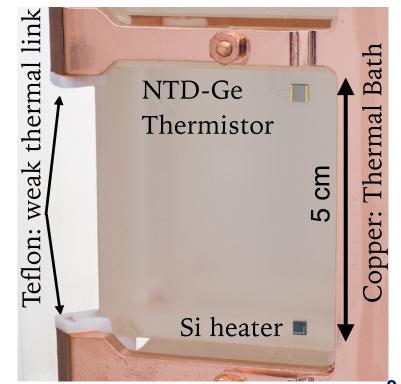
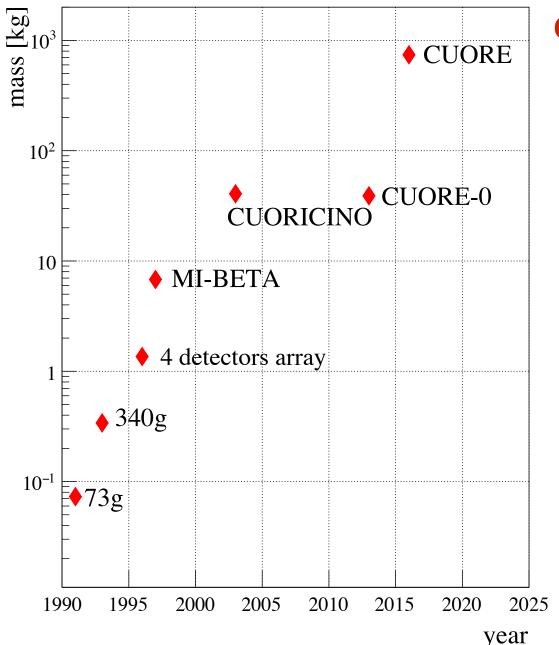

Neutrinoless Double Beta Decay with CUORE and CUPID


F.Bellini Sapienza Università di Roma & INFN Roma

Lepton Interactions with Nucleons and Nuclei Marciano Marina, Elba, 23-28 June 2019


Bolometric technique in CUORE

- Cubic ^{nat}TeO₂ crystals: ¹³⁰Te source embedded in the detector
- NTD-Ge thermistor: $R(T) \simeq 1 \Omega \cdot \exp\left(\frac{3 \text{ K}}{T}\right)^{\frac{1}{2}}$
- Resolution $@0\nu\beta\beta$ energy: ~0.2% FWHM

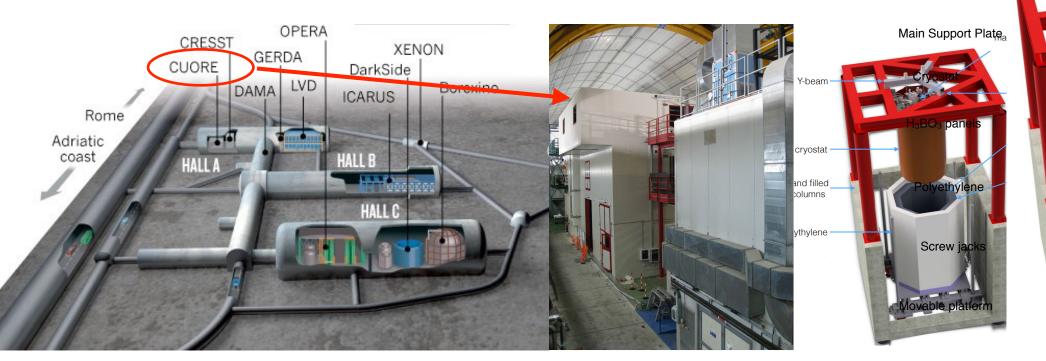
Arrays of TeO₂ bolometers

Cryogenic Underground Observatory for Rare Events

- 988 ^{nat}TeO₂ bolometers 19 towers, 13 floors.
- Active mass: 742 kg.
- Isotope mass: 206 kg ¹³⁰Te.
- ¹³⁰Te abundance ~34%
- Q_{ββ}=2528 keV
- Expected background: 10⁻² cts/keV/kg/year
- Sensitivity to 0vββ in 5yr T_{1/2} = 9x10²⁵ yr @90% C.L.
- Sensitivity to m_{ββ} in 5yr
 56 160 meV @90% C.L.

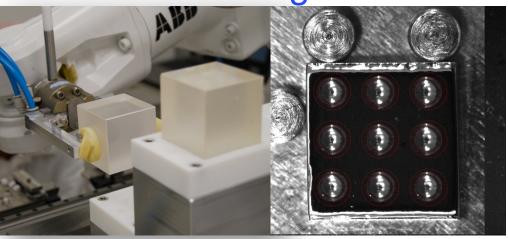
LNGS Laboratory

120 km from Rome


- ~ 3600 m.w.e. deep
- μ flux: ~ 3x10^-8/(s cm^2)
- γ flux: ~ 0.73/(s cm²)

