Proton rms-radius from (e,e): a serious oversight

Ingo Sick

Observation

large scatter of results for rms-radius $R: 0.84 \div 0.92 fm$ occurs even when using same data indicates model-dependence of fits

Observation

scatter particularly large for q-space parameterizations fits done without consideration of $\rho(r)$ actually: most G(q)'s do not correspond to a density, have no Fourier transform!

To illustrate difficulties with G(q)-fits: discuss example

Fit of Bernauer data for $q < 2fm^{-1}$ includes all data sensitive to R

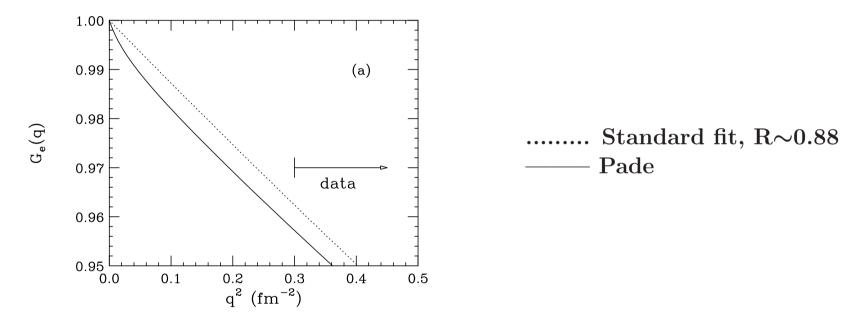
Parameterization [m/n]Pade: $G(q) = (1 + \sum^m a_i q^{2i})/(1 + \sum^n b_j q^{2j})$

successful in fits up to largest q_{max} : Kelly, Arrington, IS,

Pade with m = 1, n = 3gives χ^2 as low as bestfit of Bernauer has none of frequent diseases: poles, unphysical $q = \infty$ limit

Yields R = 1.48 fm!

Reason: curvature of G(q) at very low q, below q_{min} of data



Above $0.2 fm^{-2}$ Pade and standard fit differ by a constant 0.5%note expanded scale

Pade and standard fit have same χ^2 as data floating

How does Pade generate R = 1.48 fm?

 a_1 and b_1 are coupled both large can produce behavior shown in figure

Is R = 1.48 fm reasonable?

large coefficients cannot be excluded, parameters are not physical

some fits in literature have huge coefficients

[1/3]Pade as valid as any other *q*-space parameterization!

How does Pade generate R = 1.48 fm?

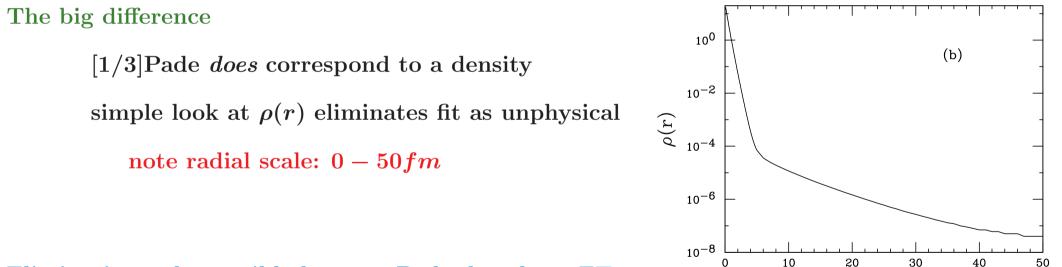
 a_1 and b_1 are coupled both large can generate behavior shown in figure

Is R = 1.48 fm reasonable?

large coefficients cannot be excluded, parameters are not physical

some fits in literature have huge coefficients

[1/3]Pade as valid as any other *q*-space parameterization!



r (fm)

Elimination only possible because Pade does have FT without considering $\rho(r)$ would not know about disease

Could published G(q)'s without look at $\rho(r)$ have similar problems?

(they do! see below)

Origin of problem

 $\rho(r)$ ignored in most analyses

R not obtained from $\int
ho(r) \; r^4 \; dr$

R obtained from slope of G(q = 0) despite obvious problems:

-q = 0 not measurable

– must extrapolate (always dangerous)

- doubly dangerous as need *slope* of extrapolated G(q)

- near q = 0 finite size effect $q^2 R^2/6$ very small \rightarrow problems with syst. errors Why use only G(q)?

