NOKIA Bell Labs

Can Graphene drive the further evolution of communication systems?

Wolfgang Templ, Nokia Bell-Labs 19/12/018

A New Networking & Connectivity Era

Telecommunication Driving Trends

3 © 2018 Nokia

Network Vision 2020

Application Fields

Communication Infrastructure Gear

- Moderate volumes
- Very high performance requirements
- Very high reliability requirements
- More Moore + More Than Moore

User Equipment, Terminals, ONUs

- Consumer market, high volumes
- Very high integration (+Sensors)
- Short life cycle
- Dominated by More Moore
- Increasing performance

The Six Essential 5G Technologies

Modular Framing Structure for ultrabroadband, ultra-narrowband and ultra-low latency support

New Air Interface: New Waveform and control for flexible multi-service interface

- (() ~2X battery life
 - ~5X lower latency

Massive MIMO

Higher spectral efficiency through spatial multiplexing (beamforming)

• ~5X increase in spectral efficiency

New Virtualized + Software-**Defined Core** for flexible routing through centralized, distributed, gateways optimized for any service mix UL app. data

Multi-RAT with network controlled traffic steering and cell-less architecture

- ~2X increase data rate
- Guaranteed user/service experien

5G

LTE

mmW

WiFi

Low latency **High velocity**

Broadband / video

Large area

New "mmWave" spectrum small cells ~10X bandwidth

5G

6 © 2018 Nokia <public>

5G Target Requirements

The Simple Formula: 5G = R1+R2+R3+R4

F. Boccardi, Bell Labs, IEEE Comms. Magazine, 201402

Fixed Access

Convergence at 10Gbps

NOKIA Bell Labs

5G as well imposes requirements to optical communication

Datacom Optical Transport Application Scenarios

Intra datacenter

- Different transmission distances up to 2 km
- Multiple fiber instead of WDM
- 100G Ethernet is well established standard
- 400GbE is coming, standard settled, different products introduced
- 400G relies on multiplex
 - NRZ or PAM4
 - DML, EML (Direct vs. EA modulated Laser)
 - O-band (1300 nm) and C-band (1550 nm)

Inter datacenter

- Target 80 km up to 120 km
- Optical amplification for WDM at Tx or Rx
- C-band (1550 nm)
- Solutions
 - Coherent, DWDM 400G ZR: 400G/l
 - Direct detect PAM4: 50G/l, optical CD compensation

100G/400G coherent optical interface Electrical IQ-Modulation

E.g. 16QAM Polarisation Multiplex:

Adding *two* optical polarisations (in the PBC);

per polarisation:

.

•

•

4 bits coded into 1 symbol
 (i.e. 2 in In-Phase (I) and 2 in Quadrature (Q) component)

=> Modulator is driven by electrical fourlevel signal

- After 90° phase rotation optical Q-signal is superposed with I-signal
- 4 bits transmitted per symbol interval
- Def. Symbol rate: 1 Symbol/s = 1baud
- 1 baud = 4 bit/s
- 64 Gbaud = 256 Gbit/s
- Using both polarisations 512 Gbit/s (incl. FEC overhead)

DAC-I/DAC-Q Synchronisation: <800 fs

Def. Symbol rate: 1Symbol/s = 1 Baud

Datacom optical transport

Research Topics

- Coherent systems for inter and intra datacenter
- @400G and beyond coherent technology could be advantageous due to
 - Lower power consumption and DSP complexity
 - 4 dimensional modulation per λ (I and Q of QAM symbol and 2 polarizations)
 - Cost due to lean optics
 - Maturity of coherent technology
- What's beyond 400G?
 - Further increase of rates expected
 - Possible rates are 800G/1T/1.6T/4T
 - Work towards standardization has not started yet
 - 800G could be single λ , the other options require multiplex

System setup and power budget for low cost coherent Solution

- One laser per link (sharing of laser for Tx and Rx)
- No optical amplification in single carrier (single I)
- Rx with integrated frontend including TIA

Coherent Technology for Long Haul Optical Transport Components-Status

- Modulator
 - LiNb has a -3db bandwidth of 40 GHz, almost constant frequency slope (Drive voltage ~4V)
 - InP upper frequency limits operation to symbol rates <80 Gbaud ($V_D \sim 2..2.5V$)
 - Graphene has been demonstrated with almost flat frequency response up to 60 GHz ($V_D \leq 1V$)
 - SiGe / Ge tighter limits regarding frequency
- Receiver
 - InP is classical receiver material, upper frequency limit up to 100 GHz demonstrated, trade off bandwidth – responsivity (up to 1A/W (not hispeed); >0.1A/W (for hispeed)
 - SiGe / Ge lower frequency limits
 - Graphene flat response up to 60 GHz has been reported in literature

Tera-bit coherent optics

- Advanced modulation formats by ADC/DAC ASICS enable high data rates with high spectral efficiency
- Need high performance optics and analog ASICs TIA, driver
 - Wide bandwidth and linearity
 - Low power linear analog amplifiers
- Power consumption is the real limitation for

footprint reduction

Graphene photonics may change the paradigm.