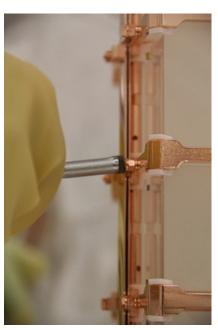
neutrons: 4x10⁻⁶ n/(s cm²) below 10 MeV

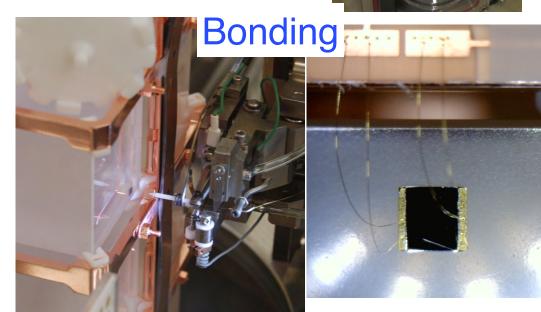
Y beam

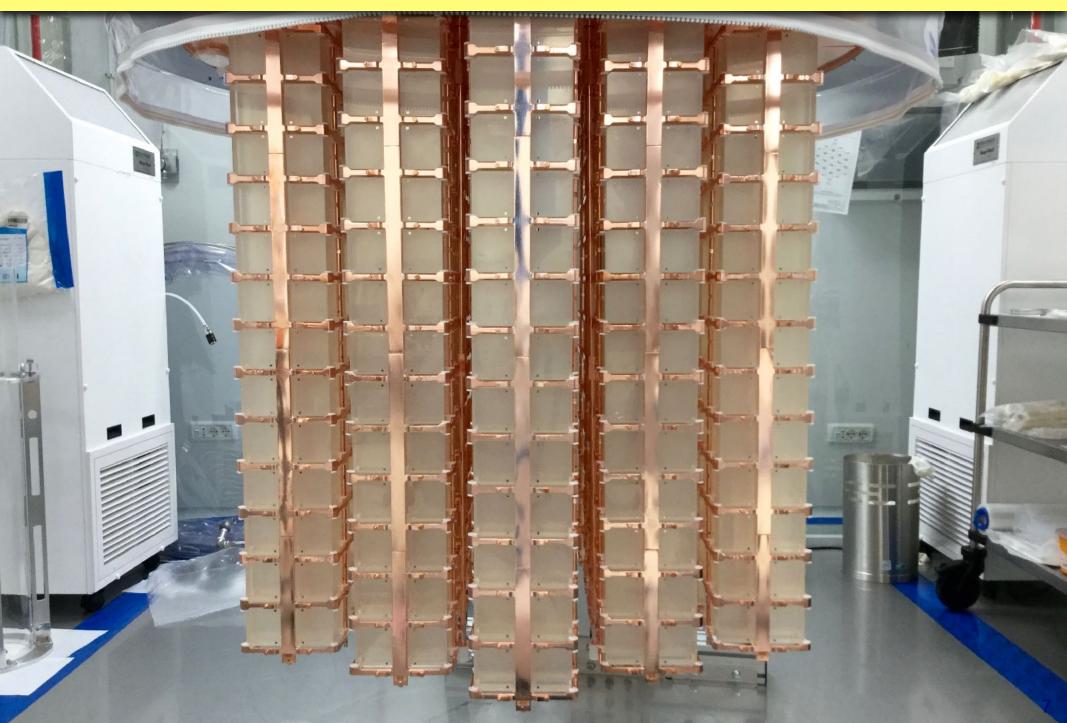

CUORE cryostat

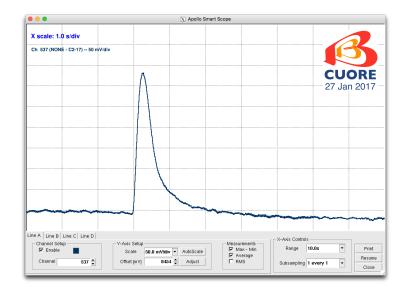
- Goals: Cool down ~1 ton detector to ~10 mK. Large duty cycle and long term stability. Mechanically decoupled for extremely low vibrations. Low background environment.
- Cryostat total mass ~30 tons. Mass to be cooled < 4K: ~15 tons. Mass to be cooled < 50 mK: ~3 tons (Pb, Cu and TeO₂).
- Minimum base temperature of 6.3 mK reached, detector optimal performance @ 10-15 mK.

