

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

The forward rainbow scattering of low energy protons by a graphene sheet

M. Ćosić¹, M. Hadžijojić¹, R. Rymzhanov², S. Petrović¹, and S. Bellucci³

 ¹Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
 ²Joint Institute for Nuclear Research, Joliot-Curie st. 6, 141980 Dubna, Moscow Region, Russia,
 ³ Laboratori Nazionali di Frascati LNF, INFN - Istituto Nazionale di Fisica Nucleare, Via Enrico Fermi 40 - 00044 Frascati (Roma) Italy

Nanoscience and Nanotechnology 2018.

うして ふゆ く は く は く む く し く

Table of content

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

1 Introduction

- Ion channeling in crystals and SWCNT
- Theory of rainbow scattering

2 Proton rainbow scattering by graphene

- Influence of the potential on the rainbow pattern
- Influence of the graphene thermal motion on the rainbow pattern

イロト 不得 トイヨト イヨト

Channels in nanostructured materials

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 1: The view of: (a) the Si crystal in direction of the [1, 0, 0] axis. (b) The view of the zig-zag single wall carbon nanotube (SWCNT) in direction of the SWCNT axis.

Ion Channeling Effect

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows an graphene thermal motion

Figure 2: (a) Ion scattering by atomic string. (b) Schematic of the ion channeling process.

Potential of ion-solid interaction V is build up from ion atom potential φ :

$$V(r) pprox \sum_{s} rac{1}{d} \int_{z} arphi(r-
ho_{s}) dz.$$

The Prototype of the Rainbow Effect

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 3: (a) Light rays in a droplet of water, the blue ray is the rainbow ray. (b) The deflection function $\theta(b)$. (c) Intensity of light.

Differential cross-section of scattering process is

$$\sigma^{\theta}_{\rm diff} \sim \left. \left(\frac{d\theta}{db} \right)^{-1} \right|_{b_8} \to \infty.$$

Theory of Rainbow Scattering

Rainbow scattering by graphene

Introduction

Channeling effect

 $\mathbf{Rainbow}$ scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Solution of equation of motion

$$m\frac{d^2\boldsymbol{r}}{dt^2} = -\nabla U(\boldsymbol{r}),$$

where \boldsymbol{U} is thermally averaged potential

$$U(\boldsymbol{r}) = \frac{1}{(2\pi \|\boldsymbol{\Sigma}\|)^{3/2}} \int_{\boldsymbol{r}'} V(\boldsymbol{r} - \boldsymbol{r}') \exp\left(-\frac{1}{2}\boldsymbol{r}'^T \cdot \boldsymbol{\Sigma}^{-1} \cdot \boldsymbol{r}'\right) \, \mathrm{d}^3 \boldsymbol{r}',$$

define mappings

$$\theta_x = \theta_x(\boldsymbol{b}), \quad \theta_y = \theta_y(\boldsymbol{b});$$

where $\theta_x \approx v_x/v_z$ and $\theta_y \approx v_y/v_z$.

$$\sigma_{\rm diff}^{\theta} = \frac{1}{|J_{\theta}|}, \quad J_{\theta} = \frac{\partial \theta_x}{\partial b_x} \frac{\partial \theta_y}{\partial b_y} - \frac{\partial \theta_x}{\partial b_y} \frac{\partial \theta_y}{\partial b_x}.$$

Rainbow lines in IP plane are solutions of equation $J_{\theta} = 0$. Their image in the final transmitted angle planes are called angular rainbows.

化口水 化塑料 化医水化医水

Rainbows in chiral SWCNT

Rainbow scattering by graphene The covariance matrix is modeled according Debye theory,

$$\boldsymbol{\Sigma} = \frac{3\hbar^2}{M_c m_u k_B \Theta_B} \left[\frac{\boldsymbol{\mathfrak{D}}_f(\Theta_D/T)}{\Theta_D/T} + \frac{1}{4} \right]$$

Introduction

Channeling effect

Rainbowscattering

Protongraphene scattering

Rainbows for different potentials

Rainbows an graphene thermal motion

Figure 4: (a) The angular deflection function of 1-GeV protons transmitted through 10- μ m long chiral SWCNT (11,9). (b) The corresponding angular distribution.

Rainbows in thin Si crystal

Figure 5: (a) Experimental distribution of 2-MeV protons transmitted through $\langle 100 \rangle$ channel of 55-nm thick Si crystal. Theoretical distributions for: (b) ZBL and (c) Molière's potential. (d) Corresponding rainbow lines.

Proton-Graphene interaction

Rainbow scattering by graphene

Introduction

Channeling effect Rainbow

Protongraphene scattering

Rainbows for different potentials

Rainbows an graphene thermal motion

Figure 6: Schematic of the proton transmission through graphene.

- For 5-keV protons de Broglie wavelength is $\lambda = 4.0476 \times 10^{-4}$ nm.
- Interaction potential calculated starting from Doyl-Turner's ZBL and Molière's potential.
- Energy loss is negligible, neutralization probability $\approx 40\%$
- Matrix Σ modeled according to Debye theory and calculated using molecular dynamic approach.