 $G(q) = \operatorname{FT}(\rho(r))$ strictly valid for non-relativistic recoil only would need relativistic corrections

Hope: can ignore this 'complication' if restrict attention to q = 0

.... which is an illusion as must extrapolate from finite qMust reconsider approach, only $\rho(r)$ can exhibit diseases of fit Do relativistic corrections exclude consideration of $\rho(r)$?

not at all!

relativistic corrections have been calculated

Licht70, Mitra77, Ji91, Holzwarth96

consequences are understood

1. Electron sees moving proton

must describe scattering in Breit frame

can be taken into account by using in FT \tilde{q} instead of q

$$ilde{q}=q/\sqrt{1+q^2/4M^2}$$

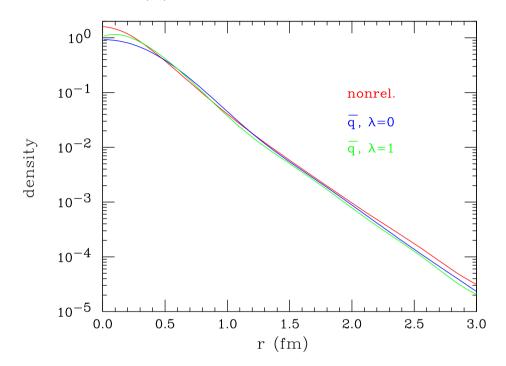
2. For composite relativistic systems additional correction

$$G
ightarrow ilde{G} = G(1+q^2/4M^2)^{\lambda}$$

different theories give, for charge-form factor, $\lambda = 0$ or 1

Numerical effect: start from Pade fit of world data $q < 10 fm^{-1}$, calculate

- $\rho(r)$ non-relativistically
- ho(r) using $ilde{q}$
- $\rho(r)$ using \tilde{q} and $\lambda = 1$



Result

significant change at $r \sim 0$, minor change of shape of $\rho(r > 1fm)$ irrelevant ambiguity due to $\lambda = 0, 1$ no effect upon R and q = 0 slope

Despite relativistic corrections shape at large r remains well-defined

What do we know about $\rho(r)$ at large r?

- 1. Cloudy bag-type models
 - r < 1 fm complicated quark/gluon structure
 - r > 1 fm dominated by Fock component with lowest separation energy: $n + \pi^+$ asymptotic wave function of pion given by $W_{-\eta,3/2}(2\kappa r)/r$ can be used to calculate *shape* of $\rho(r)$

only input: quantum-mechanics, π -separation energy

used extensively for $A \geq 2$

2. Vector Dominance Model

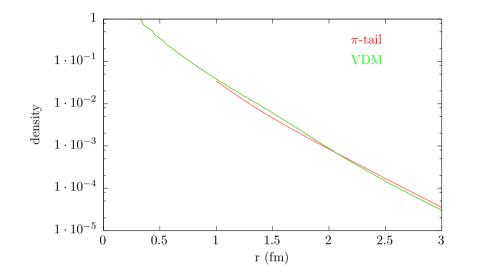
basic assumption of VDM

 $ho,\omega,..$

using known vector mesons and coupling constants

using dispersion relations to calculate $2\pi \ ect$ contributions (longest range) Ina Lorenz, Bonn group

Comparison



shape of large-r densities very similar given by *understood physics* not affected by rel. corrections shape should be \pm respected in fits of data

Shape-constraint most helpful as r>1fm contributes ${\sim}50\%$ to R

see review in Atoms 6 (2018) 2

Here: consider much more elementary constraint

 $ho(r>3.5fm)\sim 0$ for practical purposes, $ho<10^{-5}
ho(0)$

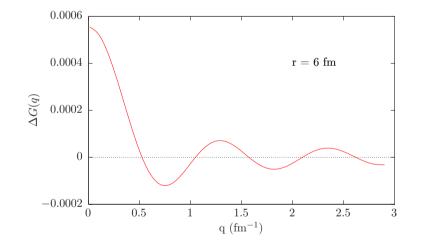
this minimal (common sense) constraint is important when aiming at R!Take seriously as rel.corr. do not generate/remove (apparent) contribution at r > 3.5 fm

Why is $\rho(r)$ at large r so important?

large r have large weight in calculation of Rgive largest contribution at small q: $G(q) = \int \frac{\sin(qr)}{qr} \rho(r) r^2 dr$

Example: $\Delta G(q)$ for charge ΔQ at r = 6 fm producing $\Delta R = 1\%$

biggest contribution at $q < 0.5 fm^{-1}$, region is not covered by data



effect upon G(q) at $q > 0.5 fm^{-1}$ $\Delta G(q) < 0.0001$ $\Delta \sigma / \sigma < 0.0002$ not measurable by far! 5 times larger $\Delta \sigma$ not measurable either

 \rightarrow amplitude of sin(qr)/qr term for large r not determined contributions from r > 3.5 fm add noise (model dependence) to R-determination Important question: do published fits respect $\rho(r > 3.5 fm) = 0$? Parameterizations that do correspond to a density

ho(r>3.5fm)=0 easy to enforce/verify

can discard fit if $\rho(r > 3.5) \neq 0$

What about all these G(q)'s that do not correspond to a density?