CUORE Assembly Line

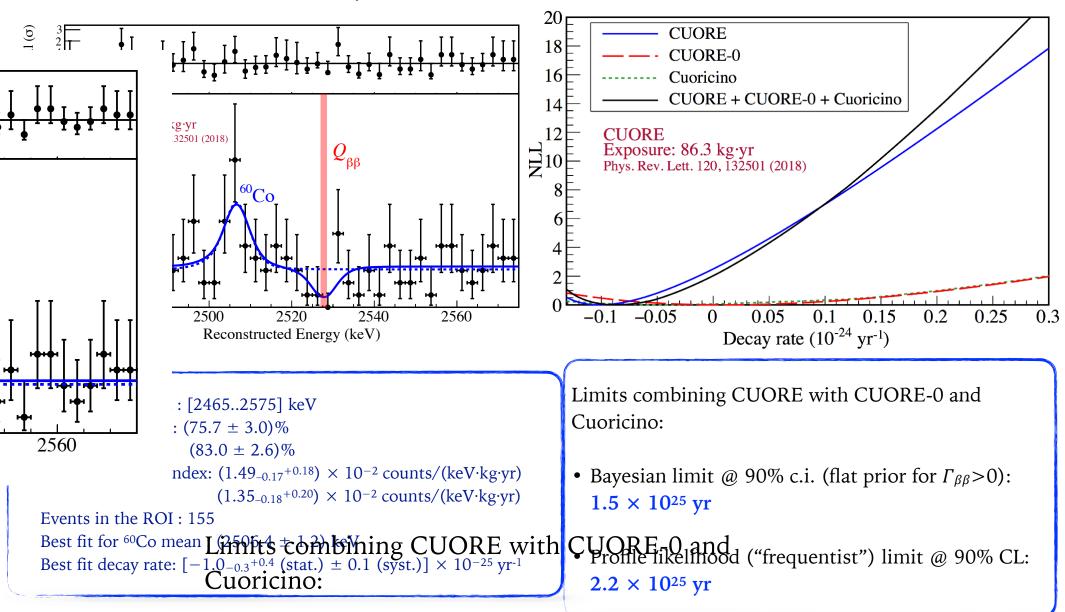

Gluing




Cabling


CUORE

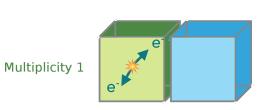
Science runs


- Apr 17: first physics data
 - ▶ Working T set at 15 mK
 - Dataset 1: 37.6 kg yr of TeO₂
 - Optimization Campaign
 - Dataset 2: 8.7 kg yr of TeO₂
 - ▶ TeO₂ exposure: 86.3 kg yr

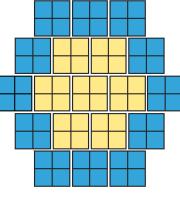
- Operational perfomances
- 984/988 bolometers are operational
- Rate in physics runs: 6 mHz / bolometer
- Energy resolution at $Q_{\beta\beta} \sim 7.7$ FWHM
- Signal efficiency~ 80%

0vββ analysis

Phys. Rev. Lett. 120, 132501 (2018)

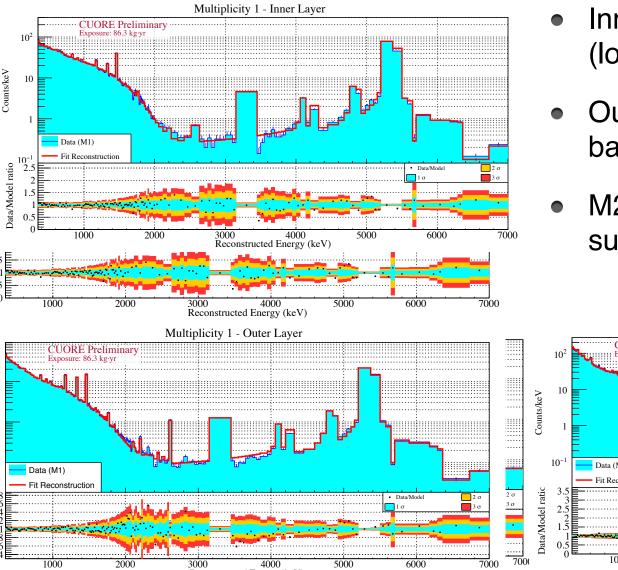


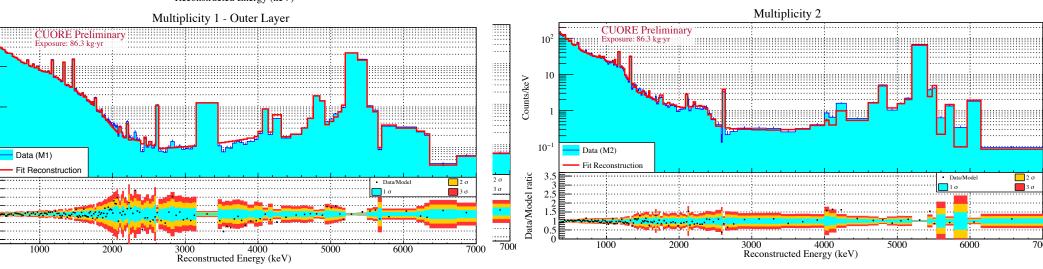
• Bayesian limit @ 90% c.i. (flat prior for $\Gamma_{BB} > 0$):


nts/(keV·kg·vr)

CUORE Background model

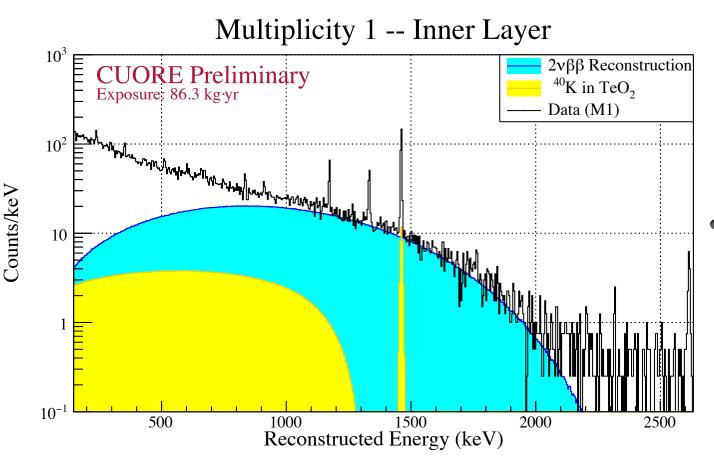
- Maximise use of available information
 - Split data into inner and outer layers
 - Split data into Multiplicity 1 (M1), Multiplicity 2 (M2), Multiplicity 2 Sum (Σ2)

