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will be discussed in details.
The paper is organized as follows: in Section II, we

discuss the emergence of helical metals and insulators in
Dirac matter due to long-range interaction; in section III,
we discuss a microscopic mechanism for infinite-range at-
tractive interaction based on a boson-mediated coupling;
in Section IV, we discuss the topology of new phases. Fi-
nally we present the characterization of discrete Landau
levels in the presence of a magnetic field is provided in
Section V .

II. HELICAL METALS AND INSULATORS BY
LONG-RANGE INTERACTIONS

As it is well known, the helical character of 2D Dirac
point and 3D Weyl points is protected by symmetry
against the e↵ects of well-behaved many-body interac-
tions. Alternatively, a conventional way to reduce the
helical symmetry in these systems is by introducing an
external field that gives rise to a term ��̂z. In 2D Dirac
systems such term opens a massive gap a↵ecting thus the
helical symmetry, whereas in 3D it just leads to a shift of
the Dirac point position along z-direction without open-
ing a gap and without a↵ecting the helicity.

Recently a new paradigmatic model has been suggested
where a massless gap opening in 2D Dirac systems is
induced without a↵ecting the helical properties.[15, 16,
30, 31] Phenomenologically, such a phase is established
by considering a term ��̂ · k̂ in the Dirac Hamiltonian,
namely

Ĥk = ~vk�̂ · k̂ + ��̂ · k̂, (1)

where k̂ = k/k is the unitary momentum vector. Hamil-
tonian (1) works in the 2 ⇥ 2 pseudospin space defined
by the spinor  ̂†

k = (c†
k,", c

†
k,#). The energy dispersion

can be easily computed, giving "�
k = �~v(k + k�), where

� = +/� and where k� = �/(~v). The excitation spec-
trum is thus characterized by a rigid split of the upper
and lower Dirac cones, resulting in a gapped spectrum,
as depicted in Fig. 1b, where the red (top) and blue (bot-
tom) cones correspond � = +, � = �, respectively. Note
that the additional term / � does not break the helic-
ity and the eigenvectors of Hamiltonian (1) are identical
to those of a single Dirac node with k� = 0. Such kind
of gap opening has thus been denoted as massless gap,
[15, 16] because the conic structure is preserved, and it
is also known as Weyl Mott insulator, since the helicity
is preserved in a gapped state (see Refs. [30–32]).

On the microscopical ground, the need of a long-range
interaction in order to induce a massless gap has been
discussed in Ref. [16] in the context of a spontaneous
symmetry breaking, as well as in Ref. [30] within the
context of a Mott transition induced by a k-local inter-
action. We show here that neither of these two conditions
is a compulsory requirement, and that a massless gap can

be naturally sustained by a standard density-density in-
teraction in the limit of very long-range.

The need of a long-range non-local interaction can be
easily inferred by performing the Fourier transform of Eq.
(1) in the real space. For general dimension d = 2, 3, we
obtain (see Appendix A) :

Ĥr = ~v�̂ ·

�ir +

ik�(d � 1)

2⇡d�1

Z
dds

s exp{s · r}
sd+1

�
.

(2)

Note that the exponential function of Eq. (2) contains
all the powers of r indicating the non-perturbative long-
range character of this term.

Motivated by this observation we consider a conven-
tional density-density interaction

V̂ee =
1

2

X

q

V (q)⇢̂(q)⇢̂(�q), (3)

where ⇢̂(q) =
P

k  ̂
†
k+q ̂k and V (q) is a long-range in-

teraction. To investigate the role of the long-range scat-
tering (q ! 0) we model here V (q) with a Gaussian pro-
file, but similar results would hold true for Lorentzian or
other models. More specifically we write down

V (q) = V (2⇡)d e�⇠|q|2

(⇡/⇠)d/2
, (4)

where d = 2, 3 is the dimensionality and
p
⇠ defines

a characteristic length scale for the interaction. Note
that in the long-range limit

p
⇠ ! 1 and we have

V (q) / �(q). In this limit the Gaussian interaction can
be thus mapped on the class of exactly solvable models
discussed in the seminal paper by Hatsugai and Kohmoto
(HK) [33], and later further investigated in [30]. It was
also realized that the exact solution, for infinitely long-
range repulsion, can be viewed as a saddle point (mean-
field solution) in the path-integral formalism [34]. As
a further step forwards, we show in Appendix B that
the mean-field solution is also reproduced by the simple
lowest-order perturbation theory. Along this perspective,
we employ here a similar perturbative approach to inves-
tigate at the qualitative level the main features of the
Gaussian interaction in the helical Dirac system.

The detailed evaluation of the self-energy associated
with such interaction is reported in Appendix C. Here
we report the main result:

⌃̂(k) = V CdM
�
1/2, 1 + d/2, �k2⇠

�
k
p
⇠�̂ · k̂, (5)

where Cd in a geometric factor that depends on the
dimension d (Cd=2 = 1/16⇡

3
2 , Cd=3 = 1/12⇡

7
2 ) and

M(a, b, z) is the Kummer’s function of the first kind.
Note that the quantity M

�
1/2, 1 + d/2, �k2s

�
k
p
⇠ is

well-behaved in the limit ⇠ ! 1. So that in the limitp
⇠ ! 1, the Fermi velocity diverges and it reproduces

exactly the helical massless gap term of Eq. (1) with

•Lifshitz transition:
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gapped{
“Fermi surface changes its topology” 
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T. Morimoto and N. Nagaosa, Scientific Reports  6, 19853 (2016)

H =
X

k

⇢
~vk(nk+ � nk�) +

V

2
(nk+ + nk� � 1)2

�
.

nk± = c†k±ck± where ± corresponds to the cones with opposite helicity.

|⌦i , Evac = V/2

| (1)
k±i = c†k±|⌦i , Esingle

± = ±~vk

| (2)
k i = c†k+c

†
k�|⌦i , Edouble = V/2
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the case of Dirac fermions, the total Hamiltonian can be
written in the in the diagonalized basis in terms of num-
ber operators,i.e. nk± = c†

k±ck± where ± corresponds to
the cones with opposite helicity.

H =
X

k

⇢
~vk(nk+ � nk�) +

V

2
(nk+ + nk� � 1)2

�
.

(B2)

Since this Hamiltonian is diagonal in k, we can diago-
nalize it at each k point independently. Accordingly, it
can be seen that it has four eigenstates: one vacuum, |⌦i
with energy Evac = V/2, two single occupancy states, as

| (1)
k±i = c†

k±|⌦i with Esingle
± = ±~vk, and one double oc-

cupancy state as | (2)
k i = c†

k+c†
k�|⌦i with Edouble = V/2.

As shown in Ref. [30], the case of V > 0 leads to a mass-
less gap opening (or Mott-like transition). However, the
case of V < 0 is not discussed before. In section, we
follow Ref. [30] and extend the analysis to the attractive
interaction case.

For the case of ~vk > |V |/2, the ground state is al-

ways made by | (1)
k�i states where the sign of V would

not matter. Therefore, it coincide with the noninter-
acting ground state implying that the conic shape of
the dispersion is kept in the large momentum range
(i.e. ~vk > |V |/2). However, For small momentum
(~vk < |V |/2) the ground states of the system for V > 0
and V < 0 are completely di↵erent. For the case of
V > 0, the ground state is build by a single occupancy

state , | (1)
k�i, while for the case V < 0 it is the su-

perposition of the vacuum and double occupancy state
which forms the ground state. Having double occupancy
state in the ground state implies a charge density wave
instability when the case of V < 0. In the diagonal
basis, the Matsubara Green’s function for two di↵erent
helicity,� = ±, is given by [30]

G�� =
A�

i!n � �"�
+

A+

i!n � �"+
(B3)

where !n is a fermionic Matsubara frequency, "± = ~vk±
V/2 and

A± =
exp{±�"±} + 1

2 + exp{��"�} + exp{�"+} . (B4)

We now take zero temperature (� = 1/kBT ! 1) limit.
For the case of V > 0 we have A� ! 0 and A+ ! 1
while the case of V < 0 requires more care. For the case
of ~vk > |V |/2, we again obtain A� ! 0 and A+ ! 1
at zero temperature. However, for ~vk < |V |/2 we find
A± ! 1/2. By having A± factors and performing a
unitary transformation back to the original spinor basis,
one can extract the self-energy as follows

Ĝ(i!n,k) = Ûk


G++(i!n,k) 0

0 G��(i!n,k)

�
Û †
k

=
n

i!n � ~v�̂ · k � ⌃̂(i!n,k))
o�1

(B5)

where U †
k�̂ · k̂Uk = �̂z. Explicitly, we have

for d=2: Uk =
1p
2


1 1

ei� �ei�

�
, (B6)

for d=3: Uk =


cos( ✓

2 ) sin( ✓
2 )

ei� sin( ✓
2 ) �ei� cos( ✓

2 )

�
. (B7)

After performing this unitary transformation for the case
of V > 0 and V < 0 & ~vk > |V |/2, one can obtain a
purely real self-energy which only depends on k̂

⌃̂(k) =
V

2
�̂ · k̂ (B8)

while for the case of V < 0 & ~vk < |V |/2, we have

⌃̂(i!n,k) =
V 2

4

i!n + �̂ · k
(i!n)2 � (~vk)2

. (B9)

This relation contains four important massages:

• Self-energy is second order in V .

• Self-energy depends on frequency and therefore
there is a finite imaginary part in this range of wave
vector. This implies that the above self-energy can
not support the cone crossing paradigm as we dis-
cussed in the main text for very long-range inter-
action.

• It can be seen that ⌃̂(i!n,k) = (V/2)2G0(i!n,k)
where G0(i!n,k) is the bare Green’s function of the
Dirac model.

• The self-energy has a discontinuity at ~vk = |V |/2.
Note that for the case of ~vk = |V |/2, we have
A+ = 2A� = 2/3. Once can plug this factors in
Eq. (B3) and use the unitary transformation ,Uk,
to extract the self-energy. The result (not shown
here) is di↵erent from both Eq. (B8) and Eq. (B9).

Appendix C: Lowest-order self-energy for Gaussian
interaction

In this Section, the present the explicit calculation of
the lowest-order many-body self-energy induced in a he-
lical system in general case of d dimensions. We use
a long-range density-density interaction with Gaussian
profile as in Eq. (3).

At the lowest order we can write:

⌃̂(k) = i

Z
d!

2⇡

Z
ddq

(2⇡)d
V (k � q)Ĝ(i!, q) (C1)

where

V (q) = V (2⇡)d ⇠d/2

⇡d/2
e�⇠q2

, (C2)

V > 0
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[59] E. Castro, M. López-Sancho, and M. Vozmediano, Phys.
Rev. B 92, 08510 (2015), URL https://journals.aps.
org/prb/abstract/10.1103/PhysRevB.92.085410.

[60] T. Ando, J. Phys. Soc. Japan 84, 114705 (2015), URL
https://journals.jps.jp/doi/10.7566/JPSJ.84.
114705.

[61] H. Rostami and E. Cappelluti, Phys. Rev. B 96,
054205 (2017), URL https://journals.aps.org/prb/
abstract/10.1103/PhysRevB.96.054205.

Appendix A: Real space Hamiltonian

We provide here a useful representation of Hamiltonian
(1) in the real space.

