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What to take from this talk

Every band structure is complex

Material dispersion and loss let conventional theory fail

Ignoring imaginary parts (e.g. frequency or wave number) is dangerous
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Emission from lossy/dispersive systems

Manipulating emission
dynamics for:

Single-photon sources

Lasers/spasers

Quantum computing

Taylored thermal emitters

Some systems:

(Hyperbolic) metamaterials

Plasmonic lattices,
metasurfaces

Photonic crystals

Strongly coupled graphene
or van-der-Waals materials

[Science Adv. 2, e1501168 (2016)]
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Spontaneous emission

Excited atom decays by emitting a photon

Transition rate from Fermi’s Golden Rule: wi→f = 2π
~
∣∣〈f |∆H|i〉∣∣2ρ(ω)

Purcell effect: Dependence of rate on density of states ρ(ω)

First interpretation of ρ(ω):

Number of destination states within
energy uncertainty window

Second interpretation:

Imaginary part of electromagnetic
Green function

Imaginary part of Green
function describes damping in
classic systems, so
ρ(ω) ' ={G(ω)}
Expand in eigenfunctions:

G(ω) '
∑
α
|ψα〉〈ψα|
ω−ωα

For continuous spectra:
ρ(ω) ' ∂α

∂ω .
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Simple dispersive example: atom vapour
Simplest system geometry: homogeneous material

Simplest dispersion: single Lorentz pole
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Simple dispersive example: atom vapour
Simplest system geometry: homogeneous material

Simplest dispersion: single Lorentz pole

S. M. Barnett et al. J. Phys. B 29, 3763 (1996)
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Dispersion relation: a multivalued analytic function
Every band structure ω = ω(~k) is complex

It consists of at least one complex-valued sheet over the complex ~k-plane

Sheets are connected at branch points

In physics: (algebraic) branch point = point of degeneracy

Resonances introduce branch points

Typical examples: atomic transitions, lattice resonance, plasma resonance
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Overdefined and non-orthogonal eigenmodes

Material resonance introduces additional sheets (= bands)

Additional DOFs of material make EM-eigenmodes linearly dependent

One solution to linear dependence: auxiliary differential equation
[A. Tip, Phys. Rev. A 57, 4818 (1998)]

Alternative: adjoint modes

Replace scalar product with bilinear form:

(φ, ψ) =

∫
WSC

d3r

(
~Hφ
Eφ

)
W(~r)

(
~Hψ
Eψ

)
.

Define adjoints of operator L and modes via (L‡φ‡, ψ) = (φ‡,Lψ).

For canonical weight function: ψ‡(~r , ~k, ω) = ψ(~r ,−~k,−ω).
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Group velocity and DOS
Group velocity along ẑ :

vz =

∫
WSC

d3r ẑ · (~E ‡ × ~H + ~E × ~H‡)∫
WSC

d3r (~E ‡ ∂(ωε)
∂ω

~E + ~H‡ ∂(ωµ)
∂ω

~H)
.

Local density of states connected to Green function:

ρ(~r , ω) = − 2ω

πc2
={Gω(~r , ~r , ω)}

Green function without material dispersion:

G(~r , ~r ′, ω) =
1

VBZ

∑
n

∫
BZ

d3k
Ψn~k(~r)⊗Ψ‡

n~k
(~r ′)

ω − ωn~k
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VBZ

∑
n

∫
BZ

d3k
Ψn~k(~r)⊗Ψ‡

n~k
(~r ′)

ω − ωn~k

With dispersion: Maxwell’s equations form nonlinear eigenvalue problem:

L(ω)Ψ(~r) = ωΨ(~r).
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Fix: Auxiliary frequency-like eigenvalue λ:

L(ω)Ψω(~r) = λωΨω(~r).
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Generalized Green function with dispersion (ω fixed):

Gω(~r , ~r ′, λ) =
1

VBZ

∑
n

∫
BZ

d3k
Ψn,~k,ω(~r)⊗Ψ‡

n,~k,ω
(~r ′)

λ− λn,~k,ω
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c2

∫
Iω
<

{ ∫
WSC

d3r (~E ‡ε~E + ~H‡µ ~H)∫
WSC

d3r ẑ · (~E ‡ × ~H + ~E × ~H‡)

}
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Local density of states connected to Green function:

ρ(~r , ω) = − 2ω

πc2
={Gω(~r , ~r , ω)}

Green function without material dispersion:

G(~r , ~r ′, ω) =
1

VBZ

∑
n

∫
BZ

d3k
Ψn~k(~r)⊗Ψ‡

n~k
(~r ′)

ω − ωn~k

(Total) density of states:

ρ(ω) =
4ω

c2

∫
Iω
<

{ ∫
WSC

d3r (~E ‡ε~E + ~H‡µ ~H)∫
WSC

d3r ẑ · (~E ‡ × ~H + ~E × ~H‡)

}
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Analytical example: Strong coupling with band edge

Idealized problem: Isotropic band edge & single resonance pole
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Summary

Every band structure is complex

Material dispersion lets conventional theory fail

Ignoring imaginary parts (e.g. frequency or wave number) is dangerous

[Wolff et al., Phys. Rev. B 97, 104203 (2018)]
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