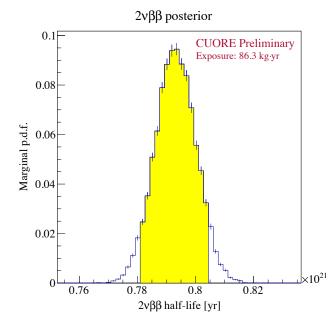



Volume	Туре	Components
TeO ₂	Bulk	$2\nu\beta\beta$, ²¹⁰ Pb, ²³² Th, ²²⁸ Ra- ²⁰⁸ Pb, ²³⁸ U- ²³⁰ Th, ²³⁰ Th ²²⁶ Ra- ²¹⁰ Pb, ⁴⁰ K, ⁶⁰ Co, ¹²⁵ Sb, ¹⁹⁰ Pt
TeO ₂	Surface (0.01 μ m)	²³² Th, ²²⁸ Ra- ²⁰⁸ Pb, ²³⁸ U- ²³⁰ Th, ²²⁶ Ra- ²¹⁰ Pb, ²¹⁰ Pb
TeO ₂	Surface (1 μ m)	²¹⁰ Pb
TeO ₂	Surface (10 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Bulk	²³² Th, ²³⁸ U, ⁴⁰ K, ⁶⁰ Co, ⁵⁴ Mn
CuNOSV	Surface (0.01 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (1 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (10 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
Roman lead	Bulk	²³² Th, ²³⁸ U, ¹⁰⁸ <i>m</i> Ag
Top lead	Bulk	²³² Th, ²³⁸ U, ²¹⁰ Bi
Ext. lead	Bulk	²¹⁰ Bi
CuOFE	Bulk	²³² Th, ²³⁸ U, ⁶⁰ Co
External	-	Cosmic muons

- Background Model
 - Geant4 simulation of ~60 source/ locations in setup
 - Simultaneous Bayesian fit using MCMC Gibbs sampler (JAGS)
 - Priors from material screening, assays and cosmogenic analysis

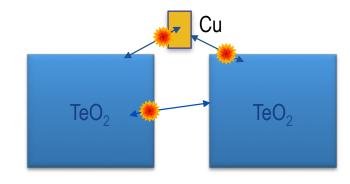
CUORE Background model

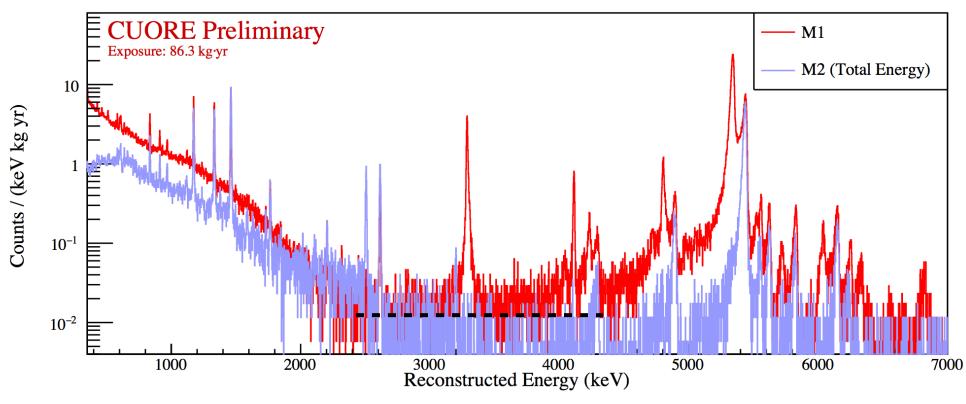



- Inner layers very sensitive to signal (lower background)
- Outer layers sensitive to external background
- M2 and Σ 2 spectra constrain a subset of backgrounds

2vββ decay analysis

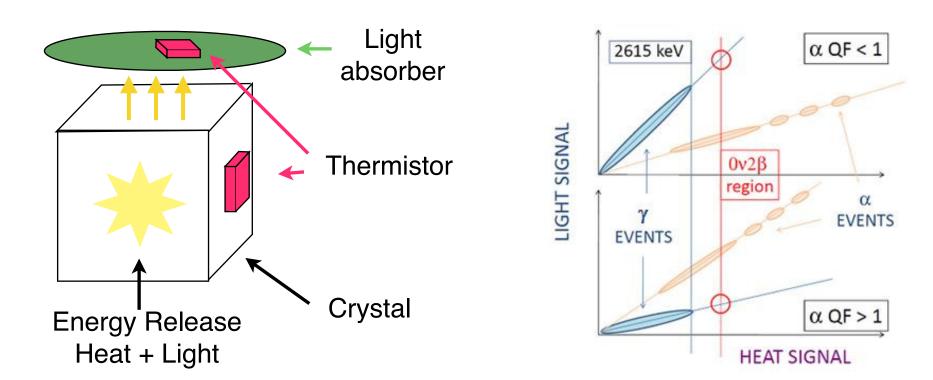
- Almost all events in 1-2 MeV range are 2vββ events (20% in CUORE-0)
 - T^{2v}_{1/2} =[7.9 ± 0.1(stat) ± 0.2(syst)] · 10²⁰ yr (preliminary)
 - ► CUORE-0 T^{2v}_{1/2} [8.2 ± 0.2(stat) ± 0.6(syst)] · 10²⁰ yr
 - ► NEMO T^{2v}_{1/2} =[7.0 ± 0.9(stat) ± 1.1(syst)] · 10²⁰ yr

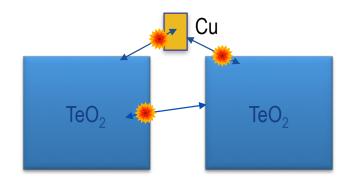




- Systemstics
 - Primary systematics from geometry splitting
 - No dependence on fit threshold over the range 100-750 keV