To this end we first write Eq. (1) as Ĥ =
P

k  ̂
†
kĤk ̂k

where

Ĥk = ~v


� · k + k�� · k

k

�
. (A1)

We can now perform the Fourier transformation into the
real space as  ̂k =

P
r  ̂(r)e�ik·r. Note that ⌃k =R

ddk
(2⇡)d . For d = 2, 3, we find that

Z
ddk

(2⇡)d
eik·r0 k

k
e�ik·r = (irr)

Z
ddk

(2⇡)d

eik·(r0�r)

k

=
1

2⇡d�1
(irr)

1

|r0 � r|d�1

= i
d � 1

2⇡d�1

r0 � r

|r0 � r|d+1
. (A2)

The Hamiltonian (1) can be thus written in real space
in terms of a di↵erential equation with a non-local hop-
ping potential fulfilling the following eigenvalue problem

[� · (�ir) � E] (r) =

� ik�
d � 1

2⇡d�1

Z
ddr0� · r0 � r

|r0 � r|d+1
 (r0). (A3)

Writing now r0 ! r + s and using exp(is · kop) (r) =
 (r + s) with kop = �ir, we find

Ĥ(k̂op) = ~v


�̂ · k̂op + ik�

d � 1

2⇡d�1

Z
dds

�̂ · s
sd+1

eis·k̂op

�
.

(A4)

Appendix B: Analysis of Hatsugai-Kohmoto’s model

An exactly solvable interaction potential introduced
by Hatsugai and Kohmoto [33] in the context of Mott-
insulator transition This model is attracting considerable
interest in the context of Dirac materials. For example,
this model has been applied to 3D Dirac fermions where
a massless gap opens when the interaction is repulsive
[30].

This model posits an isotropic long-range interaction
potential where the center-mass of incoming and outgo-
ing pair of electron does not change in the scattering
process. This leads to the following momentum space
interaction potential [30, 33, 34]

V̂ee =
V

2

X

k

⇣
 ̂†
k ̂k � 1

⌘2
. (B1)

The above interaction potential is fully local in the mo-
mentum space and therefore it is exactly solvable. For

Hatsugai-Kohmoto's model (1992)
p1

p2

p3

p4

p1 + p2 = p3 + p4

r1 + r2 = r3 + r4
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the case of Dirac fermions, the total Hamiltonian can be
written in the in the diagonalized basis in terms of num-
ber operators,i.e. nk± = c†

k±ck± where ± corresponds to
the cones with opposite helicity.

H =
X

k

⇢
~vk(nk+ � nk�) +

V

2
(nk+ + nk� � 1)2

�
.

(B2)

Since this Hamiltonian is diagonal in k, we can diago-
nalize it at each k point independently. Accordingly, it
can be seen that it has four eigenstates: one vacuum, |⌦i
with energy Evac = V/2, two single occupancy states, as

| (1)
k±i = c†

k±|⌦i with Esingle
± = ±~vk, and one double oc-

cupancy state as | (2)
k i = c†

k+c†
k�|⌦i with Edouble = V/2.

As shown in Ref. [30], the case of V > 0 leads to a mass-
less gap opening (or Mott-like transition). However, the
case of V < 0 is not discussed before. In section, we
follow Ref. [30] and extend the analysis to the attractive
interaction case.

For the case of ~vk > |V |/2, the ground state is al-

ways made by | (1)
k�i states where the sign of V would

not matter. Therefore, it coincide with the noninter-
acting ground state implying that the conic shape of
the dispersion is kept in the large momentum range
(i.e. ~vk > |V |/2). However, For small momentum
(~vk < |V |/2) the ground states of the system for V > 0
and V < 0 are completely di↵erent. For the case of
V > 0, the ground state is build by a single occupancy

state , | (1)
k�i, while for the case V < 0 it is the su-

perposition of the vacuum and double occupancy state
which forms the ground state. Having double occupancy
state in the ground state implies a charge density wave
instability when the case of V < 0. In the diagonal
basis, the Matsubara Green’s function for two di↵erent
helicity,� = ±, is given by [30]

G�� =
A�

i!n � �"�
+

A+

i!n � �"+
(B3)

where !n is a fermionic Matsubara frequency, "± = ~vk±
V/2 and

A± =
exp{±�"±} + 1

2 + exp{��"�} + exp{�"+} . (B4)

We now take zero temperature (� = 1/kBT ! 1) limit.
For the case of V > 0 we have A� ! 0 and A+ ! 1
while the case of V < 0 requires more care. For the case
of ~vk > |V |/2, we again obtain A� ! 0 and A+ ! 1
at zero temperature. However, for ~vk < |V |/2 we find
A± ! 1/2. By having A± factors and performing a
unitary transformation back to the original spinor basis,
one can extract the self-energy as follows

Ĝ(i!n,k) = Ûk


G++(i!n,k) 0

0 G��(i!n,k)

�
Û †
k

=
n

i!n � ~v�̂ · k � ⌃̂(i!n,k))
o�1

(B5)

where U †
k�̂ · k̂Uk = �̂z. Explicitly, we have

for d=2: Uk =
1p
2


1 1

ei� �ei�

�
, (B6)

for d=3: Uk =


cos( ✓

2 ) sin( ✓
2 )

ei� sin( ✓
2 ) �ei� cos( ✓

2 )

�
. (B7)

After performing this unitary transformation for the case
of V > 0 and V < 0 & ~vk > |V |/2, one can obtain a
purely real self-energy which only depends on k̂

⌃̂(k) =
V

2
�̂ · k̂ (B8)

while for the case of V < 0 & ~vk < |V |/2, we have

⌃̂(i!n,k) =
V 2

4

i!n + �̂ · k
(i!n)2 � (~vk)2

. (B9)

This relation contains four important massages:

• Self-energy is second order in V .

• Self-energy depends on frequency and therefore
there is a finite imaginary part in this range of wave
vector. This implies that the above self-energy can
not support the cone crossing paradigm as we dis-
cussed in the main text for very long-range inter-
action.

• It can be seen that ⌃̂(i!n,k) = (V/2)2G0(i!n,k)
where G0(i!n,k) is the bare Green’s function of the
Dirac model.

• The self-energy has a discontinuity at ~vk = |V |/2.
Note that for the case of ~vk = |V |/2, we have
A+ = 2A� = 2/3. Once can plug this factors in
Eq. (B3) and use the unitary transformation ,Uk,
to extract the self-energy. The result (not shown
here) is di↵erent from both Eq. (B8) and Eq. (B9).

Appendix C: Lowest-order self-energy for Gaussian
interaction

In this Section, the present the explicit calculation of
the lowest-order many-body self-energy induced in a he-
lical system in general case of d dimensions. We use
a long-range density-density interaction with Gaussian
profile as in Eq. (3).

At the lowest order we can write:

⌃̂(k) = i

Z
d!

2⇡

Z
ddq

(2⇡)d
V (k � q)Ĝ(i!, q) (C1)

where

V (q) = V (2⇡)d ⇠d/2

⇡d/2
e�⇠q2

, (C2)
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• Self-energy is second order in V .

• Self-energy depends on frequency and therefore
there is a finite imaginary part in this range of wave
vector. This implies that the above self-energy can
not support the cone crossing paradigm as we dis-
cussed in the main text for very long-range inter-
action.

• It can be seen that ⌃̂(i!n,k) = (V/2)2G0(i!n,k)
where G0(i!n,k) is the bare Green’s function of the
Dirac model.

• The self-energy has a discontinuity at ~vk = |V |/2.
Note that for the case of ~vk = |V |/2, we have
A+ = 2A� = 2/3. Once can plug this factors in
Eq. (B3) and use the unitary transformation ,Uk,
to extract the self-energy. The result (not shown
here) is di↵erent from both Eq. (B8) and Eq. (B9).
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In this Section, the present the explicit calculation of
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profile as in Eq. (3).
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the case of Dirac fermions, the total Hamiltonian can be
written in the in the diagonalized basis in terms of num-
ber operators,i.e. nk± = c†

k±ck± where ± corresponds to
the cones with opposite helicity.
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Since this Hamiltonian is diagonal in k, we can diago-
nalize it at each k point independently. Accordingly, it
can be seen that it has four eigenstates: one vacuum, |⌦i
with energy Evac = V/2, two single occupancy states, as

| (1)
k±i = c†

k±|⌦i with Esingle
± = ±~vk, and one double oc-

cupancy state as | (2)
k i = c†

k+c†
k�|⌦i with Edouble = V/2.

As shown in Ref. [30], the case of V > 0 leads to a mass-
less gap opening (or Mott-like transition). However, the
case of V < 0 is not discussed before. In section, we
follow Ref. [30] and extend the analysis to the attractive
interaction case.

For the case of ~vk > |V |/2, the ground state is al-

ways made by | (1)
k�i states where the sign of V would

not matter. Therefore, it coincide with the noninter-
acting ground state implying that the conic shape of
the dispersion is kept in the large momentum range
(i.e. ~vk > |V |/2). However, For small momentum
(~vk < |V |/2) the ground states of the system for V > 0
and V < 0 are completely di↵erent. For the case of
V > 0, the ground state is build by a single occupancy

state , | (1)
k�i, while for the case V < 0 it is the su-

perposition of the vacuum and double occupancy state
which forms the ground state. Having double occupancy
state in the ground state implies a charge density wave
instability when the case of V < 0. In the diagonal
basis, the Matsubara Green’s function for two di↵erent
helicity,� = ±, is given by [30]
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Massless gap opening: experiment 
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Europium (Eu)-induced changes in the π-band of graphene (G) 
formed on the 6H-SiC (0001) surface 
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Single-layer graphene (SLG) grown on a SiC(0001) 
substrate by doping low-energy (5 eV) Li+ ions 

Europium (Eu)-induced changes in the π-band of graphene (G) 
formed on the 6H-SiC (0001) surface 



10

Maybe Plasmarons!
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3

will be discussed in details.
The paper is organized as follows: in Section II, we

discuss the emergence of helical metals and insulators in
Dirac matter due to long-range interaction; in section III,
we discuss a microscopic mechanism for infinite-range at-
tractive interaction based on a boson-mediated coupling;
in Section IV, we discuss the topology of new phases. Fi-
nally we present the characterization of discrete Landau
levels in the presence of a magnetic field is provided in
Section V .

II. HELICAL METALS AND INSULATORS BY
LONG-RANGE INTERACTIONS

As it is well known, the helical character of 2D Dirac
point and 3D Weyl points is protected by symmetry
against the e↵ects of well-behaved many-body interac-
tions. Alternatively, a conventional way to reduce the
helical symmetry in these systems is by introducing an
external field that gives rise to a term ��̂z. In 2D Dirac
systems such term opens a massive gap a↵ecting thus the
helical symmetry, whereas in 3D it just leads to a shift of
the Dirac point position along z-direction without open-
ing a gap and without a↵ecting the helicity.

Recently a new paradigmatic model has been suggested
where a massless gap opening in 2D Dirac systems is
induced without a↵ecting the helical properties.[15, 16,
30, 31] Phenomenologically, such a phase is established
by considering a term ��̂ · k̂ in the Dirac Hamiltonian,
namely

Ĥk = ~vk�̂ · k̂ + ��̂ · k̂, (1)

where k̂ = k/k is the unitary momentum vector. Hamil-
tonian (1) works in the 2 ⇥ 2 pseudospin space defined
by the spinor  ̂†

k = (c†
k,", c

†
k,#). The energy dispersion

can be easily computed, giving "�
k = �~v(k + k�), where

� = +/� and where k� = �/(~v). The excitation spec-
trum is thus characterized by a rigid split of the upper
and lower Dirac cones, resulting in a gapped spectrum,
as depicted in Fig. 1b, where the red (top) and blue (bot-
tom) cones correspond � = +, � = �, respectively. Note
that the additional term / � does not break the helic-
ity and the eigenvectors of Hamiltonian (1) are identical
to those of a single Dirac node with k� = 0. Such kind
of gap opening has thus been denoted as massless gap,
[15, 16] because the conic structure is preserved, and it
is also known as Weyl Mott insulator, since the helicity
is preserved in a gapped state (see Refs. [30–32]).

