \rightarrow\langle 0| \hat{\psi}_{\mathbf{k}}^{\dagger}\left[\hat{X}_{\mathbf{k}}^{\dagger} \hat{\sigma} \cdot \mathbf{k} \hat{X}_{\mathbf{k}}\right] \hat{\psi}_{\mathbf{k}}|0\rangle .
$$

Self-energy for different electron-boson couplings

$\hat{\Gamma}_{k} \propto \hat{I}$

$$
\hat{\mathcal{H}}=\hbar v \sum_{\mathbf{k}} \hat{\psi}_{\mathbf{k}}^{\mathrm{t}} \hat{\sigma} \cdot \mathbf{k} \hat{\psi}_{\mathbf{k}}-U\left[\sum_{\mathbf{k}} \psi_{\hat{k}}^{\mathrm{k}} \hat{\psi}_{\mathbf{k}}\right]^{2},
$$

$$
\hat{E}(\mathbf{k})=-U \frac{\tilde{\sigma} \cdot \mathrm{k}}{k}
$$

$$
\begin{aligned}
& \text { - } \hat{\Gamma}_{k}=\hat{\sigma} \cdot \hat{n} \quad \hat{\mathcal{H}}=\hbar v \sum_{\mathbf{k}} \hat{\psi}_{\mathbf{k}}^{\hat{t}}\left[\gamma \hat{\sigma} \cdot \mathbf{k}_{\perp}+\hat{\sigma} \cdot \mathbf{k}_{\mathrm{k}}\right] \hat{\psi}_{\mathbf{k}}-U\left[\sum_{\mathbf{k}} \hat{\psi}_{\mathbf{k}}^{\hat{\sigma}} \hat{\boldsymbol{\sigma}} \cdot \hat{\mathbf{n}} \hat{\psi}_{\mathbf{k}}\right]^{2}, \\
& \gamma=\exp \left[-2\left(g / \hbar \omega_{0},\right.\right.
\end{aligned}
$$

$$
\gamma=\exp \left[-2\left(g / \hbar \omega_{0}\right)^{2}\right]
$$

$$
\text { For } \hat{\mathbf{n}}=\hat{\mathbf{z}} \text { in two-dimensions: }
$$

$$
\hat{\Sigma}(\boldsymbol{k})=U \frac{\gamma \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k}_{\perp}-\hat{\boldsymbol{\sigma}} \cdot \boldsymbol{k}_{\|}}{\sqrt{\gamma^{2} k_{\perp}^{2}+k_{\|}^{2}}}
$$

$$
\hat{\Sigma}(\boldsymbol{k})=U \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{k}},
$$

$$
\hat{\mathcal{H}}_{\text {int }}=g \sum_{\boldsymbol{k}} \hat{\psi}_{\boldsymbol{k}}^{\dagger}\left[\left(\hat{a}_{0}+\hat{a}_{0}^{\dagger}\right) \hat{\Gamma}_{a}+\left(\hat{b}_{0}+\hat{b}_{0}^{\dagger}\right) \hat{\Gamma}_{b}\right] \hat{\psi}_{\boldsymbol{k}} \quad \hat{\Gamma}_{a, b}=\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{n}}_{a, b} \text { with } \hat{\boldsymbol{n}}_{a} \cdot \hat{\boldsymbol{n}}_{b}=0
$$

$$
\hat{\mathcal{H}}=\gamma \hbar v \sum_{k} \hat{\psi}_{k}^{\dagger} \boldsymbol{k} \cdot \hat{\boldsymbol{\sigma}} \hat{\psi}_{\boldsymbol{\psi}}-\gamma^{2} U \sum_{i=a, b}\left[\sum_{k} \hat{\psi}_{k}^{\dagger} \hat{\sigma} \cdot \hat{\boldsymbol{n}}_{i} \hat{\psi}_{k}\right]^{2} \quad \triangleq(\mathbf{k})=0
$$

Transverse and longitudinal modes cancel each other effects

Berry curvature: sheet singularity

3D
$\Omega_{+}(\mathbf{k})=-\frac{\mathbf{k}}{2 k^{3}}$
$\Omega_{-}(\mathbf{k})=+\frac{\mathbf{k}}{2 k^{3}}$
$\Omega(\mathbf{k})=\operatorname{sign}\left(k-\left|k_{\circ}\right|\right) \frac{\mathbf{k}}{2 k^{3}}$

Berry curvature measurement : "time-reversal" protocol

$$
\frac{\mathbf{v}(\mathbf{k},-\mathbf{E})-\mathbf{v}(\mathbf{k}, \mathbf{E})}{2}=\mathbf{E} \times \boldsymbol{\Omega}(\mathbf{k})
$$

H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620 (2012).

Landau level in 2D: zero energy level

$$
\hat{\mathcal{H}}(\hat{\boldsymbol{\pi}})=v\left[\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\pi}}+\frac{\hbar k_{\circ}}{2}\left\{(\hat{\boldsymbol{\pi}} \cdot \hat{\boldsymbol{\pi}})^{-1 / 2}, \hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\pi}}\right\}\right]
$$

Massive gap

$$
\hat{\boldsymbol{\pi}}=\hbar \boldsymbol{k}+e \boldsymbol{A}
$$

$$
\varepsilon_{n}=\hbar v \sqrt{2 n} \frac{\left|1+\alpha_{n} k_{0} \ell_{B}\right|}{\ell_{B}}
$$

$$
n=0,1,2, \ldots
$$

$$
\ell_{B}=\sqrt{\hbar / e B}
$$

$$
\alpha_{n}=(2 n-1)^{-1 / 2}+(2 n+1)^{-1 / 2}
$$

$$
\left|\psi_{n}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\binom{ \pm \operatorname{sign}\left(1+\alpha_{n} k_{\circ} \ell_{B}\right)|n-1\rangle}{|n\rangle}
$$

E. Cappelluti et al, AdP, 526, 387(2014).

Landau level inversion in nodal circle phase

Landau level: 3D case

Nodal sphere

Summary

- Massless gap opening and Nodal circle/sphere with a infinite-range interaction
- Infinite-interaction induced by momentum-conserving scattering of electron from a Boson mode
- Sheet singularity of Berry curvature in nodal sphere metal
- Landau levels: zero energy level, level inversion

Thank you!