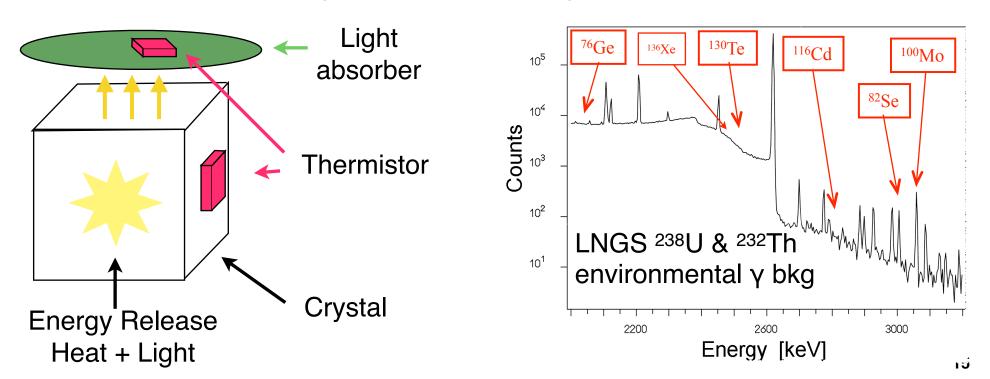
Beyond CUORE

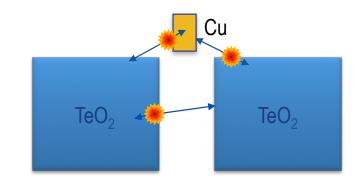

- Lesson learned from CUORE
 - background at $Q_{\beta\beta}$ dominated by degraded as from TeO₂ & Cu surface



Beyond CUORE

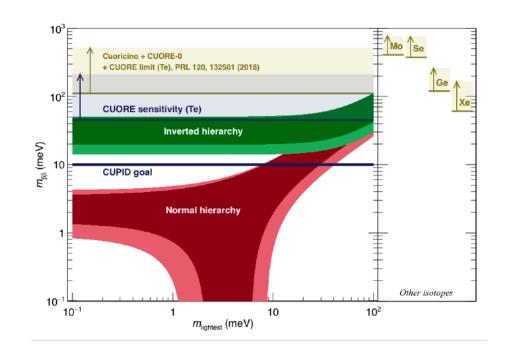
- Lesson learned from CUORE
 - background at $Q_{\beta\beta}$ dominated by degraded as from TeO₂ & Cu surface
 - need α/β discrimination
 - ⇒ use a scintillating bolometer + light detector

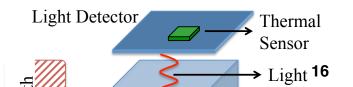



Beyond CUORE

- Lesson learned from CUORE
 - background at $Q_{\beta\beta}$ dominated by degraded as from TeO₂ & Cu surface
 - need α/β discrimination

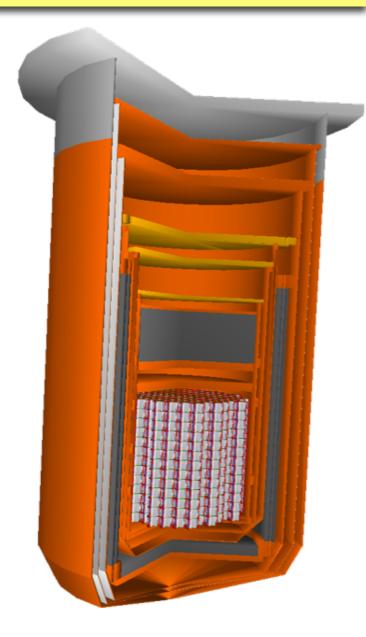
 \Rightarrow use a scintillating bolometer: Li₂¹⁰⁰MoO₄ + light detector


 $Q_{\beta\beta} > 2615 \text{ keV} \Rightarrow \text{bkgd} \sim 10^{-4} \text{ cts/(keV kg yr)}$ with CUORE infrastructure



CUPID: CUORE Upgrade with PID

- Mission: discovery $0v\beta\beta$ if $m_{\beta\beta} > 10meV$
- CUORE achievements
 - Ton scale detector in data taking
 - 1000 channels analysis demonstrated
 - Infrastructure for next generation experiment exist
 - Reliable data driven background constructed

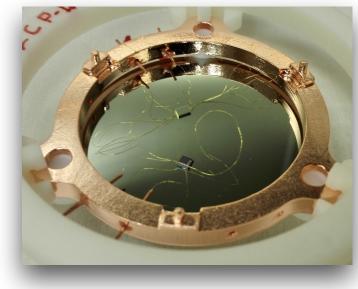


- Scintillating bolometers (CUPID-0, Lumineu, CUPID-Mo)
 - Demonstrated large-scale enriched crystals production capability
 - Internal radio-purity target met
 - Demonstrated active background rejection and energy resolution
 - Background 10⁻⁴ cts/(keV kg yr) within reach

CUPID: Conceptual design

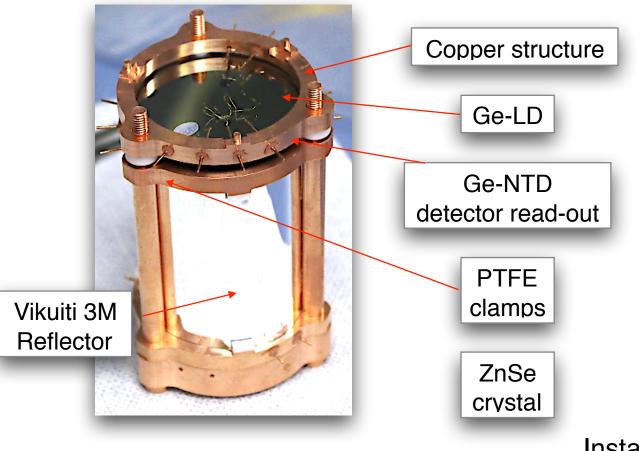
- Re-use CUORE infrastructure
- Li₂¹⁰⁰MoO₄ scintillating crystals
 - Enrichment >95%
 - ► ~1500 crystals for a for ~250 kg of ¹⁰⁰Mo
 - $\Delta E_{FWHM} \sim 5 \text{ keV}$ at $Q_{\beta\beta} \sim 3034 \text{ keV}$
- Active background rejection
 - LY ~0.75 keV/MeV
 - Ge light detectors
- Option for Multi-isotope possible
- TDR and construction readiness for 2021
- Conservative, mature, data driven baseline design

