Two-neutrino and neutrinoless double beta decay in the shell model

Luigi Coraggio

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

June 28th, 2019 Sala Polifunzionale, Marciana Marina

Acknowledgements

- A. Gargano (INFN-NA)
- N. Itaco (UNICAMPANIA and INFN-NA)
- R. Mancino (UNICAMPANIA and INFN-NA)
- F. Nowacki (IPHC Strasbourg and UNICAMPANIA)
- L. C. (INFN-NA)

Outline

- The neutrinoless double- β decay
- The calculation of the nuclear matrix element (NME) of $0\nu\beta\beta$ decay
- The realistic nuclear shell model (RSM)
- Present work:
 - Testing the RSM: calculation of the GT strengths and the nuclear matrix element of $2\nu\beta\beta$ decay
 - RSM calculation of $0\nu\beta\beta$ nuclear matrix element $M^{0\nu}$ and comparison with other SM results
 - Perturbative properties of the $0\nu\beta\beta$ effective operator
 - Evaluation of the $M^{0\nu}$
- Outlook

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, triggered by the search of "new physics" beyond the Standard Model.

Its detection

- would correspond to a violation of the conservation of the leptonic number,
- may provide more informations on the nature of the neutrinos (the neutrino as a Majorana particle, determination of its effective mass, ..).

The neutrinoless double β -decay

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element $M^{0\nu}$.

This property evidences the relevance to calculate $M^{0\nu}$

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu}\rangle^2$$

- G^{0v} is the so-called phase-space factor, which can be accurately evaluated by atomic physics calculations;
- $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ effective mass of the Majorana neutrino (light-neutrino exchange)

The detection of the $0\nu\beta\beta$ -decay

It is necessary to locate the nuclei that are the best candidates to detect the $0\nu\beta\beta$ -decay

- The main factors to be taken into account are:
 - the Q-value;
 - the phase-space factor $G^{0\nu}$;
 - the isotopic abundance

- First group: ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe.
- Second group: ⁸²Se,¹⁰⁰Mo, and ¹¹⁶Cd.
- Third group: ⁴⁸Ca, ⁹⁶Zr, and ¹⁵⁰Nd.

The calculation of the NME

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

- Every model is characterized by a certain number of parameters.
- The calculated value of the NME may depend upon the chosen nuclear structure model.

All models may present advantages and/or shortcomings to calculate the NME

Nuclear structure calculations

 The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

The renormalization of g_A , g_V

There are some arguments to employ $g_A^{\rm eff}$, $g_V^{\rm eff}$. Effective coupling constants are necessary to take into account:

- the short-range correlations excluded to soften the NN force, when starting from realistic potentials;
- the degrees of freedom that have been excluded because of the truncation of the Hilbert space;
- contributions to the free values of g_A , g_V from meson exchange currents.

In this study we tackle the first two issues deriving effective-decay operators by way of the many-body perturbation theory

- H. Q. Song, H. F. Wu, T. T. S. Kuo, Phys. Rev. C 40, 2260 (1989)
- A. Staudt, T. T. S. Kuo, H. V. Klapdor-Kleingrothaus, Phys. Rev. C 46, 871 (1992)
- J. D. Holt and J. Engel, Phys. Rev. C 87, 064315 (2013)

Effective shell-model hamiltonian

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered

Two alternative approaches

- phenomenological
- microscopic

$$V_{NN} \ (+V_{NNN}) \Rightarrow$$
 many-body theory $\Rightarrow H_{\text{eff}}$

Definition

The eigenvalues of H_{eff} belong to the set of eigenvalues of the full nuclear hamiltonian.

This may be provided by a similarity transformation Ω of the full Hilbert-space hamiltonian H

An example: 19F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- Renormalize its short range correlations
- Identify the model space better tailored to study the physics problem
- Oerive the effective shell-model hamiltonian and consistently effective transition operators, by way of the many-body perturbation theory
- **3** Calculate the observables (energies, e.m. transition probabilities, β -decay amplitudes...), using only theoretical SP energies, two-body matrix elements, and effective operators.

Realistic nucleon-nucleon potential: V_{NN}

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion?