Proton-graphene interaction potential

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 7: (a) Contour lines of the proton-graphene interaction potential in the plane z = 0, for: $U^{DT}(\mathbf{r})$, $U^{ZBL}(\mathbf{r})$, and (c) $U^{M}(\mathbf{r})$ potentials shown by different hues of the red, green and blue color respectively. (b) Corresponding zero-curvature lines shown by red, green, and blue lines respectively. The black dashed rhombus denotes the graphene unit cell.

Proton trajectories

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 8: Proton trajectories entering the interaction interval of the graphene unit cell for $U^{DT}(\mathbf{r})$ potential. Entrance points are denoted by open small blue circles. Black spheres indicate positions of the carbon atoms.

Ideal rainbow patterns

Rainbow scattering by graphene

Introduction

Channeling effect Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows ar graphene thermal motion

 $U^{ZBL}(\mathbf{r})$; and (cⁱ), $U^M(\mathbf{r})$ potentials, and $\Sigma = 17.37 \text{ pm}^2$. Rainbow lines are shown by doted black lines. Insets (aⁱⁱ), (bⁱⁱ), and (cⁱⁱ) show enlarged parts of proton yields around the rainbow line l_2^{θ} .

Real rainbow patterns

Rainbow scattering by graphene

Introduction

Channeling effect Rainbow

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 10: (a) Angular yield of the proton beam having divergence of 1 mrad, and for $U^{DT}(\mathbf{r})$ potential. (b) Enlarged part of proton yield around the rainbow line l_2^{θ} . Rainbow lines are shown by the doted black line. (c) Vertical cross-sections through yields from graph (b), and from the Fig. 9(a) — the red and the black line, respectively.

Calculation of graphene thermal motion

Rainbow scattering by graphene

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 11: State of the computational supercell for: (a) rhombic cell with periodic boundary conditions representing infinite graphene sheet; and (b) rectangular cell with combination of periodic and fixed boundary conditions representing graphene nanoribon.

The steady state of graphene thermal motion

Rainbow scattering by graphene

Introduction

Channeling effect Bainbow

scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 12: (a) Time dependency of the matrix $\Sigma(t)$ components. (b) Scaling of Σ with linear super-cell size $L = \sqrt{L_1 L_2}$. (c) State of the graphene sheet at t = 2.9 ns, showing sheet rapidle.

Evolution of the rainbow pattern for $\boldsymbol{\Sigma} = \sigma \boldsymbol{I}$

Rainbow scattering by graphene

Introduction

Channeling effect Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 13: Rainbow patterns and angular yields of transmitted protons for $\Sigma = 17.37 \text{ pm}^2$ and tilt angles: (a) $(\Theta, \Phi) = (0,0)$; (b) $(\Theta, \Phi) = (0.065, 0)\pi$ rad; and (c) $(\Theta, \Phi) = (0.065, 0.25)\pi$ rad. Insets show projections of the graphene hexagon to the transverse plane, and enlarged central parts of distributions.

Evolution of rainbow pattern for $\Sigma = \text{diag}(\sigma_{\rho}^2, \sigma_{\rho}^2, \sigma_z^2)$

Introduction

Channeling effect Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 14: Rainbow patterns and angular yields of transmitted protons for $\Sigma = \text{diag}(17.67, 17.67, 2619.10) \text{ pm}^2$ and tilt angles: (a) $(\Theta, \Phi) =$ (0, 0); (b) $(\Theta, \Phi) = (0.065, 0)\pi$ rad; and (c) $(\Theta, \Phi) = (0.065, 0.25)\pi$ rad. Insets show projections of the graphene hexagon to the transverse plane, and enlarged central parts of distributions.

Evolution of rainbow pattern for $\Sigma = \text{diag}(\sigma_x^2, \sigma_y^2, \sigma_z^2)$

Introduction

Channeling effect Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 15: Rainbow patterns and angular yields of transmitted protons for $\Sigma = \text{diag}(18.14, 35.45, 3698.18) \text{ pm}^2$ and tilt angles: (a) $(\Theta, \Phi) =$ (0, 0); (b) $(\Theta, \Phi) = (0.065, 0)\pi$ rad, and (c) $(\Theta, \Phi) = (0.065, 0.25)\pi$ rad. Insets show projections of the graphene hexagon to the transverse plane, and enlarged central parts of distributions.

Reconstruction of the covariance matrix

Introduction

Channeling effect

Rainbow scattering

Protongraphene scattering

Rainbows for different potentials

Rainbows and graphene thermal motion

Figure 16: Schematics of the identification of the covariance matrix Σ form, which reduces to investigation of the outer rainbow pattern for different sample orientations.

Conclusions

Rainbow scattering by graphene

Introduction

- Channeling effect
- Rainbow scattering

Protongraphene scattering

- Rainbows for different potentials
- Rainbows and graphene thermal motion

- Rainbow scattering occurs in transmission of the 5-keV protons through graphene.
- Rainbow pattern consists of two parts the outer formed by protons experiencing close collisions with carbon atoms and the inner formed by protons scattered by graphene hexagon.
- Inner pattern is very sensitive to changes in proton-carbon interaction and are practically insensitive to the thermal vibrations.
- Outer rainbow lines are very sensitive to the thermal vibrations.
- Graphene rainbow lines could be used for determination of the proton-carbon interaction potential and for determination of the Debye-Waller form factor.