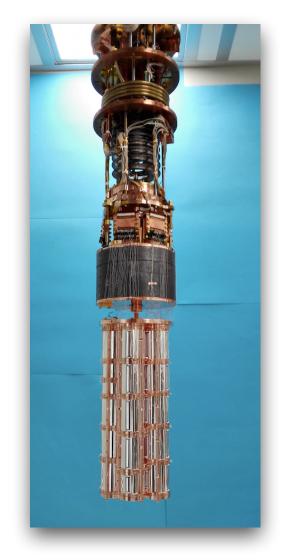
CUPID Collaboration



High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA Materials Science Division, Argonne National Laboratory, Argonne, IL, USA INFN - Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Department of Nuclear Engineering, University of California, Berkeley, CA, USA Department of Physics, University of California, Berkeley, USA Università di Bologna and INFN Bologna, Bologna, Italy Massachusetts Institute of Technology, Cambridge, MA, USA Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA Technische Universität München, Physik-Department E15, Garching, Germany Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova, Genova, Italy Institute for Nuclear Research, Kyiv, Ukraine INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy Lawrence Livermore National Laboratory, Livermore, CA, USA Department of Physics and Astronomy, University of California, Los Angeles, CA, USA INFN sez. di Milano Bicocca and Dipartimento di Fisica, Università di Milano Bicocca, Italy State Scientific Center of the Russian Federation - Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia Max-Planck-Institut für Physik, D-80805 München, Germany Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk, Russia Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia Centre de Sciences Nuclèaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Orsay, France INFN - Sezione di Padova, Padova, Italy Institut de Chimie de la Matière Condensè de Bordeaux (ICMCB), CNRS, 87, Pessac, France Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN - Sezione di Roma, Roma, Italy IFN-CNR, Via Cineto Romano, I-00156 Roma, Italy Service de Physique des Particules, DSM/IRFU, CEA-Saclay, France Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA Shanghai Institute of Applied Physics (SINAP), China Institut de Physique Nuclèaire de Lyon, Universitè Claude Bernard, Lyon 1, Villeurbanne, France Wright Laboratory, Department of Physics, Yale University, New Haven, CT, USA Laboratorio de Fisica Nuclear y Astropartculas, Universidad de Zaragoza, Zaragoza, Spain

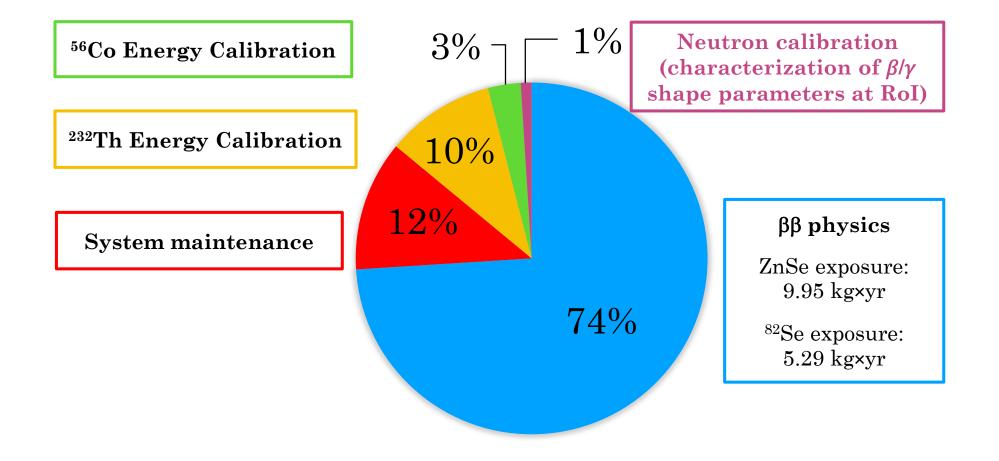
CUPID-0 demonstrator


- 0vββ candidate: ⁸²Se
 - Q-value ~2998 keV
- Zn⁸²Se bolometers:
 - enrichment: $8.7\% \Rightarrow 95\%$
 - no long-living cosmogenic activated isotopes
- Light Detector (LD) bolometer
 - Ge disk (Ø=44.5mm, h=0.17mm) with 60nm
 SiO₂ anti-reflective coating
- Thermal sensor: NTD Ge thermistor for both ZnSe & LD