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$, our chosen cutoff: $\Lambda = 2.6 \text{ fm}^{-1}$
 - SRG

Strong short-range repulsion

The shell-model effective hamiltonian

We start from the many-body hamiltonian H defined in the full Hilbert space:

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$

$$\begin{pmatrix}
PHP & PHQ \\
\hline
QHP & QHQ
\end{pmatrix}
\xrightarrow{\mathcal{H} = \Omega^{-1}H\Omega}
\begin{pmatrix}
PHP & PHQ \\
\hline
QHP = 0
\end{pmatrix}$$

$$\mathcal{Q}HP = 0$$

$$H_{
m eff}=P\mathcal{H}P$$
 Suzuki & Lee $\Rightarrow\Omega=e^\omega$ with $\omega=\left(egin{array}{c|c}0&0\\hline Q\omega P&0\end{array}
ight)$

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

The perturbative approach to the shell-model H^{eff}

The \hat{Q} -box vertex function

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$$

Exact calculation of the \hat{Q} -box is computationally prohibitive for many-body system \Rightarrow we perform a perturbative expansion

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

Effective operators for decay amplitudes

- Ψ_{α} indicates eigenstates of the full hamiltonian H corresponding to eigenvalues E_{α}
- Φ_{α} indicates the eigenvectors obtained diagonalizing $H_{\rm eff}$ in the reduced model space P and corresponding to the same eigenvalues E_{α}

$$\Rightarrow |\Phi_{\alpha}\rangle = P |\Psi_{\alpha}\rangle$$

Obviously, for any decay-operator ⊖:

$$\langle \Phi_{\alpha} | \Theta | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \Theta | \Psi_{\beta} \rangle$$

We then require an effective operator Θ_{eff} defined as follows

$$\Theta_{\text{eff}} = \sum_{\alpha\beta} \left. \left| \Phi_{\alpha} \right\rangle \left\langle \Psi_{\alpha} \right| \Theta \left| \Psi_{\beta} \right\rangle \left\langle \Phi_{\beta} \right| \right.$$

Consequently, the matrix elements of Θ_{eff} are

$$\langle \Phi_{\alpha} | \Theta_{\text{eff}} | \Phi_{\beta} \rangle = \langle \Psi_{\alpha} | \Theta | \Psi_{\beta} \rangle$$

The shell-model effective operators

Any shell-model effective operator may be derived consistently with the \hat{Q} -box-plus-folded-diagram approach to $H_{\rm eff}$

It has been demonstrated that, for any bare operator Θ , a non-Hermitian effective operator Θ_{eff} can be written in the following form:

$$\Theta_{\text{eff}} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots),$$

where

$$\hat{Q}_m = \frac{1}{m!} \frac{d^m \hat{Q}(\epsilon)}{d\epsilon^m} \bigg|_{\epsilon=\epsilon_0} ,$$

 ϵ_0 being the model-space eigenvalue of the unperturbed hamiltonian H_0

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

The shell-model effective operators

The χ_n operators are defined as follows:

$$\chi_{0} = (\hat{\Theta}_{0} + h.c.) + \Theta_{00} ,$$

$$\chi_{1} = (\hat{\Theta}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{01}\hat{Q} + h.c.) ,$$

$$\chi_{2} = (\hat{\Theta}_{1}\hat{Q}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{2}\hat{Q}\hat{Q} + h.c.) + (\hat{\Theta}_{02}\hat{Q}\hat{Q} + h.c.) + \hat{Q}\hat{\Theta}_{11}\hat{Q} ,$$
...

and

$$\hat{\Theta}(\epsilon) = P\Theta P + P\Theta Q \frac{1}{\epsilon - QHQ} QH_1 P$$

$$\hat{\Theta}(\epsilon_1; \epsilon_2) = PH_1 Q \frac{1}{\epsilon_1 - QHQ} \times Q\Theta Q \frac{1}{\epsilon_2 - QHQ} QH_1 P$$

$$\hat{\Theta}_{m} = \frac{1}{m!} \frac{d^{m} \hat{\Theta}(\epsilon)}{d\epsilon^{m}} \Big|_{\epsilon = \epsilon_{0}}$$

$$\hat{\Theta}_{nm} = \frac{1}{n! \, m!} \frac{d^{n}}{d\epsilon_{1}^{n}} \frac{d^{m}}{d\epsilon_{2}^{m}} \hat{\Theta}(\epsilon_{1}; \epsilon_{2}) \Big|_{\epsilon_{1,2} = \epsilon_{0}}$$