On the microscopical ground, the need of a long-range
interaction in order to induce a massless gap has been
discussed in Ref. [16] in the context of a spontaneous
symmetry breaking, as well as in Ref. [30] within the
context of a Mott transition induced by a k-local inter-
action. We show here that neither of these two conditions
is a compulsory requirement, and that a massless gap can

be naturally sustained by a standard density-density in-
teraction in the limit of very long-range.

The need of a long-range non-local interaction can be
easily inferred by performing the Fourier transform of Eq.
(1) in the real space. For general dimension d = 2, 3, we
obtain (see Appendix A) :

Ĥr = ~v�̂ ·

�ir +

ik�(d � 1)

2⇡d�1

Z
dds

s exp{s · r}
sd+1

�
.

(2)

Note that the exponential function of Eq. (2) contains
all the powers of r indicating the non-perturbative long-
range character of this term.

Motivated by this observation we consider a conven-
tional density-density interaction

V̂ee =
1

2

X

q

V (q)⇢̂(q)⇢̂(�q), (3)

where ⇢̂(q) =
P

k  ̂
†
k+q ̂k and V (q) is a long-range in-

teraction. To investigate the role of the long-range scat-
tering (q ! 0) we model here V (q) with a Gaussian pro-
file, but similar results would hold true for Lorentzian or
other models. More specifically we write down

V (q) = V (2⇡)d e�⇠|q|2

(⇡/⇠)d/2
, (4)

where d = 2, 3 is the dimensionality and
p
⇠ defines

a characteristic length scale for the interaction. Note
that in the long-range limit

p
⇠ ! 1 and we have

V (q) / �(q). In this limit the Gaussian interaction can
be thus mapped on the class of exactly solvable models
discussed in the seminal paper by Hatsugai and Kohmoto
(HK) [33], and later further investigated in [30]. It was
also realized that the exact solution, for infinitely long-
range repulsion, can be viewed as a saddle point (mean-
field solution) in the path-integral formalism [34]. As
a further step forwards, we show in Appendix B that
the mean-field solution is also reproduced by the simple
lowest-order perturbation theory. Along this perspective,
we employ here a similar perturbative approach to inves-
tigate at the qualitative level the main features of the
Gaussian interaction in the helical Dirac system.

The detailed evaluation of the self-energy associated
with such interaction is reported in Appendix C. Here
we report the main result:
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k
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2 ) and

M(a, b, z) is the Kummer’s function of the first kind.
Note that the quantity M
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⇠ is

well-behaved in the limit ⇠ ! 1. So that in the limitp
⇠ ! 1, the Fermi velocity diverges and it reproduces

exactly the helical massless gap term of Eq. (1) with
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will be discussed in details.
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discuss the emergence of helical metals and insulators in
Dirac matter due to long-range interaction; in section III,
we discuss a microscopic mechanism for infinite-range at-
tractive interaction based on a boson-mediated coupling;
in Section IV, we discuss the topology of new phases. Fi-
nally we present the characterization of discrete Landau
levels in the presence of a magnetic field is provided in
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the case of Dirac fermions, the total Hamiltonian can be
written in the in the diagonalized basis in terms of num-
ber operators,i.e. nk± = c†

k±ck± where ± corresponds to
the cones with opposite helicity.

H =
X

k

⇢
~vk(nk+ � nk�) +

V

2
(nk+ + nk� � 1)2

�
.

(B2)

Since this Hamiltonian is diagonal in k, we can diago-
nalize it at each k point independently. Accordingly, it
can be seen that it has four eigenstates: one vacuum, |⌦i
with energy Evac = V/2, two single occupancy states, as

| (1)
k±i = c†

k±|⌦i with Esingle
± = ±~vk, and one double oc-

cupancy state as | (2)
k i = c†

k+c†
k�|⌦i with Edouble = V/2.

As shown in Ref. [30], the case of V > 0 leads to a mass-
less gap opening (or Mott-like transition). However, the
case of V < 0 is not discussed before. In section, we
follow Ref. [30] and extend the analysis to the attractive
interaction case.

For the case of ~vk > |V |/2, the ground state is al-

ways made by | (1)
k�i states where the sign of V would

not matter. Therefore, it coincide with the noninter-
acting ground state implying that the conic shape of
the dispersion is kept in the large momentum range
(i.e. ~vk > |V |/2). However, For small momentum
(~vk < |V |/2) the ground states of the system for V > 0
and V < 0 are completely di↵erent. For the case of
V > 0, the ground state is build by a single occupancy

state , | (1)
k�i, while for the case V < 0 it is the su-

perposition of the vacuum and double occupancy state
which forms the ground state. Having double occupancy
state in the ground state implies a charge density wave
instability when the case of V < 0. In the diagonal
basis, the Matsubara Green’s function for two di↵erent
helicity,� = ±, is given by [30]

G�� =
A�

i!n � �"�
+

A+

i!n � �"+
(B3)

where !n is a fermionic Matsubara frequency, "± = ~vk±
V/2 and

A± =
exp{±�"±} + 1

2 + exp{��"�} + exp{�"+} . (B4)

We now take zero temperature (� = 1/kBT ! 1) limit.
For the case of V > 0 we have A� ! 0 and A+ ! 1
while the case of V < 0 requires more care. For the case
of ~vk > |V |/2, we again obtain A� ! 0 and A+ ! 1
at zero temperature. However, for ~vk < |V |/2 we find
A± ! 1/2. By having A± factors and performing a
unitary transformation back to the original spinor basis,
one can extract the self-energy as follows

Ĝ(i!n,k) = Ûk


G++(i!n,k) 0

0 G��(i!n,k)

�
Û †
k

=
n

i!n � ~v�̂ · k � ⌃̂(i!n,k))
o�1

(B5)

where U †
k�̂ · k̂Uk = �̂z. Explicitly, we have

for d=2: Uk =
1p
2


1 1

ei� �ei�

�
, (B6)

for d=3: Uk =


cos( ✓

2 ) sin( ✓
2 )

ei� sin( ✓
2 ) �ei� cos( ✓

2 )

�
. (B7)

After performing this unitary transformation for the case
of V > 0 and V < 0 & ~vk > |V |/2, one can obtain a
purely real self-energy which only depends on k̂

⌃̂(k) =
V

2
�̂ · k̂ (B8)

while for the case of V < 0 & ~vk < |V |/2, we have

⌃̂(i!n,k) =
V 2

4

i!n + �̂ · k
(i!n)2 � (~vk)2

. (B9)

This relation contains four important massages:

• Self-energy is second order in V .

• Self-energy depends on frequency and therefore
there is a finite imaginary part in this range of wave
vector. This implies that the above self-energy can
not support the cone crossing paradigm as we dis-
cussed in the main text for very long-range inter-
action.

• It can be seen that ⌃̂(i!n,k) = (V/2)2G0(i!n,k)
where G0(i!n,k) is the bare Green’s function of the
Dirac model.

• The self-energy has a discontinuity at ~vk = |V |/2.
Note that for the case of ~vk = |V |/2, we have
A+ = 2A� = 2/3. Once can plug this factors in
Eq. (B3) and use the unitary transformation ,Uk,
to extract the self-energy. The result (not shown
here) is di↵erent from both Eq. (B8) and Eq. (B9).

Appendix C: Lowest-order self-energy for Gaussian
interaction

In this Section, the present the explicit calculation of
the lowest-order many-body self-energy induced in a he-
lical system in general case of d dimensions. We use
a long-range density-density interaction with Gaussian
profile as in Eq. (3).

At the lowest order we can write:

⌃̂(k) = i

Z
d!

2⇡

Z
ddq

(2⇡)d
V (k � q)Ĝ(i!, q) (C1)

where

V (q) = V (2⇡)d ⇠d/2

⇡d/2
e�⇠q2

, (C2)
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and where we can conveniently write

Ĝ(i!, q) = � i! + ~v�̂ · q
!2 + (~vq)2

. (C3)

The frequency integration can by now performed using
the residue method

i

Z
d!

2⇡
G(i!, q) =

�̂ · q
2q

. (C4)

We find therefore:

⌃̂(k) =
V (2⇡)d

2

⇠d/2

⇡d/2

Z
ddq

(2⇡)d
e�⇠(k2+q2�2k·q) �̂ · q

q
.

(C5)

Exploiting the following property of Euler’s Gamma
function

1

q
=

1

�(1/2)

Z 1

0
d⌧⌧�1/2e�⌧q2

, (C6)

we obtain thus

⌃̂(k) =
V (2⇡)d

4⇠�(1/2)

⇠d/2

⇡d/2
e�⇠k2

�̂ · @k

Z 1

0
d⌧⌧�1/2

⇥
Z

ddq

(2⇡)d
e�(⇠+⌧)q2+2⇠k·q). (C7)

The Gaussian interaction can be now performed giving:

Z
ddq

(2⇡)d
e�(⇠+⌧)q2+2⇠k·q) =

e
⇠2k2

⌧+⇠

2d⇡d/2(⌧ + ⇠)d/2
. (C8)

We get

⌃̂(k) =
V

2�(1/2)
�̂ · k

Z 1

0
d⌧⌧�1/2

✓
⇠

⌧ + ⇠

◆d/2+1

e� ⌧⇠
⌧+⇠ k2

.

(C9)

It is now convenient to define a new variable u

u =
⌧⇠

⌧ + ⇠
! ⌧ =

⇠u

⇠ � u
! d⌧ =

✓
⇠

⇠ � u
+

⇠u

(⇠ � u)2

◆
du.

(C10)

Therefore, we find

⌃̂(k) =
V

2�(1/2)
�̂ · k

Z ⇠

0
du

✓
⇠u

⇠ � u

◆(1�d)/2

ud/2�1e�uk2

.

(C11)

This integral can be now solved analytically:

Z ⇠

0
du

✓
⇠u

⇠ � u

◆(1�d)/2

ud/2�1e�uk2

=

�(1/2)
p

⇠
�(d+1

2 )

�( 2+d
2 )

M

✓
1

2
,
2 + d

2
, �⇠k2

◆
, (C12)
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FIG. 5: Energy dispersion of conduction band for di↵erent
values of ⇠/a2 where a is an arbitrary length unite. Note that
we set V = "0 = ~v/a. Fermi velocity diverges when ⇠ ! 1
and a massless gap emerges.

where M(a, b, z) is the Kummer’s function of the first
kind. Eventually, we obtain the following self-energy for
a Gaussian interaction potential,

⌃̂(k) =
V

2

�̂ · k
k

fd(k
p

⇠), (C13)

where

fd(x) =
�(d+1

2 )

�( 2+d
2 )

M

✓
1

2
,
d + 2

2
, �x2

◆
x. (C14)

The asymptotic limits of Eq. (C14 can be derived. We
obtain:

fd(x) =
�(d+1

2 )

�( 2+d
2 )

⇢
x � x3

d + 2
+ O(x4)

�
for x ⌧ 1,

fd(x) = 1 � d � 1

4x2
+ O

✓
1

x3

◆
for x � 1.

(C15)

In Fig. 5, energy dispersion of conduction band for
di↵erent values of ⇠. Fermi velocity diverges when ⇠ ! 1
and a massless gap emerges. This implies that for the
case of ⇠ ! 1, the self-energy form as ⌃̂(k) = V �̂ · k̂/2
that can lead to e↵ective Hamiltonian given in Eq. (1).