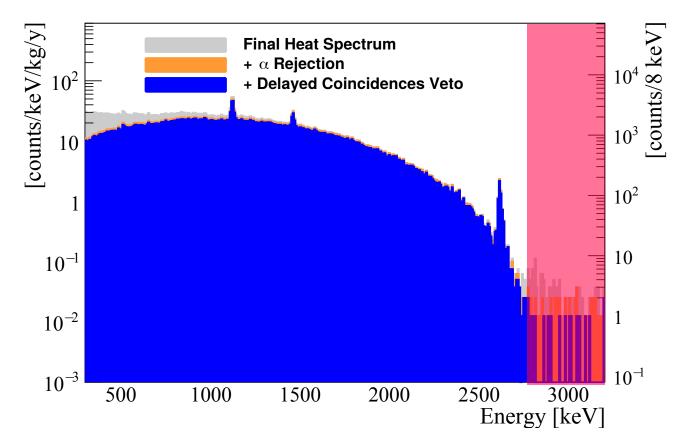


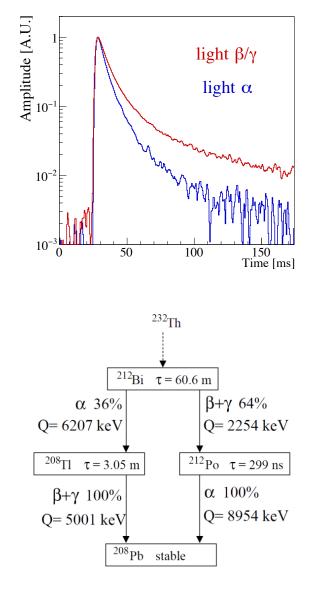
CUPID-0

- 24 Zn⁸²Se bolometers + 2 ZnSe in 5 towers + 31 Light Detectors
 - Total mass: 10.5 kg
 - ► ⁸²Se mass: 5.17 kg \Rightarrow 3.8 · 10²⁵ $\beta\beta$ nuclei

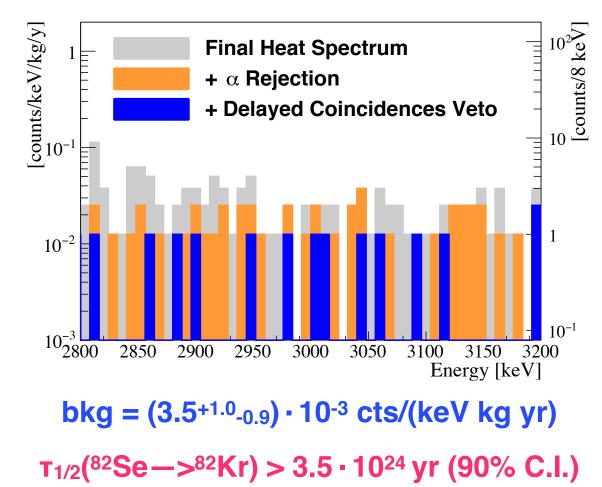


Installed in former CUORE-0 cryostat


CUPID-0 Data Taking (Phase 1)


- Data taking started on March 17th, 2017
- <u>This talk:</u> full statistics collected between June 2017 and Dec 2018
 arXiv: 1904.10397 accepted by EPJC arXiv: 1906.05001 accepted by PRL

Data Analysis


- Reject "non-particle-like" events through pulse shape of thermal pulses
- Reject as through pulse shape of light pulses
- Tag both internal and surface ²¹²Bi thanks to PID

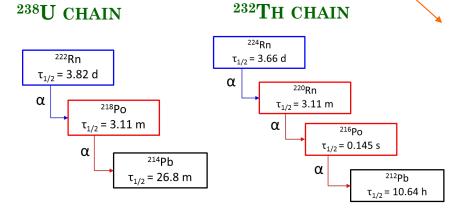
0vββ result

- Exposure: 5.29 kg yr of ⁸²Se
- Energy resolution at $Q_{\beta\beta}$: (20.0 ± 0.3) keV
- Efficiency (trigger + data selection + $\beta\beta$ containment): $(70 \pm 1)\%$
- Perform a UEML fit in the signal region