The shell-model effective operators

We arrest the χ series at χ_2 term, and then expand $\hat{\Theta}$ perturbatively:

- J. D. Holt and J. Engel, Phys. Rev. C 87, 064315 (2013).
- L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C 95, 064324 (2017).
- L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco (2019), arXiv:1812.04292v2[nucl-th], in press in Phys. Rev. C.

Nuclear models and predictive power

Realistic SM calculations for ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹³⁰Te, and ¹³⁶Xe

Check our approach calculating GT strengths and $2\nu\beta\beta$ -decay

$$\left[T_{1/2}^{2\nu}\right]^{-1} = G^{2\nu} \left|M_{GT}^{2\nu}\right|^2$$
 where

$$M_{2\nu}^{GT} = \sum_{n} \frac{\langle 0_{f}^{+} || \vec{\sigma} \tau^{-} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \vec{\sigma} \tau^{-} || 0_{f}^{+} \rangle}{E_{n} + E_{0}}$$

Model spaces

- ⁴⁸Ca: four proton and neutron orbitals outside doubly-closed ⁴⁰Ca 0f_{7/2}, 0f_{5/2}, 1p_{3/2}, 1p_{1/2}
- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside doubly-closed ⁵⁶Ni 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside doubly-closed ¹⁰⁰Sn 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}

Spectroscopic properties

Perturbative properties of the GT effective operator

Convergence with respect the number of intermediate states

Selection rules of the GT operator make the convergence of the effective one with respect to N_{max} very fast.

The third decimal digit value of $M_{\rm GT}^{2\nu}$, calculated with effective operator at third order, does not change from $N_{\rm max}=12$ on.

Order-by-order convergence

The blocking effect

Blocking (Pauli) effect: the filling of the model-space orbitals by the valence nucleons affects the calculation of the effective GT operator:

Many-body correlations need to be taken into account: we calculate two-body correlations diagram and sum over one of the incoming/outcoming nucleons

We then obtain a density-dependent one-body GT effective operator The calculated $M_{\rm GT}^{2\nu}$ are affected less than 5%

GT⁻ running sums

Dashed lines: calculations accounting for the blocking effect

$2\nu\beta\beta$ nuclear matrix elements

Red dots: bare GT operator

Decay	Expt.	Bare		
⁴⁸ Ca → ⁴⁸ Ti	0.038 ± 0.003	0.030		
$^{76}\mathrm{Ge} \rightarrow ^{76}\mathrm{Se}$	0.113 ± 0.006	0.304		
82 Se \rightarrow 82 Kr	0.083 ± 0.004	0.347		
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	0.031 ± 0.004	0.131		
$^{136}\mathrm{Xe} \rightarrow ^{136}\mathrm{Ba}$	0.0181 ± 0.0007	0.0910		
Experimental data from A. S. Barabash, Nucl. Phys. A 935, 52 (2015)				

$2\nu\beta\beta$ nuclear matrix elements

Red dots: bare GT operator Black triangles: effective GT operator

Decay	Expt.	Eff.		
⁴⁸ Ca → ⁴⁸ Ti	0.038 ± 0.003	0.026		
$^{76}\mathrm{Ge} \rightarrow^{76}\mathrm{Se}$	0.113 ± 0.006	0.104		
82 Se \rightarrow 82 Kr	0.083 ± 0.004	0.109		
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.031 ± 0.004	0.061		
136 Xe \rightarrow 136 Ba	0.0181 ± 0.0007	0.0341		
Experimental data from A. S. Barabash, Nucl. Phys. A 935, 52 (2015)				

- L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C 95, 064324 (2017).
- L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco (2019), arXiv:1812.04292v2[nucl-th], in press in Phys. Rev. C.