We perform a self-consistent analysis for infinite-range
interaction where for the case of V (q) = V �(q) the self-
consistent self-energy is given by

⌃̂(k) = iV

Z
d!

2⇡

1

i! � ~v�̂ · k � ⌃̂(k)
(C16)

The initial iteration can be calculated by performing the
following frequency integral (see Eq. C4)

⌃̂1(k) = iV

Z
d!

2⇡

1

i! � ~v�̂ · k = V
�̂ · k
2k

=
V

2
�̂ · k̂

(C17)

Self-energy for Gaussian interaction profile V(q)

Vee =
V

2

 
X

k

 ̂†
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⇠ ! 1
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FIG. 5: Energy dispersion of conduction band for di↵erent
values of ⇠/a2 where a is an arbitrary length unite. Note that
we set V = "0 = ~v/a. Fermi velocity diverges when ⇠ ! 1
and a massless gap emerges.

where M(a, b, z) is the Kummer’s function of the first
kind. Eventually, we obtain the following self-energy for
a Gaussian interaction potential,
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In Fig. 5, energy dispersion of conduction band for
di↵erent values of ⇠. Fermi velocity diverges when ⇠ ! 1
and a massless gap emerges. This implies that for the
case of ⇠ ! 1, the self-energy form as ⌃̂(k) = V �̂ · k̂/2
that can lead to e↵ective Hamiltonian given in Eq. (1).

We perform a self-consistent analysis for infinite-range
interaction where for the case of V (q) = V �(q) the self-
consistent self-energy is given by

⌃̂(k) = iV

Z
d!

2⇡

1

i! � ~v�̂ · k � ⌃̂(k)
(C16)

The initial iteration can be calculated by performing the
following frequency integral (see Eq. C4)
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The paper is organized as follows: in Section II, we

discuss the emergence of helical metals and insulators in
Dirac matter due to long-range interaction; in section III,
we discuss a microscopic mechanism for infinite-range at-
tractive interaction based on a boson-mediated coupling;
in Section IV, we discuss the topology of new phases. Fi-
nally we present the characterization of discrete Landau
levels in the presence of a magnetic field is provided in
Section V .

II. HELICAL METALS AND INSULATORS BY
LONG-RANGE INTERACTIONS

As it is well known, the helical character of 2D Dirac
point and 3D Weyl points is protected by symmetry
against the e↵ects of well-behaved many-body interac-
tions. Alternatively, a conventional way to reduce the
helical symmetry in these systems is by introducing an
external field that gives rise to a term ��̂z. In 2D Dirac
systems such term opens a massive gap a↵ecting thus the
helical symmetry, whereas in 3D it just leads to a shift of
the Dirac point position along z-direction without open-
ing a gap and without a↵ecting the helicity.

Recently a new paradigmatic model has been suggested
where a massless gap opening in 2D Dirac systems is
induced without a↵ecting the helical properties.[15, 16,
30, 31] Phenomenologically, such a phase is established
by considering a term ��̂ · k̂ in the Dirac Hamiltonian,
namely
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†
k,#). The energy dispersion
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ik�(d � 1)

2⇡d�1

Z
dds

s exp{s · r}
sd+1

�
.

(2)
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range character of this term.
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V̂ee =
1

2

X

q

V (q)⇢̂(q)⇢̂(�q), (3)

where ⇢̂(q) =
P

k  ̂
†
k+q ̂k and V (q) is a long-range in-
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other models. More specifically we write down

V (q) = V (2⇡)d e�⇠|q|2

(⇡/⇠)d/2
, (4)
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p
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p
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�
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�
k
p
⇠�̂ · k̂, (5)
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3
2 , Cd=3 = 1/12⇡

7
2 ) and

M(a, b, z) is the Kummer’s function of the first kind.
Note that the quantity M

�
1/2, 1 + d/2, �k2s

�
k
p
⇠ is

well-behaved in the limit ⇠ ! 1. So that in the limitp
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Cd=2 = 1/16⇡
3
2 , Cd=3 = 1/12⇡

7
2
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The second iteration follows

⌃̂2(k) = iV

Z
d!

2⇡

1

i! � ~v�̂ · k � ⌃̂1(k)

= iV

Z
d!

2⇡

1

i! � (~vk + V
2 )�̂ · k̂

=
V

2
�̂ · k̂

(C18)

Therefore, we converge very fast to the first iteration
result. This simple analysis implies that mean-field self-
energy is the exact self-energy for the case of infinite-
range interaction potential.

Appendix D: Lang-Firsov transformation in helical
systems

We consider a linear coupling between Dirac-
like/Weyl-like fermions in d = 2, 3 dimension with a a
single boson mode at q = 0, as described by Eq. (7),
that we repeat for our convenience:

Ĥ = ~v
X

k

 ̂†
k�̂ · k ̂k + ~!�â

†
0â0 + g

X

k

 ̂†
k�̂k ̂k(â†

0 + â0).

(D1)

We consider a canonical Lang-Firsov transformation as
Ĥ0 = eŜĤe�Ŝ , where

Ŝ =
g

~!0
N̂ (â†

0 � â0) , (D2)

and where

N̂ =
X

k

 ̂†
k�̂k ̂k. (D3)

Exploiting the formal expansion,

eŜÔe�Ŝ =
X

n

[Ŝ, Ô]n
n!

= Ô + [Ŝ, Ô] +
1

2!
[Ŝ, [Ŝ, Ô]]

+
1

3!
[Ŝ, [Ŝ, [Ŝ, Ô]]] + . . . , (D4)

after few careful steps we get:

 ̂0
k = eŜ ̂ke�Ŝ = X̂k ̂k . (D5)

where

X̂k = exp


g

~!0
�̂k(â0 � â†

0)

�
. (D6)

In similar way, we get for the creation field operator:

 ̂0†
k = eŜ ̂†

ke�Ŝ =  ̂†
kX̂†

k , (D7)

where

X̂†
k = exp


� g

~!0
�̂k(â0 � â†

0)

�
. (D8)

Note that �̂†
k = �̂k because of the hermiticity of the

Hamiltonian. This implies also that the number operator
is invariant under the transformation

n̂k =  ̂0†
k  ̂

0
k =  ̂†

kX̂†
kX̂k ̂k =  ̂†

k ̂k . (D9)

For the case of bosonic operator, we have the usual rela-
tions;

â0
0 = eŜ â0e

�Ŝ = â0 � g

~!0
N̂ , (D10)

and

â0†
0 = â†

0 � g

~!0
N̂ . (D11)

Plugging all together, we get the final expression for the
e↵ective Hamiltonian in the rotated base.

Appendix E: Mean-field self-energy for long-range
interaction in pseudospin channel

In this Appendix we provide the explicit expression of
the self-energy for the infinite-long-range interaction with
pseudospin fluctuations, as described by Eqs. (12)-(13).

The formal expression for self-energy reads:
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X

q

Z
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V (k � q)�̂ · n̂Ĝ(i!, q)�̂ · n̂, (E1)

where V (q) = �2U�(q) and where we can write

Ĝ(i!,k) = � i! + ~v�̂ · R
!2 + (~vR)2

. (E2)

For sake of shortness, we have here defined R = �k?+kk.
We integral over frequencies can be now evaluated in a
straightforward way, and we get:

i

Z
d!

2⇡
Ĝ(i!,k) =

�̂ · R
2R

, (E3)

leading to the final expression:

⌃̂(k) = �U
(�̂ · n̂)(�̂ · R)(�̂ · n̂)

R
. (E4)

Eq. (E4) can be written in a more compact way by
using the algebric relation:

(�̂ · n̂)(�̂ · R)(�̂ · n̂) = ��̂ · R + 2(�̂ · n̂)(n̂ · R), (E5)

and, using the explicit expression of R, we have

(�̂ · n̂)(�̂ · R)(�̂ · n̂) = ���̂ · k? + �̂ · kk . (E6)

We end up thus with the more transparent expression
for the self-energy:

⌃̂(k) = U
��̂ · k? � �̂ · kkq

�2k2
? + k2

k

. (E7)
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[Ŝ, Ô]n
n!
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[Ŝ, Ô]n
n!
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0
k =  ̂†

kX̂†
kX̂k ̂k =  ̂†

k ̂k . (D9)

For the case of bosonic operator, we have the usual rela-
tions;

â0
0 = eŜ â0e

�Ŝ = â0 � g

~!0
N̂ , (D10)

and

â0†
0 = â†

0 � g

~!0
N̂ . (D11)

Plugging all together, we get the final expression for the
e↵ective Hamiltonian in the rotated base.

Appendix E: Mean-field self-energy for long-range
interaction in pseudospin channel

In this Appendix we provide the explicit expression of
the self-energy for the infinite-long-range interaction with
pseudospin fluctuations, as described by Eqs. (12)-(13).

The formal expression for self-energy reads:

⌃̂(k) = i
X

q

Z
d!

2⇡
V (k � q)�̂ · n̂Ĝ(i!, q)�̂ · n̂, (E1)

where V (q) = �2U�(q) and where we can write

Ĝ(i!,k) = � i! + ~v�̂ · R
!2 + (~vR)2

. (E2)

For sake of shortness, we have here defined R = �k?+kk.
We integral over frequencies can be now evaluated in a
straightforward way, and we get:

i

Z
d!

2⇡
Ĝ(i!,k) =

�̂ · R
2R

, (E3)

leading to the final expression:

⌃̂(k) = �U
(�̂ · n̂)(�̂ · R)(�̂ · n̂)

R
. (E4)

Eq. (E4) can be written in a more compact way by
using the algebric relation:

(�̂ · n̂)(�̂ · R)(�̂ · n̂) = ��̂ · R + 2(�̂ · n̂)(n̂ · R), (E5)

and, using the explicit expression of R, we have

(�̂ · n̂)(�̂ · R)(�̂ · n̂) = ���̂ · k? + �̂ · kk . (E6)

We end up thus with the more transparent expression
for the self-energy:

⌃̂(k) = U
��̂ · k? � �̂ · kkq

�2k2
? + k2

k

. (E7)
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� = V/2, pointing out thus how a massless gap can arise
as a result of a long-range density-density interaction.

Such analytical derivation can be useful not only to
assess the physical feasibility of such phase, but also to
explore now possible phases. In particular, we can use
the present framework to investigate the e↵ects of a long-
range attraction where V < 0. The self-energy is this
case looks formally similar as Eq. (5) but with V < 0
giving rise to a negative k�, k� < 0. The topological
properties of such phase appear immediately drastically
di↵erent from the case k� > 0. In particular a long-range
attraction for d = 2 results in the electronic spectrum
characterized by a Dirac-cone band crossing, still fully
preserving the helical degree of freedom, as depicted in
Fig. 1c. As mentioned in the introduction, such Dirac
cone crossing gives rise to a nodal line.

According with Fig. 1e,f, the electron density of states
(DOS) at the Fermi level for k� < 0 results to be finite,
whereas it is null for k� > 0. Such two novel phases
can be denoted as helical metals and helical insulators,
respectively.

A similar analysis can be straightforward generalized
to the d = 3 case. For helical metals, the initial
Fermi point morphs to Fermi circle and Fermi sphere
for d = 2 and d = 3, respectively, see Fig. 1g,h. The
transition from a helical semimetal (k� = 0) to a heli-
cal metal/insulator (k� 6= 0) is thus a topological Lif-
shitz transition, [3, 35–38] where the Fermi surface man-
ifold keeps its continuity but it changes the dimensional-
ity from zero dimension (point) to one (circle) and two
(sphere) dimensions for the case of d = 2 and d = 3,
respectively.

