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Proton rms-radius from (e,e): a serious oversight

Ingo Sick

Observation

large scatter of results for rms-radius R: 0.84 ÷ 0.92fm

occurs even when using same data

indicates model-dependence of fits

Observation

scatter particularly large for q-space parameterizations

fits done without consideration of ρ(r)

actually: most G(q)’s do not correspond to a density, have no Fourier transform!

To illustrate difficulties with G(q)-fits: discuss example

Fit of Bernauer data for q < 2fm−1

includes all data sensitive to R

Parameterization [m/n]Pade: G(q) = (1 +
∑m aiq

2i)/(1 +
∑n bjq

2j)

successful in fits up to largest qmax: Kelly, Arrington, IS, .....



Pade with m = 1, n = 3

gives χ2 as low as bestfit of Bernauer

has none of frequent diseases: poles, unphysical q = ∞ limit

Yields R = 1.48fm!

Reason: curvature of G(q) at very low q, below qmin of data

......... Standard fit, R∼0.88

——– Pade

Above 0.2fm−2 Pade and standard fit differ by a constant 0.5%

note expanded scale

Pade and standard fit have same χ2 as data floating



How does Pade generate R = 1.48fm?

a1 and b1 are coupled

both large can produce behavior shown in figure

Is R = 1.48fm reasonable?

large coefficients cannot be excluded, parameters are not physical

some fits in literature have huge coefficients

[1/3]Pade as valid as any other q-space parameterization!
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Is R = 1.48fm reasonable?

large coefficients cannot be excluded, parameters are not physical

some fits in literature have huge coefficients

[1/3]Pade as valid as any other q-space parameterization!

The big difference

[1/3]Pade does correspond to a density

simple look at ρ(r) eliminates fit as unphysical

note radial scale: 0 − 50fm

Elimination only possible because Pade does have FT

without considering ρ(r) would not know about disease

Could published G(q)’s without look at ρ(r) have similar problems?

(they do! see below)



Origin of problem

ρ(r) ignored in most analyses

R not obtained from
∫

ρ(r) r4 dr

R obtained from slope of G(q = 0) despite obvious problems:

– q = 0 not measurable

– must extrapolate (always dangerous)

– doubly dangerous as need slope of extrapolated G(q)

– near q = 0 finite size effect q2R2/6 very small → problems with syst. errors

Why use only G(q)?

G(q) = FT(ρ(r)) strictly valid for non-relativistic recoil only

would need relativistic corrections

Hope: can ignore this ’complication’ if restrict attention to q = 0

.... which is an illusion as must extrapolate from finite q

Must reconsider approach, only ρ(r) can exhibit diseases of fit



Do relativistic corrections exclude consideration of ρ(r)?

not at all!

relativistic corrections have been calculated

Licht70, Mitra77, Ji91, Holzwarth96

consequences are understood

1. Electron sees moving proton

must describe scattering in Breit frame

can be taken into account by using in FT q̃ instead of q

q̃ = q/
√

1 + q2/4M2

2. For composite relativistic systems additional correction

G → G̃ = G(1 + q2/4M2)λ

different theories give, for charge-form factor, λ = 0 or 1



Numerical effect: start from Pade fit of world data q < 10fm−1, calculate

• ρ(r) non-relativistically

• ρ(r) using q̃

• ρ(r) using q̃ and λ = 1

Result

significant change at r ∼ 0, minor change of shape of ρ(r > 1fm)

irrelevant ambiguity due to λ = 0, 1

no effect upon R and q = 0 slope

Despite relativistic corrections shape at large r remains well-defined



What do we know about ρ(r) at large r?

1. Cloudy bag-type models

r < 1fm complicated quark/gluon structure

r > 1fm dominated by Fock component with lowest separation energy: n+π+

asymptotic wave function of pion given by W−η,3/2(2κr)/r

can be used to calculate shape of ρ(r)

only input: quantum-mechanics, π-separation energy

used extensively for A ≥ 2

2. Vector Dominance Model

basic assumption of VDM

using known vector mesons and coupling constants

using dispersion relations to calculate 2π ect contributions (longest range)

Ina Lorenz, Bonn group



Comparison
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shape of large-r densities very similar

given by understood physics

not affected by rel. corrections

shape should be ± respected in fits of data

Shape-constraint most helpful as r > 1fm contributes ∼50% to R

see review in Atoms 6 (2018) 2

Here: consider much more elementary constraint

ρ(r > 3.5fm) ∼ 0 for practical purposes, ρ < 10−5ρ(0)

this minimal (common sense) constraint is important when aiming at R!