The calculation of $M^{0\nu}$

The matrix elements $M_{\alpha}^{0\nu}$ are defined as follows:

$$M_{\alpha}^{0\nu} = \sum_{k} \sum_{j_{p}j_{p'}j_{n}j_{n'}J_{\pi}} \langle f|a_{p}^{\dagger}a_{n}|k\rangle\langle k|a_{p'}^{\dagger}a_{n'}|i\rangle\langle j_{n}j_{n'}; J^{\pi} \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{p}j_{p'}; J^{\pi}\rangle$$
with $\alpha = (GT, F, T)$

$$\begin{array}{rcl} O_{12}^{GT} & = & \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} H_{GT}(r) \\ O_{12}^{F} & = & H_{F}(r) \\ O_{12}^{T} & = & [3 \left(\vec{\sigma}_{1} \cdot \hat{r} \right) \left(\vec{\sigma}_{1} \cdot \hat{r} \right) \\ & - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}] H_{T}(r) \end{array}$$

 H_{α} depends on the energy of the initial, final, and intermediate states:

$$H_{\alpha}(r) = \frac{2R}{\pi} \int_{0}^{\infty} \frac{j_{\alpha}(qr)h_{\alpha}(q^{2})qdq}{q + E_{k} - (E_{i} + E_{f})/2}$$

Actually, because of the computational complexity, the energies of the intermediate states are replaced by an average value:

$$E_k - (E_i + E_f)/2 \rightarrow \langle E \rangle \ \sum_k \langle f | a_p^\dagger a_n | k \rangle \langle k | a_{p'}^\dagger a_{n'} | i \rangle = \langle f | a_p^\dagger a_n a_{p'}^\dagger a_{n'} | i \rangle$$

The closure approximation

Consequently, the expression of the neutrino potentials becomes:

$$H_{\alpha}(r) = rac{2R}{\pi} \int_{0}^{\infty} rac{j_{\alpha}(qr)h_{\alpha}(q^2)qdq}{q+\langle E \rangle}$$

The matrix elements $M_{\alpha}^{0\nu}$ are then defined, within the closure approximation, as follows:

$$\mathcal{M}_{\alpha}^{0\nu} = \sum_{j_{n}j_{n'}j_{p}j_{p'}J_{\pi}} TBTD\left(j_{n}j_{n'}, j_{p}j_{p'}; J_{i}J_{f}\right) \left\langle j_{n}j_{n'}; J^{\pi} \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{p}j_{p'}; J^{\pi}\right\rangle$$

The TBTD are the two-body transition-density matrix elements, and the Gamow-Teller (GT), Fermi (F), and tensor (T) operators:

The closure approximation works since $q \approx 100\text{-}200 \text{ MeV}$, while model-space excitation energies $E_{exc} \approx 10 \text{ MeV}$

Sen'kov and Horoi (Phys. Rev. C **88**, 064312 (2013)) have evaluated the non-closure *vs* closure approximation within 10%

Shell model calculations of $M^{0\nu}$

- Blue dots:
 Madrid-Strasbourg group, bare 0νββ operator
- Red dots: Horoi *et al.*, bare $0\nu\beta\beta$ operator
- Black dots: RSM, bare 0νββ operator

Perturbative properties of the 00ν effective operator

Order-by-order convergence

The perturbative behavior is not satisfactory as for the single- β decay operator:

third-order contribution is rather large compared to the second order one

$0\nu\beta\beta$ decay: short-range correlations

The issue of the SRC for the calculation of $M^{0\nu}$ is framed within the approach of the renormalization of the NN potential

 $V_{\rm low-k}$: the configurations of $V_{NN}(k,k')$ are restricted to those with $k,k' < k_{\rm cutoff} = \Lambda$

The $V_{\text{low}-k}$ is obtained *via* a unitary transformation Ω

$$\mathcal{H}_{\text{low}-k} = T + V_{\text{low}-k}(k, k') = \Omega^{-1} H_{NN}(k, k') \Omega = T + \Omega^{-1} V_{NN}(k, k') \Omega$$

Consistently, we transform the $0\nu\beta\beta$ operator by way of the same similarity transformation Ω

$$O_{low-k} = \Omega^{-1} O(k, k') \Omega$$

The SRC affects less than 5%.