..... the vast majority of published G(q)'s

could imply sin(qr)/qr components corresponding to r > 3.5 fm!

would give unphysical contributions to R

which would be poorly constrained by data

How can be verified?

how can make sure that most elementary property $\rho(r > 3.5fm) = 0$ is respected? Can be done by borrowing old idea from F. Lenz Z. Physik 222 (1969) 491 who studied model-independent information determined by (e,e) data

Model-independent information from (e,e):

Is contained in first moment function

$$T(Q) = \int_0^Q r(Q') dQ'$$
 with Q = integrated charge between radii 0 and r

All $\rho(r)$ with same $T(Q)\pm\delta T(Q)$ give same $\sigma\pm\delta\sigma$

Convenient representation

 \mathbf{O}

Sum of delta-functions

$$ho(r) = \sum rac{p_i}{r_i^2} \; \delta(r-r_i) \qquad \longrightarrow \qquad T(Q_j) = \sum_{i=1}^j p_i \; r_i$$

With enough δ -functions at $0 < r_i < r_{max}$ can represent T(Q) to any accuracy desired Consequence: can represent G(q) with $\sum p_i \, \sin(qr_i)/(qr_i)$

Basic idea

decompose G(q) into $sin(qr_i)/qr_i$ - components

allows localization of charge in r without need for FT

Test of published G(q)'s

use $q_{max} = 1.5 fm^{-1}$ (covers range sensitive to R) generate pseudo-data from G(q)fit with $\sum p_i \, sin(qr_i)/qr_i$ select r_i 's uniformly distributed over range 0 ... 7fmhave tried several r-ranges for r > 3.5 contributions range 3.5...7fm covers most relevant region goal: gives r > 3.5 significant overall-contribution to R? to avoid over-fitting with correlated p_i : constrain $p(r_i > 3.5 fm)$ to either > 0 or < 0

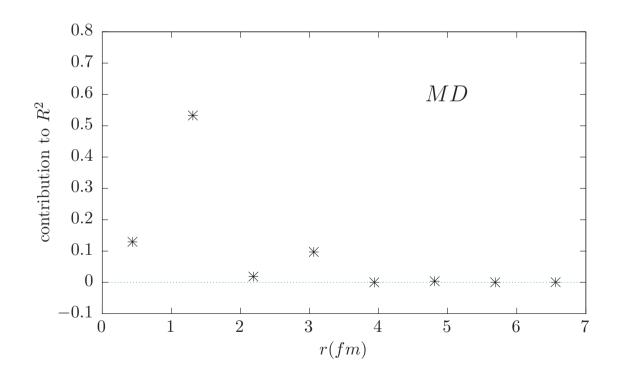
check $\sum p_i$ for $r_i > 3.5 fm$

Results

1. For G's corresponding to density with $ho(r>3.5fm)\sim 0$

fits used: MD, Pade, Laguerre, Borisyuk, VDM Mergel, Graczyk

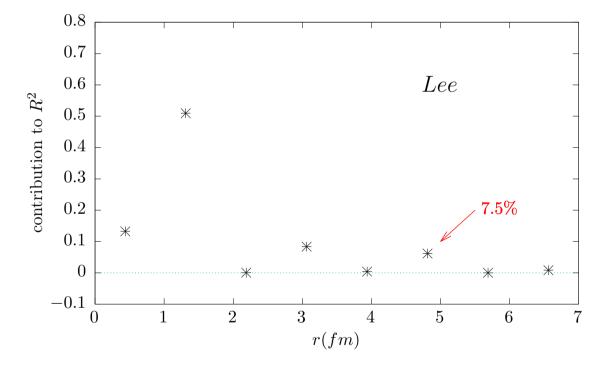
find contribution to R^2 of $|\sum p_i|$'s for r > 3.5 fm typically 0.8% (discretization noise) Example: MD



2. For fits G(q) not corresponding to $\rho(r)$

fits used: Lee, Paz, HH, polynomial Bernauer, pol. Griffioen, inv. polynomial contribution to R^2 of r > 3.5 fm up to 20%, typical contribution 10%!