Note that the Mott-like model proposed in Ref. [30] to
describe the massless gap opening cannot account for the
helical metal phase with k� < 0 since the ground state
will be drastically di↵erent with no single occupancy and
a coherent superpositions of empty and double occupied
states close to the Dirac point.

III. MICROSCOPIC MECHANISMS FOR
INFINITE-RANGE ATTRACTION

In the previous Section, we have discussed how long-
range interactions can give rise to novel phases, that can
be identified as helical insulators or helical metals accord-
ing with the character (repulsion vs. attraction) of the
interaction. Particularly, the interesting part is the case
of a long-range attraction which can result in the onset
of nodal lines/spheres in two or three dimensions, respec-
tively. As discussed above, a long-range direct Coulomb
electron-electron interaction provides a plausible mecha-
nism for the repulsion responsible for the gapped insu-
lating phase. In the following we discus, on the other
hand, how indirect boson-mediated coupling is a natural
candidate for the attractive inter-particle interaction in
both density and pseudospin channels.

In order to analyze this context in a formal way, we

consider the coupling of Dirac fermions with a generic
bosonic mode,

Ĥ = ~v
X

k

 ̂†
k�̂ · k ̂k + ~

X

q

!qâ†
qâq

+ g
X

k,q

 ̂†
k+q�̂k,q ̂k(â†

�q + âq), (6)

where â†
q ( âq) is the creation (destruction) for a boson

mode with momentum q, ~!q is the corresponding boson

energy, �̂k,q is a unitary matrix vector in the pseudo-

spin Pauli matrix space (Î , �̂x, �̂y, �̂z), and g denotes the
strength of the electron-boson coupling. We focus here
on the role of the q = 0 boson responsible for the long-
range coupling,

Ĥ = ~v
X

k

 ̂†
k�̂ · k ̂k + ~!0â

†
0â0

+ g
X

k

 ̂†
k�̂k ̂k(â†

0 + â0), (7)

where for the sake of short notation we set �̂k = �̂k,0,

with �̂k obeying the Hermitian property �̂†
k = �̂k.

In order to investigate the role of a q = 0 boson mode,
and to isolate the e↵ective (boson-mediated) electron-
electron interaction, a useful approach is provided by
the Lang-Firsov transformation, [24, 25] where the linear
electron-boson coupling is removed in favor of an e↵ec-
tive unretarded electron-electron interaction along with
a more complex kinetic term. In the specific case of
the Dirac system in Eq. (7), this task is accomplished

by the canonical transformation Ĥ0 = eŜĤe�Ŝ , where
Ŝ = (g/~!0)N̂ (â†

0 � â0), where N̂ =
P

k  ̂
†
k�̂k ̂k. Tech-

nical details of such transformation for this helical Dirac
model are reported in Appendix D. The resulting e↵ec-
tive Hamiltonian Ĥ0 will read:

Ĥ0 = ~v
X

k

 ̂†
k

h
X̂†

k�̂ · kX̂k

i
 ̂k � U

hX

k

 ̂†
k�̂k ̂k

i2
,

(8)

where U = g2/~!0 and where X̂k = exp
⇥
(g/~!0)�̂k(â0�

â†
0)
⇤
. Eq. (8) explicitly shows the appearance of an e↵ec-

tive electron-electron interaction with e↵ective coupling
strength U = g2/~!0, whereas the complex entanglement
between electron and boson degrees of freedom is shifted
in the unitary operator X̂k. An e↵ective decoupling be-
tween fermions and bosons can be further achieved by
means of the so-called Holstein approximation, where the
kinetic term is averaged over the bosonic vacuum ground
state, i.e.

 ̂†
k

⇥
X̂†

k�̂ · kX̂k

⇤
 ̂k !

⌦
0
�� ̂†

k

⇥
X̂†

k�̂ · kX̂k

⇤
 ̂k

��0
↵
. (9)

This step, which is straightforward in the single band
case and leads to the usual polaronic band-narrowing as
tij ! tij exp{�

P
q(gq/~!q)2[1 � cos(q · Rij)]/2} [24]
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In order to investigate the role of a q = 0 boson mode,
and to isolate the e↵ective (boson-mediated) electron-
electron interaction, a useful approach is provided by
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electron-boson coupling is removed in favor of an e↵ec-
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the Dirac system in Eq. (7), this task is accomplished

by the canonical transformation Ĥ0 = eŜĤe�Ŝ , where
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tive electron-electron interaction with e↵ective coupling
strength U = g2/~!0, whereas the complex entanglement
between electron and boson degrees of freedom is shifted
in the unitary operator X̂k. An e↵ective decoupling be-
tween fermions and bosons can be further achieved by
means of the so-called Holstein approximation, where the
kinetic term is averaged over the bosonic vacuum ground
state, i.e.
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In order to investigate the role of a q = 0 boson mode,
and to isolate the e↵ective (boson-mediated) electron-
electron interaction, a useful approach is provided by
the Lang-Firsov transformation, [24, 25] where the linear
electron-boson coupling is removed in favor of an e↵ec-
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0 � â0), where N̂ =
P

k  ̂
†
k�̂k ̂k. Tech-

nical details of such transformation for this helical Dirac
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. Eq. (8) explicitly shows the appearance of an e↵ec-

tive electron-electron interaction with e↵ective coupling
strength U = g2/~!0, whereas the complex entanglement
between electron and boson degrees of freedom is shifted
in the unitary operator X̂k. An e↵ective decoupling be-
tween fermions and bosons can be further achieved by
means of the so-called Holstein approximation, where the
kinetic term is averaged over the bosonic vacuum ground
state, i.e.
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where tij stands for the hopping integral between two
lattice site separated by Rij . Obviously, if only q = 0
mode is considered, i.e. gq = g�q,0, there will be no
band-narrowing. This trivial result is not the case in a
helical Dirac system and it gives rise to di↵erent phys-
ical scenario according to the Pauli matrix structure of
the kinetic term and the electron-boson interaction. For
the sake of simplicity, we consider thus two complemen-
tary cases: (a) a boson mode coupled with the electron
density, �̂k / Î; (b) and a boson mode that represents
spin-fluctuations in the pseudo-spin space of the spinor
 ̂†
k. In that case �̂k = �̂ · n̂ where n̂ is a unit vector

(|n̂| = 1) in the 3-fold Pauli matrix space (�̂x, �̂y, �̂z).

A. Electron-boson coupling with fermion density

Case (a) is relatively straightforward since it corre-
sponds to an e↵ective disentanglement between fermion
and bosonic degrees of freedom. In particular in this
case, due to the commutation property of the electron-
boson matrix structure of the interaction �̂k with the
non-interacting Hamiltonian, the kinetic term reads, at
the operational level:

X̂†
k�̂ · kX̂k = �̂ · k, (10)

making unnecessary even the Holstein approximation
(average over ground boson state). In this case, the inter-
action of Dirac fermion with a q = 0 boson mode coupled
with the density can be mapped exactly on an e↵ective
Hamiltonian of Dirac fermions interacting with an attrac-
tive infinite-range interaction. As discussed in Section
II, this leads naturally to a helical metal of intersecting
Dirac bands. Note that this scenario is independent of
the physical dimensions, and it holds true in two as well
as in three dimensions.

B. Electron-boson coupling with
(pseudo)spin-fluctuations

More care is needed in examinating the case (b) of a
boson coupled with (pseudo)spin-fluctuations, i.e. �̂k =
�̂ ·n̂, where the electron-boson coupling �̂k does not com-
mute with the non-interacting Hamiltonian �̂ · k̂.

In order to investigate this context, we make use of
the relations [�̂ · a, �̂ · b] = 2i(a ⇥ b) · �̂ and exp(B̂�̂ ·
n̂) = Î cosh(B̂) + n̂ · �̂ sinh(B̂). Taking in our case B̂ =
[g/~!0](â0 � â†

0), we obtain thus, at the operatorial level,
a kinetic term:

X̂†
k�̂ · kX̂k = cosh(2B̂)�̂ · k + [1 � cosh(2B̂)](�̂ · n̂)(n̂ · k)

� i sinh(2B̂)(n̂ ⇥ k) · �̂ . (11)

Eq. (11) permits now to perform, at a more intuitive
level, the average over the bosonic vacuum ground state
in a more compelling way. In particular, it is now easy

to see that h0| sinh(2B̂)|0i = 0 and h0| cosh(2B̂)|0i = �,
where � = exp[�2(g/~!0)2]. We obtain thus the e↵ective
Hamiltonian:

Ĥ = ~v
X

k

 ̂†
k

⇥
��̂ · k? + �̂ · kk

⇤
 ̂k

� U
hX

k

 ̂†
k�̂ · n̂ ̂k

i2
, (12)

where k?(kk) is the perpendicular (parallel) component
of k vector with respect to n̂. The interaction part in
the (pseudo)spin channel can we written as follows

V̂ee =
1

2

X

q

V (q)Ŝn(q)Ŝn(�q), (13)

where Ŝn(q) =
P

k  ̂
†
k+q�̂ · n̂ ̂k and V (q) = �2U�(q) is

an attractive infinite-range interaction.
Note that, as long as the vector n̂ in the coupling ma-

trix �̂k = �̂ · n̂ belongs to the Pauli matrix space of
the kinetic term, the interaction with the boson mode
breaks down the symmetry of the system in the k and in
the Pauli matrix space. In particular, we will obtain an
anisotropic Dirac-like kinetic term where the Fermi ve-
locity perpendicular to n̂ direction is reduced as v ! �v
while its component along n̂ remains unchanged. Such
anisotropy is expected to appear thus in 3D, and in 2D
when the vector n̂ lies in the xy plane (n̂ · ẑ = 0).
Quite peculiar is also the case n̂ = ẑ which preserves
the isotropy of the kinetic Dirac Hamiltonian, with the
usual overall reduction of the Fermi velocity as v ! �v.
As we are going to discuss below, the symmetry can be
restored when coupling with two or more boson modes,
allowed by the symmetry of the original system, is con-
sidered.

From a general point of view, given the Hamiltonian
(12) with an e↵ective unretarded electron-electron in-
teraction, the self-energy can be computed for generic
�̂k = �̂ · n̂. The explicit derivation is provided in Ap-
pendix E. We get:

⌃̂(k) = U
��̂ · k? � �̂ · kkq

�2k2
? + k2

k

. (14)

Again, we can distinguish two representative cases, de-
pending whether n̂ belongs to the original space of the
(2D or 3D) kinetic Dirac term or perpendicular (n̂ = ẑ
in 2D). In the first case, the initial node splits into two
separate nodes located at (kk = ±k⇤,k? = 0) with

k⇤ =
U

~v
. (15)

Quite interesting is also the second case where n̂ = ẑ in
two-dimensions. In this case the self-energy ⌃̂(k) in Eq.
(14) reads:

⌃̂(k) = U �̂ · k̂, (16)
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spin-fluctuations in the pseudo-spin space of the spinor
 ̂†
k. In that case �̂k = �̂ · n̂ where n̂ is a unit vector

(|n̂| = 1) in the 3-fold Pauli matrix space (�̂x, �̂y, �̂z).