For ⁷⁶Ge:
$$M_{\text{bare}}^{0\nu} = 3.41 \rightarrow M_{\text{low-k}}^{0\nu} = 3.29$$

The blocking effect

Blocking (Pauli) effect: as for the one-body operators, the filling of the model-space orbitals by the valence nucleons affects the effective $0\nu\beta\beta$ operator:

Many-body correlations are taken into account by calculating three-body correlations diagrams and summing over one of the incoming/outcoming nucleons

We obtain a density-dependent two-body $0\nu\beta\beta$ effective operator

The calculation of $M^{0\nu}$: results

Decay	$M_{ m bare}^{0 u}$	$M_{ m src}^{0 u}$	$M_{ m eff}^{0 u}$	$M_{ m eff+3b}^{0 u}$
⁴⁸ Ca → ⁴⁸ Ti				
$^{76}\mathrm{Ge} ightharpoonup^{76}\mathrm{Se}$	0.53	0.53	0.30	0.30
	3.41	3.29	3.02	2.66
82 Se \rightarrow 82 Kr	3.30	3.25	2.95	2.73
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	0.40	0.14	0.07	0.40
$^{136}\mathrm{Xe} ightarrow ^{136}\mathrm{Ba}$	3.19	3.14	2.97	3.19
	2.30	2.30	2.17	2.34

The experimental bound on $^{136}{\rm Xe} \to ^{136}{\rm Ba}$ process from KamLAND-Zen ($T_{1/2}^{0\nu} > 1.1 \times 10^{26}{\rm yr}$) corresponds to our upper bound of neutrino effective mass $\langle m_{\nu} \rangle < 0.11~{\rm eV}$

The calculation of $M^{0\nu}$: results

To rule out the Inverted Hierarchy of neutrino mass spectra, the upper bound of neutrino effective mass should be $\langle m_{\nu} \rangle < 0.01$ eV.

We could then evaluate the lower bound of the half lives of the decay processes, accordingly to our calculated $M^{0\nu}$

Outlook

- Calculation of the effective $0\nu\beta\beta$ beyond the closure approximation
- Derivation of H_{eff} from chiral two- and three-body potentials
- Evaluation of the effects of chiral two-body currents (for both $2\nu\beta\beta$ and $0\nu\beta\beta$ decays)

The choice of the cutoff $\Lambda = 2.6 \text{ fm}^{-1}$

L. C., A. Gargano, and N. Itaco, JPS Conf. Proc. 6, 020046 (2015)

 $^{130}{
m Te}
ightharpoonup^{130}{
m Xe}$: convergence with respect $^{130}{
m Cs}$ $J^{\pi}=1^+$ intermediate states

The blocking effect

Gamow-Teller two-body matrix elements					
Decay	$j_a j_b j_c j_d$; $J=0^+$	ladder	3b (a)	3p-1h	3b (b)
⁴⁸ Ca → ⁴⁸ Ti					
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	$0f_{7/2}0f_{7/2}0f_{7/2}0f_{7/2}$	-0.334	0.004	0.260	-0.017
	$0g_{9/2}0g_{9/2}0f_{5/2}0f_{5/2} \ 0g_{9/2}0g_{9/2}1p_{3/2}1p_{3/2}$	0.154 0.185	-0.241 -0.246	-1.078 -0.214	0.234 0.048
82 Se \rightarrow 82 Kr	$0g_{9/2}0g_{9/2}0f_{5/2}0f_{5/2}$ $0g_{9/2}0g_{9/2}1p_{3/2}1p_{3/2}$	0.157 0.189	-0.337 -0.263	-1.096 -0.219	0.335 0.058
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	$0h_{11/2}0h_{11/2}0g_{7/2}0g_{7/2}$	0.171	-0.202	-0.948	0.297
¹³⁶ Xe → ¹³⁶ Ba	$0h_{11/2}0h_{11/2}0g_{7/2}0g_{7/2}$	0.178	-0.264	-0.997	0.381

As we expect:

- 3-body (a) diagram reduces the contribution of the 2-body ladder diagram
- 3-body (b) diagram reduces the contribution of the 2-body
 3p-1h (core polarization) diagram