Example: Lee+Arrington, $R = 0.916 \pm 0.024 fm$



these contributions are unphysical, and model dependent as not constrained by data

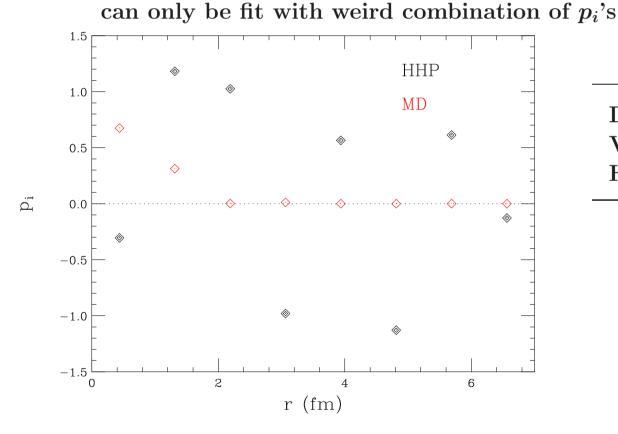
their contribution explains scatter of results for R

3. Special case: polynomials in q^2

get good fit only when at least one $p_i < 0$ for r > 3.5 fm confirms old insight of disease of $\sum p_i q^{2i}$

4. Very special case: Horbatsch, Hessels, Pineda

extremely small $\langle r^4 \rangle$, disagrees with data (and common sense)



 $r^4/(r^2)^2$ $r^6/(r^2)^3$

Dipole	2.50	11.6
VDM Lorenz	2.62	13.5
HHP	1.25	14.5

..... but HHP can anyway be ignored due to very poor χ^2

Conclusion

Parameterizations without ho(r) often imply sin(qr)/qr contributions from r>3.5fm

- they give significant contributions to R which
- depend on model used to parameterize G(q)
- are not constrained by data as main effect occurs at $q < q_{min}$

These unphysical contributions add 'noise' to R-determinations, *i.e.* model-dependence can be avoided by parameterizing $\rho(r)$ instead of G(q)

and imposing ho(r>3.5fm)=0

..... fixes problem of unphysical contributions to R even if $\rho(r)$ is of no interest

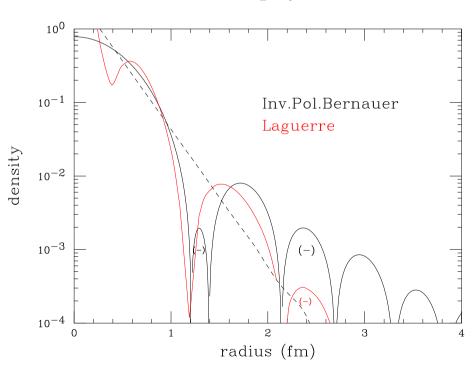
..... fixes the major disease of R-determinations from standard G(q)-parameterizations

As an aside

look at $\rho(r)$ also useful for

- evaluating plausibility of fit
- locating potential problems with data

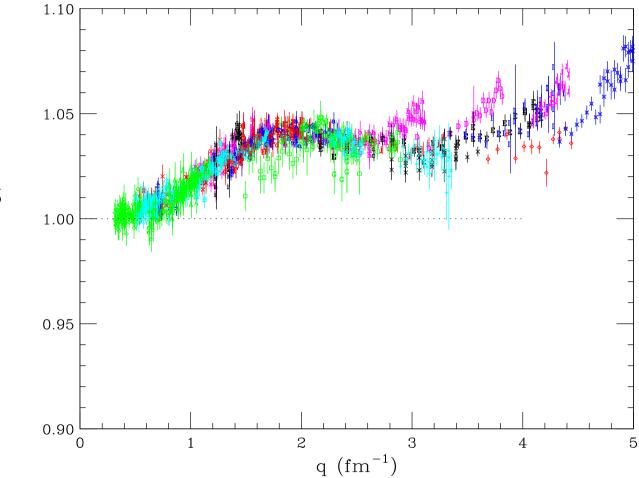
Example: Bernauer data \rightarrow important dip at $r \sim 1.3 fm$:



contradicts physics understanding

Origin of dip: difference data world \leftrightarrow Bernauer

Ratio of cross section Bernauer/(Fit world) using Laguerre fit



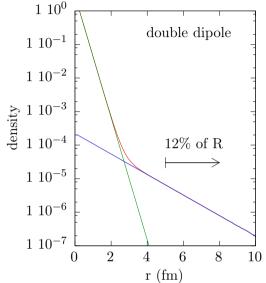
ratio exp/fit

One more parameterization of G(q) without consideration of ρ double dipole fit of Bernauer big contribution from unphysical r's