Take seriously as rel.corr. do not generate/remove (apparent) contribution at r > 3.5fm



Why is ρ(r) at large r so important?

large r have large weight in calculation of R

give largest contribution at small q: G(q) =

∫

sin(qr)/qr ρ(r) r2 dr

Example: ∆G(q) for charge ∆Q at r = 6fm producing ∆R = 1%

biggest contribution at q < 0.5fm−1, region is not covered by data
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effect upon G(q) at q > 0.5fm−1

∆G(q) < 0.0001

∆σ/σ < 0.0002 not measurable by far!

5 times larger ∆σ not measurable either

−→ amplitude of sin(qr)/qr term for large r not determined

contributions from r > 3.5fm add noise (model dependence) to R-determination



Important question: do published fits respect ρ(r > 3.5fm) = 0?

Parameterizations that do correspond to a density

ρ(r > 3.5fm) = 0 easy to enforce/verify

can discard fit if ρ(r > 3.5) 6= 0

What about all these G(q)’s that do not correspond to a density?

..... the vast majority of published G(q)’s

could imply sin(qr)/qr components corresponding to r > 3.5fm!

would give unphysical contributions to R

which would be poorly constrained by data

How can be verified?

how can make sure that most elementary property ρ(r > 3.5fm) = 0 is respected?

Can be done by borrowing old idea from F. Lenz Z. Physik 222 (1969) 491

who studied model-independent information determined by (e,e) data



Model-independent information from (e,e):

Is contained in first moment function

T (Q) =

∫ Q

0

r(Q′)dQ′
with Q = integrated charge between radii 0 and r

All ρ(r) with same T (Q) ± δT (Q) give same σ ± δσ

Convenient representation

Sum of delta-functions

ρ(r) =
∑ pi

r2
i

δ(r − ri) −→ T (Qj) =

j
∑

i=1

pi ri

With enough δ-functions at 0 < ri < rmax can represent T (Q) to any accuracy desired

Consequence: can represent G(q) with
∑

pi sin(qri)/(qri)

Basic idea

decompose G(q) into sin(qri)/qri - components

allows localization of charge in r without need for FT



Test of published G(q)’s

use qmax = 1.5fm−1 (covers range sensitive to R)

generate pseudo-data from G(q)

fit with
∑

pi sin(qri)/qri

select ri’s uniformly distributed over range 0 ... 7fm

have tried several r-ranges for r > 3.5 contributions

range 3.5...7fm covers most relevant region

goal: gives r > 3.5 significant overall-contribution to R?

to avoid over-fitting with correlated pi:

constrain p(ri > 3.5fm) to either > 0 or < 0

check
∑

pi for ri > 3.5fm



Results

1. For G’s corresponding to density with ρ(r > 3.5fm) ∼ 0

fits used: MD, Pade, Laguerre, Borisyuk, VDM Mergel, Graczyk

find contribution to R2 of |
∑

pi|’s for r > 3.5fm typically 0.8% (discretization noise)

Example: MD
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2. For fits G(q) not corresponding to ρ(r)

fits used: Lee, Paz, HH, polynomial Bernauer, pol. Griffioen, inv. polynomial

contribution to R2 of r > 3.5fm up to 20%, typical contribution 10%!

Example: Lee+Arrington, R = 0.916± 0.024fm
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these contributions are unphysical, and model dependent as not constrained by data

their contribution explains scatter of results for R



3. Special case: polynomials in q2

get good fit only when at least one pi < 0 for r > 3.5fm

confirms old insight of disease of
∑

piq
2i

4. Very special case: Horbatsch, Hessels, Pineda

extremely small 〈r4〉, disagrees with data (and common sense)

can only be fit with weird combination of pi’s

r4/(r2)2 r6/(r2)3

Dipole 2.50 11.6

VDM Lorenz 2.62 13.5

HHP 1.25 14.5

..... but HHP can anyway be ignored due to very poor χ2



Conclusion

Parameterizations without ρ(r) often imply sin(qr)/qr contributions from r > 3.5fm

they give significant contributions to R which

– depend on model used to parameterize G(q)