It potentially allows to get rid of high performance power hungry analog ASICs.

It enables high density integration of multiple functions in a small form factor.

Baud rate growth from 32.5Gbps ->40Gbps->56Gpbs

NOKIA Bell Labs

... and here comes Graphene into the game

Graphene – Material Properties / Component FOMs

- RT carrier mobility, (e⁻ /h⁺): 200000/200000
 - limited to 40000 cm²V⁻¹s⁻¹ by optical phonon scattering on SiO₂ substrate; Si: 1400/450 (e⁻/h⁺) cm²V⁻¹s⁻¹
 - Competitive modulation, detection and switching performance for mobilities >10000 cm $^2V^{-1}s^{-1}$, carrier conc. $\sim 10^{12}\ cm^{-2}$
- + DC Resistivity: 1 \cdot 10-6 ; (Cu: 1.6 \cdot 10-2) Ωcm
- Thermal conductivity: ~5.10³; (Cu: 401) Wm⁻¹K⁻¹
- Optical transmission @(0.5-1.2)eV : 97.7%;
 - Tunable by electric gating
- Nearly ballistic e⁻ -transport

 high electrical and thermal conductivity, transparency, tunable band gap
- Complex Conductivity $\sigma_g = (\sigma_{g,r} + \sigma_{g,i}) = F(\omega, \Gamma, \underline{\mu C}, T, ...)$ -> Electronic control of conductivity
- Tunable Bandgap

Material	V _π L (V mm)	Insertion loss (dB mm⁻¹)	FOM _{PM} (V dB)		
LiNbO ₃ (E)	50-100	0.4	20-40		
LiNbO ₃ (E)ª	18	0.3	5.4		
InGaAsP/InP (E)	5-10	0.7	3.5–7		
Si photonics (E)	10-20	1–2	10-20		
Graphene (T)	0.7-2.8	0.1–1.2	1-2		

Comparison of Modulator Tech. Platforms

MZI Modulator Performance:

Modulator: operating wavelength (T/E)	$V_{\rm bias}$ (V)/ $V_{\rm PP}$ (V)	ER (dB) @Gb s ⁻¹	L (mm)	Total IL (dB)/ PL (dB mm ⁻¹)	V_L (V mm)	FOM _{PM} (V dB)	Power (mW)	Energy (pJ bit ⁻¹) @ Gb s ⁻¹
Double SLG TWMZI: 1,550 nm (T)	6.5/0.3	3.0ª	1.3	1.56 ^b /1.2	1.6	1.92	0.45	0.01 @40
Embedded (SiN) double SLG TWMZI: 1,550 nm (T)	5/-	-	0.17	0.02 ^b /0.1 ^c	0.7	-	-	-
Double SLG lumped: 1,550 nm (T)	6.5/1	3ª	0.4	0.48 ^b /1.2	1.6	1.92	12.8	0.32 @40
TWMZI: 1,550nm (E)	0/0.36	3.5@40	2	12.5 ^d /2.25	7.5	16.87	1.3	0.032 @40
Lateral p–n junction: 1,540 nm (E)	5/6.5	6.5 @40	3.5	3.85 ^d /1.1	29	31.9	-	-
PAM4TWMZIlateralp-n junction: 1,300nm (E)	-0.5/2.16	6.0 ^e	2.8	5.0/1.02	14.7	15	135	4.8 ^e
TWMZI lateral p–n junction: 1,300nm (E)	0/1.5	3.4 @40	3	5.5 ^d /1.1	25	27.5	22.5	0.45 @50
TWMZI lateral p–n junction: 1,300nm (E)	0/1.6	9.0@16	3	5.4/1.2	16.7	20	165	10.3 @16
TWMZI lateral p–n junction: 1,300nm (E)	-0.5/1.85	4.4@32	2.8	4.9/0.72	16.1	12	140	4.4@32
TWMZI lateral p-n junction: 1,550nm (E)	-6/7	5.56@50	7.35	6.91 ^b /1.04	26.7	27.8	245	4.9@56

From Graphene-based integrated photonics for next-generation datacom and telecom.; M. Romagnoli et an Rev. Mat., 3, 392-414 (2018

Integrated Photonics Technology

Silicon photonics

<u>Technology</u>

- Active photonic circuit
- Implantation needed
- Ge epitaxy

Approaches to functionalities

- Free carrier effect
- Thermo-optic effect

Graphene photonics

<u>Technology</u>

- Passive photonic circuit
- No implantation
- No epitaxy

Approaches to functionalities

- Capacitive effect
- Thermo-optic effect

Gate Oxid

(b)

Photonic devices

Silicon photonic devices

Modulators

- Electro-absorption (Franz Keldish)
 - SiGe alloys
 - Wavelength selective
- Phase
 - Free carrier
 - FOM > 10dBV

<u>Switches</u>

- Thermo-optic switch
 - Joule effect
 - High static power consumption

Detector

- Ge on Si
 - High responsivity
 - High speed

Graphene photonic devices

Modulators

- Electro-absorption
 - Graphene capacitor
 - Broadband

- Phase
 - Graphene capacitor
 - FOM < 10dBV (including loss)