A. Electron-boson coupling with fermion density

Case (a) is relatively straightforward since it corre-
sponds to an e↵ective disentanglement between fermion
and bosonic degrees of freedom. In particular in this
case, due to the commutation property of the electron-
boson matrix structure of the interaction �̂k with the
non-interacting Hamiltonian, the kinetic term reads, at
the operational level:

X̂†
k�̂ · kX̂k = �̂ · k, (10)

making unnecessary even the Holstein approximation
(average over ground boson state). In this case, the inter-
action of Dirac fermion with a q = 0 boson mode coupled
with the density can be mapped exactly on an e↵ective
Hamiltonian of Dirac fermions interacting with an attrac-
tive infinite-range interaction. As discussed in Section
II, this leads naturally to a helical metal of intersecting
Dirac bands. Note that this scenario is independent of
the physical dimensions, and it holds true in two as well
as in three dimensions.

B. Electron-boson coupling with
(pseudo)spin-fluctuations

More care is needed in examinating the case (b) of a
boson coupled with (pseudo)spin-fluctuations, i.e. �̂k =
�̂ ·n̂, where the electron-boson coupling �̂k does not com-
mute with the non-interacting Hamiltonian �̂ · k̂.

In order to investigate this context, we make use of
the relations [�̂ · a, �̂ · b] = 2i(a ⇥ b) · �̂ and exp(B̂�̂ ·
n̂) = Î cosh(B̂) + n̂ · �̂ sinh(B̂). Taking in our case B̂ =
[g/~!0](â0 � â†

0), we obtain thus, at the operatorial level,
a kinetic term:

X̂†
k�̂ · kX̂k = cosh(2B̂)�̂ · k + [1 � cosh(2B̂)](�̂ · n̂)(n̂ · k)

� i sinh(2B̂)(n̂ ⇥ k) · �̂ . (11)

Eq. (11) permits now to perform, at a more intuitive
level, the average over the bosonic vacuum ground state
in a more compelling way. In particular, it is now easy

to see that h0| sinh(2B̂)|0i = 0 and h0| cosh(2B̂)|0i = �,
where � = exp[�2(g/~!0)2]. We obtain thus the e↵ective
Hamiltonian:
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where k?(kk) is the perpendicular (parallel) component
of k vector with respect to n̂. The interaction part in
the (pseudo)spin channel can we written as follows
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where Ŝn(q) =
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an attractive infinite-range interaction.
Note that, as long as the vector n̂ in the coupling ma-

trix �̂k = �̂ · n̂ belongs to the Pauli matrix space of
the kinetic term, the interaction with the boson mode
breaks down the symmetry of the system in the k and in
the Pauli matrix space. In particular, we will obtain an
anisotropic Dirac-like kinetic term where the Fermi ve-
locity perpendicular to n̂ direction is reduced as v ! �v
while its component along n̂ remains unchanged. Such
anisotropy is expected to appear thus in 3D, and in 2D
when the vector n̂ lies in the xy plane (n̂ · ẑ = 0).
Quite peculiar is also the case n̂ = ẑ which preserves
the isotropy of the kinetic Dirac Hamiltonian, with the
usual overall reduction of the Fermi velocity as v ! �v.
As we are going to discuss below, the symmetry can be
restored when coupling with two or more boson modes,
allowed by the symmetry of the original system, is con-
sidered.

From a general point of view, given the Hamiltonian
(12) with an e↵ective unretarded electron-electron in-
teraction, the self-energy can be computed for generic
�̂k = �̂ · n̂. The explicit derivation is provided in Ap-
pendix E. We get:
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. (14)

Again, we can distinguish two representative cases, de-
pending whether n̂ belongs to the original space of the
(2D or 3D) kinetic Dirac term or perpendicular (n̂ = ẑ
in 2D). In the first case, the initial node splits into two
separate nodes located at (kk = ±k⇤,k? = 0) with

k⇤ =
U

~v
. (15)

Quite interesting is also the second case where n̂ = ẑ in
two-dimensions. In this case the self-energy ⌃̂(k) in Eq.
(14) reads:

⌃̂(k) = U �̂ · k̂, (16)
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As we are going to discuss below, the symmetry can be
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allowed by the symmetry of the original system, is con-
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where tij stands for the hopping integral between two
lattice site separated by Rij . Obviously, if only q = 0
mode is considered, i.e. gq = g�q,0, there will be no
band-narrowing. This trivial result is not the case in a
helical Dirac system and it gives rise to di↵erent phys-
ical scenario according to the Pauli matrix structure of
the kinetic term and the electron-boson interaction. For
the sake of simplicity, we consider thus two complemen-
tary cases: (a) a boson mode coupled with the electron
density, �̂k / Î; (b) and a boson mode that represents
spin-fluctuations in the pseudo-spin space of the spinor
 ̂†
k. In that case �̂k = �̂ · n̂ where n̂ is a unit vector

(|n̂| = 1) in the 3-fold Pauli matrix space (�̂x, �̂y, �̂z).
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and bosonic degrees of freedom. In particular in this
case, due to the commutation property of the electron-
boson matrix structure of the interaction �̂k with the
non-interacting Hamiltonian, the kinetic term reads, at
the operational level:

X̂†
k�̂ · kX̂k = �̂ · k, (10)

making unnecessary even the Holstein approximation
(average over ground boson state). In this case, the inter-
action of Dirac fermion with a q = 0 boson mode coupled
with the density can be mapped exactly on an e↵ective
Hamiltonian of Dirac fermions interacting with an attrac-
tive infinite-range interaction. As discussed in Section
II, this leads naturally to a helical metal of intersecting
Dirac bands. Note that this scenario is independent of
the physical dimensions, and it holds true in two as well
as in three dimensions.

B. Electron-boson coupling with
(pseudo)spin-fluctuations

More care is needed in examinating the case (b) of a
boson coupled with (pseudo)spin-fluctuations, i.e. �̂k =
�̂ ·n̂, where the electron-boson coupling �̂k does not com-
mute with the non-interacting Hamiltonian �̂ · k̂.

In order to investigate this context, we make use of
the relations [�̂ · a, �̂ · b] = 2i(a ⇥ b) · �̂ and exp(B̂�̂ ·
n̂) = Î cosh(B̂) + n̂ · �̂ sinh(B̂). Taking in our case B̂ =
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0), we obtain thus, at the operatorial level,
a kinetic term:
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Eq. (11) permits now to perform, at a more intuitive
level, the average over the bosonic vacuum ground state
in a more compelling way. In particular, it is now easy

to see that h0| sinh(2B̂)|0i = 0 and h0| cosh(2B̂)|0i = �,
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an attractive infinite-range interaction.
Note that, as long as the vector n̂ in the coupling ma-

trix �̂k = �̂ · n̂ belongs to the Pauli matrix space of
the kinetic term, the interaction with the boson mode
breaks down the symmetry of the system in the k and in
the Pauli matrix space. In particular, we will obtain an
anisotropic Dirac-like kinetic term where the Fermi ve-
locity perpendicular to n̂ direction is reduced as v ! �v
while its component along n̂ remains unchanged. Such
anisotropy is expected to appear thus in 3D, and in 2D
when the vector n̂ lies in the xy plane (n̂ · ẑ = 0).
Quite peculiar is also the case n̂ = ẑ which preserves
the isotropy of the kinetic Dirac Hamiltonian, with the
usual overall reduction of the Fermi velocity as v ! �v.
As we are going to discuss below, the symmetry can be
restored when coupling with two or more boson modes,
allowed by the symmetry of the original system, is con-
sidered.

From a general point of view, given the Hamiltonian
(12) with an e↵ective unretarded electron-electron in-
teraction, the self-energy can be computed for generic
�̂k = �̂ · n̂. The explicit derivation is provided in Ap-
pendix E. We get:

⌃̂(k) = U
��̂ · k? � �̂ · kkq

�2k2
? + k2

k

. (14)

Again, we can distinguish two representative cases, de-
pending whether n̂ belongs to the original space of the
(2D or 3D) kinetic Dirac term or perpendicular (n̂ = ẑ
in 2D). In the first case, the initial node splits into two
separate nodes located at (kk = ±k⇤,k? = 0) with
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Quite interesting is also the second case where n̂ = ẑ in
two-dimensions. In this case the self-energy ⌃̂(k) in Eq.
(14) reads:

⌃̂(k) = U �̂ · k̂, (16)

Ĥ = ~v
X

k

 ̂†
k�̂ · k ̂k � U

hX

k

 ̂†
k ̂k

i2
, ⌃̂(k) = �U

�̂ · k
k

5

where tij stands for the hopping integral between two
lattice site separated by Rij . Obviously, if only q = 0
mode is considered, i.e. gq = g�q,0, there will be no
band-narrowing. This trivial result is not the case in a
helical Dirac system and it gives rise to di↵erent phys-
ical scenario according to the Pauli matrix structure of
the kinetic term and the electron-boson interaction. For
the sake of simplicity, we consider thus two complemen-
tary cases: (a) a boson mode coupled with the electron
density, �̂k / Î; (b) and a boson mode that represents
spin-fluctuations in the pseudo-spin space of the spinor
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k. In that case �̂k = �̂ · n̂ where n̂ is a unit vector
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and bosonic degrees of freedom. In particular in this
case, due to the commutation property of the electron-
boson matrix structure of the interaction �̂k with the
non-interacting Hamiltonian, the kinetic term reads, at
the operational level:

X̂†
k�̂ · kX̂k = �̂ · k, (10)

making unnecessary even the Holstein approximation
(average over ground boson state). In this case, the inter-
action of Dirac fermion with a q = 0 boson mode coupled
with the density can be mapped exactly on an e↵ective
Hamiltonian of Dirac fermions interacting with an attrac-
tive infinite-range interaction. As discussed in Section
II, this leads naturally to a helical metal of intersecting
Dirac bands. Note that this scenario is independent of
the physical dimensions, and it holds true in two as well
as in three dimensions.

B. Electron-boson coupling with
(pseudo)spin-fluctuations

More care is needed in examinating the case (b) of a
boson coupled with (pseudo)spin-fluctuations, i.e. �̂k =
�̂ ·n̂, where the electron-boson coupling �̂k does not com-
mute with the non-interacting Hamiltonian �̂ · k̂.
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a kinetic term:
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in a more compelling way. In particular, it is now easy

to see that h0| sinh(2B̂)|0i = 0 and h0| cosh(2B̂)|0i = �,
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where tij stands for the hopping integral between two
lattice site separated by Rij . Obviously, if only q = 0
mode is considered, i.e. gq = g�q,0, there will be no
band-narrowing. This trivial result is not the case in a
helical Dirac system and it gives rise to di↵erent phys-
ical scenario according to the Pauli matrix structure of
the kinetic term and the electron-boson interaction. For
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density, �̂k / Î; (b) and a boson mode that represents
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and bosonic degrees of freedom. In particular in this
case, due to the commutation property of the electron-
boson matrix structure of the interaction �̂k with the
non-interacting Hamiltonian, the kinetic term reads, at
the operational level:

X̂†
k�̂ · kX̂k = �̂ · k, (10)

making unnecessary even the Holstein approximation
(average over ground boson state). In this case, the inter-
action of Dirac fermion with a q = 0 boson mode coupled
with the density can be mapped exactly on an e↵ective
Hamiltonian of Dirac fermions interacting with an attrac-
tive infinite-range interaction. As discussed in Section
II, this leads naturally to a helical metal of intersecting
Dirac bands. Note that this scenario is independent of
the physical dimensions, and it holds true in two as well
as in three dimensions.