– are not constrained by data as main effect occurs at q < qmin

These unphysical contributions add ’noise’ to R-determinations, i.e. model-dependence

can be avoided by parameterizing ρ(r) instead of G(q)

and imposing ρ(r > 3.5fm) = 0

...... fixes problem of unphysical contributions to R even if ρ(r) is of no interest

...... fixes the major disease of R-determinations from standard G(q)-parameterizations



As an aside

look at ρ(r) also useful for

• evaluating plausibility of fit

• locating potential problems with data

Example: Bernauer data → important dip at r ∼ 1.3fm:

contradicts physics understanding



Origin of dip: difference data world ↔ Bernauer

Ratio of cross section Bernauer/(Fit world) using Laguerre fit



One more parameterization of G(q) without consideration of ρ

double dipole fit of Bernauer

big contribution from unphysical r’s

Can be avoided using physics understanding
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Hierarchy of physics constraints

1. Enforce ρ(r > 3.5fm)=0

avoids unphysical contributions

reduces model dependence

2. Ensure ±exponential large-r fall-off

∼ W (r)/r behavior of any bound-state wave function

easily done using MD, Laguerre, ... with coefficient from physics

approximately incorporates physical behavior in parameterization

→ reduces δR

3. Add large-r shape of ρ(r) from physics

shape from VDM, or π++n tail

get smallest δR, safest R



Popular parameterization G(q) =
∑

ai〈r
2i〉q2i

Claim: yields model-independent moments. Illusion!

Consider low-q data fixing 2 independent parameters:

2-parameter Fermi: ρ(r) = 1/(1 + e(r−c)/z), with 〈r2〉, 〈r4〉 = function of c, z

power expansion: G(q) = 1 − q2〈r2〉/6 + q4〈r4〉/120

Both parameterizations make strong assumptions on 〈rn〉 for n > 4

Fermi density: 〈rn〉 fixed by analytical shape

Power series: 〈rn〉 = 0

The main difference:

for 2pFermi: moments could be sensible

for qn series: moments guaranteed to be wrong

there is NO density that has 〈r2〉, 〈r4〉 6= 0 and all higher moments = 0!

formally: power series has diverging Fourier transform

Consequence: power series expansion has worst possible model assumptions!!



Robust extraction of δR

Yan etal: models → pseudo-data q < 1.35fm−1, error bars δG/G ≤ 1% ∼ PRAD

find that [1/1]Pade gives good χ2, reproduces input-R, yields δR/R ∼ 1%

• according to fit 2 parameters enough

• how many are needed according to knowledge on G?

Contributions of 〈r2n〉 to finite size effect FSE = 1 − G(q)
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calculated using 〈r2n〉 of Bernauer

fit up to 5fm−1

at 1.35fm−1 contribution 〈r8〉 ∼ 6%

For δR/R ∼1% need δFSE/FSE∼2% → need terms up to 〈r8〉 → 4 free parameters

[1/1]Pade has only 2 free parameters, remainder fixed by Pade shape

→ model dependence, vast underestimate of δR

Apparent low dispersion of R from Pade fits of models:

due to low dispersion of 〈r6,8〉 as models have been ± fit to (e,e)



Default of strategy easily explained using power-expansion fit

Above procedure equivalent to: choose qmax, fit with 〈r2〉, 〈r4〉

fix 〈rn>4〉 using ”independent evidence” (or model-G(q))

get small δR

More extreme, but in same vein:

fix 〈rn>2〉 using ”independent evidence”, subtract

fit with 〈r2〉, get δR

→ δR/R small as given by δG/G near qmax

obvious cheat as R should be given by G(q) near q = 0!!

Should have been obvious

First step:

choose qmax such that 〈q4〉 contribution negligible

fit with 〈r2〉

find large δR for data of realistic δG

Second step:

choose qmax such that 〈r6〉 contribution negligible

fit with 〈r2〉, 〈r4〉

find similar δR as additional data used to fix 〈r4〉

Third step: behaviour repeats for all higher moments