Switches

- Capacitive switch
 - Capacitive effect
 - No static power consumption

GRAPHENE FLAGSHIP

NOKIA Bell Labs

<u>Detector</u>

- Photoconductor, Schottky on Si, AC photodiode
 - Low responsivity
 - High speed

20

FIRST STEPS: 50Gbps PHOTO DETECTOR ON Si-WAVEGUIDE (AMO GMBH, ALCATEL-LUCENT)

- Graphene Photodiodes (GPDs)
 - Broadband light absorption (FIR to UV)
 - Ultrahigh carrier mobilities
 - Can be integrated on Si on wafer-scale
 - PV effect at Graphene /metal interface
 - -> Bias free operation
 - No dark current
 - Intrinsic operation speed up to 640 GHz
 - Internal quantum efficiency of 30%-60%
 - CVD grown Graphene on Si waveguides
 - Operating in C-Band (λ =1550 nm)
 - Lin. lph(Popt) characteristic w.o. saturation
 - -3dB-Bandwidth = 41 GHz (limited by measurement setup and device parasitics)

Schematic of the heterodyne measurement setup, and frequency response of the relative PD output power with a -3 dB roll off frequency at 41 GHz (blue); RC low pass with a -3 dB frequency of 41 GHz (red).

From "50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems", D. Schall, D. Neumaier, W. Kuebart, B. Junginger, W. Templ , ACS Photonics, 2014 1 (9);)

50Gbps Photo Detector on Si-Waveguide

- Transmission Performance Measurement
 - GPD inserted into optical 12.5 Gbit/s link
 - Bit Sequence NRZ-OOK via LiNbO3 Modulator
 - λ=1550 nm, 17dbm (EDFA)
 - Photo response at GPD (still insufficient)
 - Zero bias: Vout=0.4 mVpp, but SNR is insufficient for data transmission
 - 1.6 V bias: Vout increased by a factor of 4
 - Further linear increase to higher responses with bias
 - Open eye-diagram proving successful transmission of n = 2³¹-1 pseudo-random bit sequence (PRBS) at 12.5 GBit/s.

50Gbps Photo Detector on Si-Waveguide

- 50Gbit/s Transmission Performance Measurement
 - 50 Gbit/s NRZ-OOK signal generated by four 12.5Gbit/s streams driving LiNbO₃ modulator
 - λ=1550 nm, 17.6dbm (EDFA)
 - Photo response at GPD
 - Bit stream detected with 70 GHz scope; (averaging); no bias at GPD i.o. to avoid side effects
 - Excellent signal integrity
 - T_{rise, (10% to 90%)} = 9 ps, i.e. BW = 39 GHz

Alcatel-Lucent Bell Labs within frame of European Flagship Graphene (604391)

AGSHIP NOKIA Be

Labs

HETERO INTEGRATION – GRAPHENE ON SILICON

Motivation for Co-integrating Graphene on Silicon

- Cost efficiency
- Opening the path for single chip integration of Si-and Graphene based devices
- Enabling high-integrated photonic subsystems
- High signal- and data processing capability (Silicon)
- Single chip integration avoiding need for highspeed interfaces
- Reduction of module cost (packaging effort)

Vision: Integrated high Performance Optical TRX PIC Long Term Goal: 400Gbps Optical Transceiver – Photonic SIP

- Graphene based high BW photo detector array - replacing electrical interface by photonic one-
- TIA & signal conditioning (equalizer)
- 2 HiSpeed DACs (SiGe BiCMOS or CMOS)
- Memory
- 2 Modulator drivers
- Graphene based modulators
- Graphene based optical 90°-phase shifter
- Critical: •
 - Speed performance/bandwidth
 - Power consumption / thermal management •
 - Mounting/assembly (esp. optical coupling/link) •
 - Observe automated production (positioning?)
 - Total Costs !!

Coming true ...

Exemplarily Architectures

Double- gated thermoelectric photodetector

CMOS circuit on a SLG photonics circuit

NOKIA Bell Labs

Graphene-based integrated photonics for next-generation datacom and telecom. M. Romagnoli et al., Nat. Rev. Mat., 3, 392-414 (2018

GRAPHENE Spearhead Projects

- Target: Graphene based optical transmission system for DC/Metro range
 - Packaged graphene TX and RX
 - Integration in NOKIA eval. board and lab based transmission test
 - Integration in product electronic board with DSP and trial in a NOKIA commercial system
- OE components for replacement in coherent systems
 - IQ modulator and coherent receiver
- Critical Parameters [desirable values]
 - Modulator
 - Modulation index, Bandwidth [>45GHz] and insertion loss [<7db] of photonic chip including fiber chip transitions
 - Receiver
 - Sensitivity [0.5 A/W], Bandwidth [100GHz], dark current [few nA], losses of chip and fiber chip coupling
 - C- and L-Band Operation

PHENE FLAGSHIP