B. Electron-boson coupling with
(pseudo)spin-fluctuations
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boson coupled with (pseudo)spin-fluctuations, i.e. �̂k =
�̂ ·n̂, where the electron-boson coupling �̂k does not com-
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breaks down the symmetry of the system in the k and in
the Pauli matrix space. In particular, we will obtain an
anisotropic Dirac-like kinetic term where the Fermi ve-
locity perpendicular to n̂ direction is reduced as v ! �v
while its component along n̂ remains unchanged. Such
anisotropy is expected to appear thus in 3D, and in 2D
when the vector n̂ lies in the xy plane (n̂ · ẑ = 0).
Quite peculiar is also the case n̂ = ẑ which preserves
the isotropy of the kinetic Dirac Hamiltonian, with the
usual overall reduction of the Fermi velocity as v ! �v.
As we are going to discuss below, the symmetry can be
restored when coupling with two or more boson modes,
allowed by the symmetry of the original system, is con-
sidered.

From a general point of view, given the Hamiltonian
(12) with an e↵ective unretarded electron-electron in-
teraction, the self-energy can be computed for generic
�̂k = �̂ · n̂. The explicit derivation is provided in Ap-
pendix E. We get:

⌃̂(k) = U
��̂ · k? � �̂ · kkq

�2k2
? + k2

k

. (14)

Again, we can distinguish two representative cases, de-
pending whether n̂ belongs to the original space of the
(2D or 3D) kinetic Dirac term or perpendicular (n̂ = ẑ
in 2D). In the first case, the initial node splits into two
separate nodes located at (kk = ±k⇤,k? = 0) with

k⇤ =
U

~v
. (15)

Quite interesting is also the second case where n̂ = ẑ in
two-dimensions. In this case the self-energy ⌃̂(k) in Eq.
(14) reads:

⌃̂(k) = U �̂ · k̂, (16)

For n̂ = ẑ in two-dimensions:
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in 2D). In the first case, the initial node splits into two
separate nodes located at (kk = ±k⇤,k? = 0) with

k⇤ =
U

~v
. (15)

Quite interesting is also the second case where n̂ = ẑ in
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that fulfills precisely the requirements for a helical
metal/insulator. The metal/insulator character is deter-
mined by the sign of the self-energy. Quite interesting,
although the e↵ective interaction in (12) looks attrac-
tive, the overall sign of Eq. (16) results positive, giving
rise thus to a helical insulator with e↵ective energy gap
2U which can be large enough for being detected in a
proper measurement.

C. Towards real materials

In the previous subsection we have investigated the ef-
fects of a single-boson mode coupled with a Dirac system
via density- or pseudospin fluctuations. Such analysis has
permitted us to point out, on a mathematical ground,
the role of matrix structure of the electron-boson cou-
pling and of the dimensionality. The physical relevance
of such analysis will be further discussed here with re-
spect realistic systems and materials.

We first comment about the the case of a boson coupled
with the electron density, �̂k / Î. Giving the full com-
mutativity of this operator with any kinetic term, this
analysis remains valid in any dimension. On the physical
ground, a finite component of density-density interaction
can result from any kind of retarded coupling. As dis-
cussed above, such density-density interaction, stemming
from a retarded boson-mediated coupling, is naturally
attractive and it would leave, if alone, to a helical nodal
metal. In real systems, however, such attraction needs
to compete with the intrinsic long-range Coulomb repul-
sion, discussed in Sec. II. The resulting scenario would
result thus from relative strengths of the two channels,
and a helical nodal metal or a helical gapped insulator
can in principle be established under di↵erent conditions.

Of a direct physical relevance is also the case of a
two-dimensional Dirac model with where n̂ = ẑ (�̂k /
�̂z). This would be a representative model for two-
dimensional graphene in the presence of a quantum field
that breaks dynamically the sublattice symmetry. Such
conditions can be realistically obtained from a coupling
with a single optical cavity mode [26]. In this scenario,
the cavity mode Ê0 couples to Dirac fermions because
of finite inter-band dipole moment of Dirac fermions,
d. This can be e↵ectively modeled by assuming �̂k =
|ucihuv| + |uvihuc| = �̂z, with |uc/vi as the conduc-

tion/valence band states, and g ⇠ Ê0 · d̂/~ as the Rabi
frequency. For a technical point of view, the cavity mode
frequency !0 can be tuned by the distance L of cavity
mirrors, i.e. !0 ⇠ ⇡/L. This provides the possibility
to control the strength of inter-particle interaction U ,by
tuning the separation of cavity mirror.

Alternative scenarios where Dirac fermions can cou-
pled with �̂k = �̂z or Î modes may arise by consid-
ering optical phonon modes of surrounding media e.g.
graphene on STO substrate [27–29]. Very recently it has
been experimentally approved that electron in monolayer
iron selenide (FeSe) could couple to the phonon mode of

STO substrate and this could significantly enhance the
superconductivity in FeSe [39, 40]. One can expect simi-
lar indirect electron-phonon coupling for graphene/STO
although, to best of our knowledge, a microscopic study
of this coupling is still missing. In both adiabatic and
non-adiabatic regimes [41], we can find situations for
which g � ~!0 and therefore one can expect a strong
U = g2/~!0 coupling. This regime might be achievable
by considering interaction between the ferroelectric soft
mode of STO and electrons in graphene.

Electron-phonon coupling in two-dimensional
graphene provides also a realistic context to revise
the results obtained by considering a single boson mode
with �̂k / �̂ · n̂. This is also a realistic scenario for
real graphene, where such coupling is provided by the
lattice optical modes at q = 0. However, in this case,
the robustness of the Dirac point, protected upon lattice
distortion, is enforced when the coupling with both
longitudinal and transverse modes is considered.

Following the detailed derivation in Ref. [42], this can
be modeled in our context by considering linear coupling
with two degenerate boson modes, corresponding to lon-
gitudinal and transverse modes:

Ĥint = g
X

k

 ̂†
k

h
(â0 + â†

0)�̂a + (b̂0 + b̂†
0)�̂b

i
 ̂k, (17)

where �̂a,b = �̂ · n̂a,b with n̂a · n̂b = 0. A proper
Lang-Firsov transformation, aimed to remove the lin-
ear electron-boson coupling in favor of an e↵ective un-
retarded electron-electron interaction, can be performed
also in such two-boson case. The long and cumber-
some derivation is provided in Appendix F. The e↵ec-
tive Hamiltonian, after averaging on boson vacuum state,
reads thus in an arbitrary dimension:

Ĥ = �~v
X

k

 ̂†
kk · �̂ ̂k � �2U

X

i=a,b

hX

k

 ̂†
k�̂ · n̂i ̂k

i2
,

(18)

where � = exp[�2(g/~!0)2] is the usual renormalization
factor. Note that the e↵ective attractive interaction in
pseudo-spin channel contains the contributions of both
transverse and longitudinal modes. The total self-energy
is thus given by summing both contributions. At the
mean-field level we obtain: ⌃̂a(k) / ka�̂ · n̂a � kb�̂ · n̂b,
and ⌃̂b(k) / �ka�̂ ·n̂a+kb�̂ ·n̂b, so that ⌃̂(k) = ⌃̂a(k)+
⌃̂b(k) = 0.

As expected by symmetry properties, the linear cou-
pling with lattice, once taking into account properly both
longitudinal and transverses modes, does not break the
Dirac point in graphene, preserving the isotropic Dirac
cone of non-interacting fermions although with a Fermi
velocity renormalization factor �. This Fermi velocity
reduction is tightly related to the (pseudo)spin feature
of Dirac systems and such band-narrowing is absent in
normal metals when only the zero-momentum bosons are
taken into account [24].
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where � = exp[�2(g/~!0)2] is the usual renormalization
factor. Note that the e↵ective attractive interaction in
pseudo-spin channel contains the contributions of both
transverse and longitudinal modes. The total self-energy
is thus given by summing both contributions. At the
mean-field level we obtain: ⌃̂a(k) / ka�̂ · n̂a � kb�̂ · n̂b,
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As expected by symmetry properties, the linear cou-
pling with lattice, once taking into account properly both
longitudinal and transverses modes, does not break the
Dirac point in graphene, preserving the isotropic Dirac
cone of non-interacting fermions although with a Fermi
velocity renormalization factor �. This Fermi velocity
reduction is tightly related to the (pseudo)spin feature
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normal metals when only the zero-momentum bosons are
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the cavity mode Ê0 couples to Dirac fermions because
of finite inter-band dipole moment of Dirac fermions,
d. This can be e↵ectively modeled by assuming �̂k =
|ucihuv| + |uvihuc| = �̂z, with |uc/vi as the conduc-

tion/valence band states, and g ⇠ Ê0 · d̂/~ as the Rabi
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where � = exp[�2(g/~!0)2] is the usual renormalization
factor. Note that the e↵ective attractive interaction in
pseudo-spin channel contains the contributions of both
transverse and longitudinal modes. The total self-energy
is thus given by summing both contributions. At the
mean-field level we obtain: ⌃̂a(k) / ka�̂ · n̂a � kb�̂ · n̂b,
and ⌃̂b(k) / �ka�̂ ·n̂a+kb�̂ ·n̂b, so that ⌃̂(k) = ⌃̂a(k)+
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pling with lattice, once taking into account properly both
longitudinal and transverses modes, does not break the
Dirac point in graphene, preserving the isotropic Dirac
cone of non-interacting fermions although with a Fermi
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⌃̂(k) = 0

Transverse and longitudinal modes cancel each other effects
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Berry curvature measurement :  
“time-reversal” protocol
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Landau level in 2D: zero energy level
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FIG. 4: Landau levels in helical insulator and metal. (a) Landau levels spectrum for the helical insulating phase in two
dimensions. (b-c) Landau levels in nodal circle metal for three di↵erent values of k�`B . We can see a band inversion occurring
at a critical value of k�`B = �1/↵1. (d) Function dependence of m(n, kz) versus kz which reveal a new vanishing point for a
critical value of kz > 0.
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where {, } stand anti-commutation operation. We con-
sider a constant magnetic filed along z-direction, B =
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Ĥ =
p

2
~v
`B

✓
0 f̂
f̂† 0

◆
(11)
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the number operator. After solving the eigenvalue prob-
lem of the above Hamiltonian, we obtain the following
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duction/valence band index and ↵n = (2n � 1)�1/2 +
(2n + 1)�1/2. The corresponding wavevectors are given
in terms of number states, |ni, as h n=0| = (0 , h0|) and
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For the 3D case, we just need to add Ĥz = m(n̂, kz)�̂z to
the Hamiltonian given in Eq. (11) where m(n̂, kz) reads

m(n̂, kz) = ~vkz
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depend on two quantum numbers of n and kz and are
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Landau level inversion in nodal circle phase

8

sphere system can be revealed upon applying a time-
reversal protocol [45] for extracting anomalous velocity
[46]. The observed velocity will be proportional to the
cross product of the Berry curvature and the external
electric field, / E ⇥ ⌦(k). The group velocity in the
presence of an external electric field, E, is given by
vk(E) = [@k"k � eE ⇥ ⌦(k)]/~ [47]. The anomalous
velocity, and therefore the Berry curvature, can be ex-
tracted as ⌦(k) ⇥ E = (~/2e){vk(E) � vk(�E)} in two
separate experiments with E and �E as the driving elec-
tric field.

For the 2D case, the Berry curvature does not change
when the system undergoes the transition from a single-
node to a nodal-circle phase. This is because the Berry
connection (and therefore the Berry curvature) is identi-
cal for both left and right handed helical bands in 2D, i.e.
A�(k) = ��̂/2k leading to ⌦(k) = �⇡�(2)(k)ẑ where �̂
is the azimuthal angle unit vector.

