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What to take from this talk

@ Every band structure is complex
@ Material dispersion and loss let conventional theory fail

@ Ignoring imaginary parts (e.g. frequency or wave number) is dangerous
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Emission from lossy/dispersive systems

Manipulating emission
dynamics for:

@ Single-photon sources
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Emission from lossy/dispersive systems

Manipulating emission
dynamics for:

Single-photon sources
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Second interpretation:

Imaginary part of electromagnetic
Green function

@ Imaginary part of Green
function describes damping in
classic systems, so
pw) =~ 3{G(w)}

@ Expand in eigenfunctions:
G(w) = X2, Mt

e For continuous spectra:
~ Oa

plw) ~ 52
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Simple dispersive example: atom vapour

@ Simplest system geometry: homogeneous material
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Dispersion relation: a multivalued analytic function

e Every band structure w = w(k) is complex
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Overdefined and non-orthogonal eigenmodes

@ Material resonance introduces additional sheets (= bands)
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Overdefined and non-orthogonal eigenmodes

@ Material resonance introduces additional sheets (= bands)

o Additional DOFs of material make EM-eigenmodes linearly dependent

@ One solution to linear dependence: auxiliary differential equation
[A. Tip, Phys. Rev. A 57, 4818 (1998)]

Alternative: adjoint modes

Replace scalar product with bilinear form:

0= fo ()70 ()

o Define adjoints of operator £ and modes via (L*¢t, ) = (¢F, Lv).

@ For canonical weight function: PH(F, E,w) = Y(F, —E, —w).
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Group velocity and DOS

@ Group velocity along 2:

Jwse @r 2+ (EY x H+ E x HY)
Vz = = 0(we) 2 | Lt 0(en) O
fWSCdr(E:lt E?wE)E—'_Hi E?wH)H)
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Group velocity and DOS

@ Group velocity along 2:

Jwse @r 2+ (EY x H+ E x HY)
vz = = 0(we) 1 gt 0wn) O
Jwsc @®r (EF E?wE)E+H¢ %WH)H)

@ Local density of states connected to Green function:
o 2w -
p7iw) = — =S {Gu(F )}

7TC

@ Green function without material dispersion:

W2 @ VEL(P)
3
Gg(r,r,w) VBZZ/BZd prp

o With dispersion: Maxwell's equations form nonlinear eigenvalue problem:

L(0)V(F) = wV (7).
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Group velocity and DOS

@ Group velocity along 2:

Jwse @r 2+ (EY x H+ E x HY)
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Jwsc @®r (EF E?wE)E+H¢ anH)H)

@ Local density of states connected to Green function:
o 2w -
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@ Green function without material dispersion:

W2 @ VEL(P)
3
Gg(r,r,w) VBZZ/BZd prp

o Fix: Auxiliary frequency-like eigenvalue A:

L)V, (F) = AV (7).
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Group velocity and DOS

@ Group velocity along 2:

Jwse @r 2+ (EY x H+ E x HY)
vz = = 0(we) 1 gt 0wn) O
Jwsc @®r (EF E?wE)E+H¢ %WH)H)

@ Local density of states connected to Green function:
o 2w -
p7iw) = — =S {Gu(F )}

7TC

@ Green function without material dispersion:

W2 @ VEL(P)
3
Gg(r,r,w) VBZZ/BZd prp

@ Generalized Green function with dispersion (w fixed):

B} iV
QN =y S [ -
VBz BZ A=Az

n,k,w

)
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Group velocity and DOS

@ Group velocity along 2:

Jwse @r 2+ (EY x H+ E x HY)
vz = = 0(we) 1 gt 0wn) O
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@ Local density of states connected to Green function:
o 2w -
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@ Green function without material dispersion:

o (Total) density of states:

p(w) = 4—w/ R Jwsc @r (E*eE +
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Analytical example: Strong coupling with band edge

o Idealized problem: Isotropic band edge & single resonance pole
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Analytical example: Strong coupling with band edge

o ldealized problem: Isotropic band

absorption (arb. u.)
o
[$;]
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Summary

@ Every band structure is complex
o Material dispersion lets conventional theory fail

@ Ignoring imaginary parts (e.g. frequency or wave number) is dangerous
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[Wolff et al., Phys. Rev. B 97, 104203 (2018)]
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