Can be avoided using physics understanding

Hierarchy of physics constraints

1. Enforce $\rho(r > 3.5fm)=0$ avoids unphysical contributions reduces model dependence



2. Ensure \pm exponential large-r fall-off

 $\sim W(r)/r$ behavior of *any* bound-state wave function easily done using MD, Laguerre, ... with coefficient from physics approximately incorporates physical behavior in parameterization \rightarrow reduces δR

3. Add large-r shape of $\rho(r)$ from physics shape from VDM, or π^++n tail get smallest δR , safest R Popular parameterization $G(q) = \sum a_i \langle r^{2i}
angle q^{2i}$

Claim: yields model-independent moments. Illusion!

Consider low-q data fixing 2 independent parameters:

2-parameter Fermi: $\rho(r) = 1/(1 + e^{(r-c)/z})$, with $\langle r^2 \rangle, \langle r^4 \rangle =$ function of c, z power expansion: $G(q) = 1 - q^2 \langle r^2 \rangle / 6 + q^4 \langle r^4 \rangle / 120$

Both parameterizations make strong assumptions on $\langle r^n \rangle$ for n > 4

Fermi density: $\langle r^n \rangle$ fixed by analytical shape Power series: $\langle r^n \rangle = 0$

The main difference:

for 2pFermi: moments could be sensible for q^n series: moments guaranteed to be wrong there is NO density that has $\langle r^2 \rangle, \langle r^4 \rangle \neq 0$ and all higher moments = 0! formally: power series has diverging Fourier transform

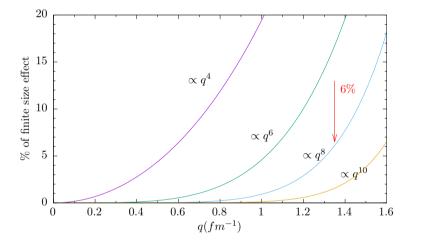
Consequence: power series expansion has worst possible model assumptions!!

Robust extraction of δR

Yan etal: models \rightarrow pseudo-data $q < 1.35 fm^{-1}$, error bars $\delta G/G \leq 1\% \sim \text{PRAD}$ find that [1/1]Pade gives good χ^2 , reproduces input-R, yields $\delta R/R \sim 1\%$

- according to fit 2 parameters enough
- how many are needed according to knowledge on G?

Contributions of $\langle r^{2n} \rangle$ to finite size effect $\mathrm{FSE} = 1 - G(q)$



calculated using $\langle r^{2n} \rangle$ of Bernauer fit up to $5fm^{-1}$ at $1.35fm^{-1}$ contribution $\langle r^8 \rangle \sim 6\%$

For $\delta R/R \sim 1\%$ need $\delta FSE/FSE \sim 2\% \rightarrow$ need terms up to $\langle r^8 \rangle \rightarrow 4$ free parameters

[1/1]Pade has only 2 free parameters, remainder fixed by Pade shape \rightarrow model dependence, vast underestimate of δR

Apparent low dispersion of R from Pade fits of models: due to low dispersion of $\langle r^{6,8} \rangle$ as models have been \pm fit to (e,e) Default of strategy easily explained using power-expansion fit

Above procedure equivalent to: choose q_{max} , fit with $\langle r^2 \rangle, \langle r^4 \rangle$ fix $\langle r^{n>4} \rangle$ using "independent evidence" (or model-G(q)) get small δR

More extreme, but in same vein:

fix $\langle r^{n>2} \rangle$ using "independent evidence", subtract fit with $\langle r^2 \rangle$, get δR $\rightarrow \delta R/R$ small as given by $\delta G/G$ near q_{max}

obvious cheat as R should be given by G(q) near q = 0!!

Should have been obvious

First step:

```
choose q_{max} such that \langle q^4 \rangle contribution negligible
fit with \langle r^2 \rangle
find large \delta R for data of realistic \delta G
```

Second step:

choose q_{max} such that $\langle r^6 \rangle$ contribution negligible fit with $\langle r^2 \rangle, \langle r^4 \rangle$

find similar δR as additional data used to fix $\langle r^4 \rangle$ Third step: behaviour repeats for all higher moments