V. LANDAU LEVELS

We propose to use Landau level spectroscopy as a con-
venient way to track the change in the topology of un-
derlying Dirac system. In the presence of an external
magnetic field, we use the minimal coupling and replace
(~/i)r in Eq. (2) with ⇡̂ = (~/i)r + eA where �e < 0
is the electron charge. Then, we perform the integral
over s to get the desired result. Alternatively, one can
use the hermiticity property of the Hamiltonian and con-
sider k(k ·k)�1/2 ! [⇡̂(⇡̂ · ⇡̂)�1/2 +(⇡̂ · ⇡̂)�1/2⇡̂]/2. We
arrive at the following Hamiltonian in the presence of an
external gauge field.

Ĥ(⇡̂) = v


�̂ · ⇡̂ +

~k�
2

n
(⇡̂ · ⇡̂)�1/2, �̂ · ⇡̂

o�
(24)

where {, } stands for anti-commutation operation. We
consider a constant magnetic field along z-direction, B =
ẑB, and we evaluate landau level spectrum for a 2D heli-
cal insulator and metal. We define an annihilation opera-
tor as â = `B/(

p
2~)(⇡x � i⇡y) which satisfies [â, â†] = 1.

Note that `B =
p

~/eB is the magnetic length. Hamil-
tonian can be rewritten as

Ĥ =
p

2
~v

`B


0 f̂
f̂† 0

�
(25)

where f̂ = â + k�`B{(2n̂ � 1)�1/2 , â} in which n̂ =
â†â is the number operator. After solving the eigenvalue
problem of the above Hamiltonian, we obtain the set of
Landau levels (see Appendix G)

"±
n = ±~v

p
2n

|1 + ↵nk�`B |
`B

. (26)

The key di↵erence from the classical result is the energy
dependence on k0`B . It is precisely this dependence that
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FIG. 3: Landau levels in 2D helical insulator and
metal. (a) Presence (absence) of zero-energy landau level
in 2D massless (massive) gaped phase. (b) First three Lan-
dau levels of nodal circle phase versus k�`B . A level crossing
and then a level inversion occurs at k�`B = �1/↵1. (c) Lan-
dau levels with higher quantum number n are depicted where
in the inset we can new kind of Landau level crossing placed
at non-zero energy.

will result in nontrivial evolution of LL with magnetic
field for negative k0.

Note that n = 0, 1, 2, . . . , +/� corresponds to the con-
duction/valence band index and ↵n = (2n � 1)�1/2 +
(2n + 1)�1/2. The corresponding eigenvectors are given
in terms of number states, |ni, as h n=0| = [0 , h0|] and
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FIG. 3: Landau levels in 2D helical insulator and
metal. (a) Presence (absence) of zero-energy landau level
in 2D massless (massive) gaped phase. (b) First three Lan-
dau levels of nodal circle phase versus k�`B . A level crossing
and then a level inversion occurs at k�`B = �1/↵1. (c) Lan-
dau levels with higher quantum number n are depicted where
in the inset we can new kind of Landau level crossing placed
at non-zero energy.

will result in nontrivial evolution of LL with magnetic
field for negative k0.

Note that n = 0, 1, 2, . . . , +/� corresponds to the con-
duction/valence band index and ↵n = (2n � 1)�1/2 +
(2n + 1)�1/2. The corresponding eigenvectors are given
in terms of number states, |ni, as h n=0| = [0 , h0|] and

�k�`B = 1/↵1 ⇠ 0.634
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Landau level: 3D case

5

obtained straightforwardly

"̃±
n (kz) = ±

p
"2n + [m(n, kz)]2 , (15)

where n � 1 and the corresponding eigenvector follows

| ̃±
n (kz)i =

1
p

2

0

@
"nsign(1+↵nk�`B)

±
p

"2
n+[m(n,kz)]2�m(n,kz)

|n � 1i

|ni

1

A .

(16)

For n = 0 case, we have "̃0(kz) = �m(n, kz) and h ̃0| =
(0 , h0|).

The results for the Landau level spectrum of the heli-
cal insulator and metal are depicted in Fig. 4. As we can
see in Fig. 4(a), a zero energy Landau level always exist
inside the gap and this is a major di↵erence with mas-
sive Dirac system (with m�z mass term) in which there
is no zero energy Landau level. For the case of helical
metal case we can a more exotic feature as shown in Fig.
4(b-c), There is critical value of the dimensionless param-
eter k�`B = �1/↵n for n � 1 for which the zero energy
Landau level gets triple degenerate and by further in-
creasing of this dimensionless parameter a band inversion
occurs in Landau levels. This band inversion could have

a significant e↵ect in edge state dispersion and there-
fore in the Hall conductivity. For instance only based on
an edge channel counting for the case of 0 < "F < "+1 ,
with "F as the Fermi energy, we have �xy = e2/2h and
�xy = 3e2/2h for direct and inverted Landau levels, re-
spectively. [Habib: I am not sure if this edge states are
correct. However, using Kubo formula calculation can be
a straightforward way to calculate the Hall conductivity.]
For the case of 3D, the interesting point is that m(n, kz)
vanishes even for non-zero kz which is new with respect
to what we know for the Landau level spectrum of 3D
Weyl fermions.

IV. CONCLUSION

It will be written later.
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obtained straightforwardly

"̃±
n (kz) = ±

p
"2n + [m(n, kz)]2 , (15)

where n � 1 and the corresponding eigenvector follows

| ̃±
n (kz)i =

1
p

2

0

@
"nsign(1+↵nk�`B)

±
p

"2
n+[m(n,kz)]2�m(n,kz)

|n � 1i

|ni

1

A .

(16)

For n = 0 case, we have "̃0(kz) = �m(n, kz) and h ̃0| =
(0 , h0|).

The results for the Landau level spectrum of the heli-
cal insulator and metal are depicted in Fig. 4. As we can
see in Fig. 4(a), a zero energy Landau level always exist
inside the gap and this is a major di↵erence with mas-
sive Dirac system (with m�z mass term) in which there
is no zero energy Landau level. For the case of helical
metal case we can a more exotic feature as shown in Fig.
4(b-c), There is critical value of the dimensionless param-
eter k�`B = �1/↵n for n � 1 for which the zero energy
Landau level gets triple degenerate and by further in-
creasing of this dimensionless parameter a band inversion
occurs in Landau levels. This band inversion could have

a significant e↵ect in edge state dispersion and there-
fore in the Hall conductivity. For instance only based on
an edge channel counting for the case of 0 < "F < "+1 ,
with "F as the Fermi energy, we have �xy = e2/2h and
�xy = 3e2/2h for direct and inverted Landau levels, re-
spectively. [Habib: I am not sure if this edge states are
correct. However, using Kubo formula calculation can be
a straightforward way to calculate the Hall conductivity.]
For the case of 3D, the interesting point is that m(n, kz)
vanishes even for non-zero kz which is new with respect
to what we know for the Landau level spectrum of 3D
Weyl fermions.

IV. CONCLUSION

It will be written later.
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for n � 1 we find

| ±
n i =

1p
2

"
±sign (1 + ↵nk�`B) |n � 1i

|ni

#
(27)

For the 3D case, we need to add Ĥz = m(n̂, kz)�̂z to
the Hamiltonian given in Eq. (25). Where m(n̂, kz) reads

m(n̂, kz) = ~vkz

"
1 +

k�`Bp
2n̂ + 1 + (kz`B)2

#
. (28)

Landau level energies depend on two quantum numbers
of n and kz and are obtained straightforwardly (see Ap-
pendix G)

e"±
n (kz) = ±

q
("±

n )2 + m(n, kz)2 , (29)

where n � 1 and the corresponding eigenvector follows

| e ±
n (kz)i =

1p
2

"
�±sign(1 + ↵nk�`B)|n � 1i

|ni

#
. (30)

where �± = |"±
n |/[±|e"±

n (kz)|�m(n, kz)] . For n = 0 case,

we have e"0(kz) = �m(n, kz) and h e 0| = [0 , h0|].
The results for the Landau level spectrum of the heli-

cal insulator and metal are depicted in Fig. 3 and Fig.
4. In Fig. 3a, a zero energy Landau level always exists
inside the gap and this is a major di↵erence with respect
to what we have in massive Dirac system (with m�z mass
term) in which there is no zero energy Landau level. For
the helical metal case, we observe a new feature, shown
in Fig. 3b: there is a critical value of the dimension-
less parameter (�k�`B)|cr. = 1/↵n 6=0 for which nth Lan-
dau levels with positive and negative energy cross each
other at zero energy and therefore the zero-energy Lan-
dau level gets triple degenerate. Upon further increase of
this parameter a level inversion occurs in Landau level
spectrum. This level inversion could have a significant
e↵ect on the edge state dispersion and therefore leads to
a topological change of the Hall transport. Fig. 3c shows
Landau levels with higher quantum number n where in
the inset we can see a new kind of Landau level crossing
with double degeneracy placed at non-zero energy.

Landau levels of 3D helical insulator and metal is de-
picted in Fig. 4. Particularly, there is a new critical
value (�k�`B)|cr. =

p
2n + 1 for which the nth Lan-

dau levels get modified from a linear dispersive mode,
e"n(kz) / �kz, to a cubic one, e"n(kz) / �k3

z , when
|kz|`B ⌧ 1. For (�k�`B) >

p
2n + 1, we can see two

extra nodes emerges at zero energy, see Fig. 4b, and the
higher Landau level dispersion looks like a flat band for
small kz or strong enough magnetic field i.e. `B < 1/|kz|.

We note that similar aspects of helical states were con-
sidered before, e.g. in a phenomenological model of Ref.
[15]. One distinct feature we find, for instance, is he on-
set of Landau levels that was not addressed earlier. On
the other hand, the elementary excitations in Weyl-Mott
insulators discussed in Ref. [30], although characterized
by a similar energy spectrum, correspond to a completely
di↵erent set of eigenstates, as discussed in Appendix B.
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FIG. 4: Landau levels in 3D helical insulator and
metal. First three landau levels of 3D massless gaped phase.
(b) First three landau levels of nodal sphere phase. At a crit-
ical value of k�`B = �1, the n = 0 landau level changes its
linear dispersion to a cubic form. As depicted in the legends
in both panels, black, blue, and red colors stand for di↵erent
values of k�`B . Note that solid, dashed and dotted curves
correspond to the quantum number n = 0, 1 and �1, respec-
tively.

VI. SUMMARY

In this work, we discussed new helical phases that
could emerge as a result of a very long-range inter-
action in Dirac systems in two and three dimensions.
For the case of repulsive/attractive interactions in den-
sity/pseusospin sector our results are consistent with the
previous claims of massless gap opening, the so-called
helical insulator. In this work we have addressed both
repulsive interactions that lead to massless gap opening
and a new phase that emerge for the attractive interac-
tions, the so called helical nodal metal.

These novel phases in either case of attractive or repul-
sive interaction host helical particles. Attractive interac-
tions induce a topological Lifshitz transition to a new
phase, so called helical nodal metal with the topological
nodal sphere in 3D Dirac system. The salient features of
the new nodal phase are the intersecting Dirac cones and
attendant Berry singularity. Since the Berry curvature
is localized on a sphere (3D), we called it a Berry sheet.
We point that Berry sheet singularity is identical to the

Massless gap

Nodal sphere

Bẑ

Nodal sphere



Summary 

• Massless gap opening and Nodal circle/sphere with a infinite-range interaction 

• Infinite-interaction induced by momentum-conserving scattering of electron from a Boson mode 

• Sheet singularity of Berry curvature in nodal sphere metal 

• Landau levels: zero energy level, level inversion
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