Background model

• Use CUORE-like tool

sources

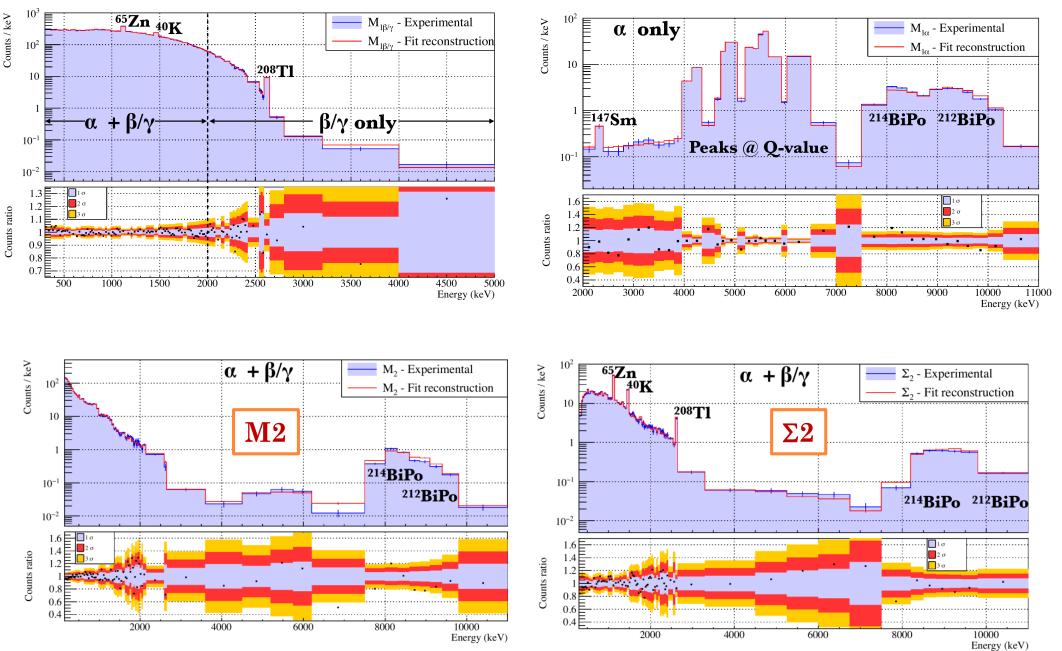

Model 33 sources

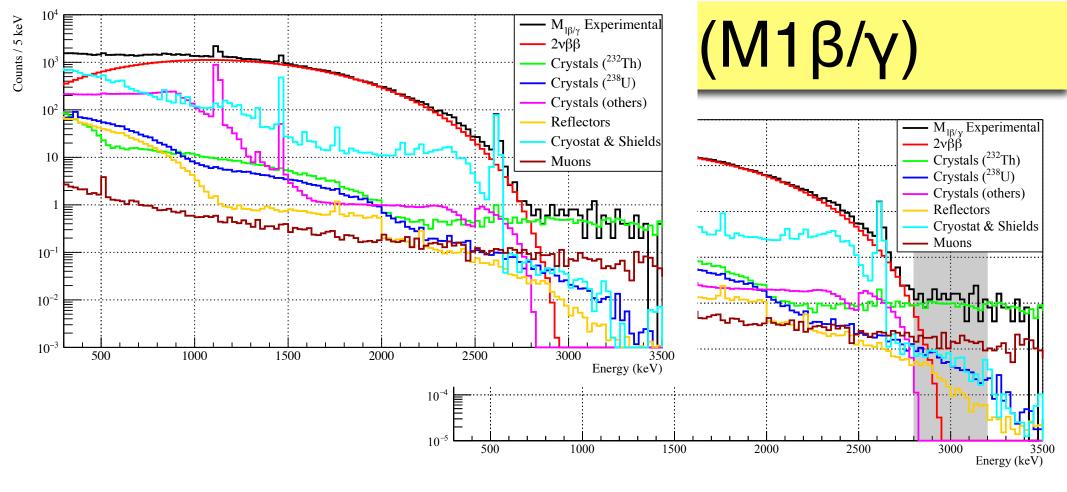
Internal/near
sources to fit
M1α spectrum•Crystals: bulk / shallow surface
O(10nm) / deep surface O(10µm)•BulkSurface:
exponential
profile•Reflectors & Holder surface:
shallow surface O(10µm)•BulkSurface:
exponential
profile•CryoInt: 50mK and 600mK cryostat internal shields & holder bulk

• IntPb: ancient roman lead shield

• **CryoExt**: IVC, OVC, superinsulation, main bath & Extern Lead shield

Exploit α - α delayed coincidences to access position contamination

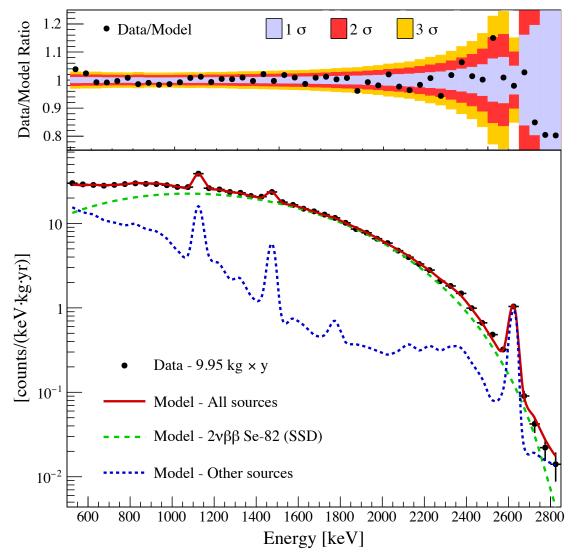

Given a *parent* event @ Q-value (P_Q) , the probability to observe a time-correlated *daughter* event @ Q-value (D_Q) :


 $P(D_Q \mid P_Q)$

depends on source position (bulk vs surface).

Background model results

• Use 4 spectra accordingly to particle type & multiplicity


Background rate in the RO	(2.8 - 3.2 MeV)) after the delayed coincide	nces cut.

Source	Rate (counts/(keV·kg·y))	Systematics
2 uetaeta	$(6.0 \pm 0.3) \times 10^{-4}$	
Crystals bulk – ²³² Th	$(3.4 \pm 0.6) \times 10^{-4}$	
Crystals surf – ²³² Th	$(3.4 \pm 0.5) \times 10^{-4}$	$[2.2 - 4.7] \times 10^{-4}$
Crystals surf – ²³⁸ U	$(5.3 \pm 0.4) \times 10^{-4}$	$[5-7] \times 10^{-4}$
$Reflectors - {}^{232}Th$	$< 7 \times 10^{-5}$	
$Reflectors - {}^{238}U$	$(1.8 \pm 0.3) \times 10^{-4}$	$[1-3] \times 10^{-4}$
Cryostat & Shields $-$ ²³² Th	$(4.0 \pm 1.3) \times 10^{-4}$	$[0.7 - 11] \times 10^{-4}$
Cryostat & Shields – ²³⁸ U	$(2.2 \pm 0.4) \times 10^{-4}$	$[1.5 - 2.6] \times 10^{-4}$
Muons	$(1.53 \pm 0.13) \times 10^{-3}$	$[1.3 - 1.8] \times 10^{-3}$
Total	$(4.2 \pm 0.2) \times 10^{-3}$	$[4.1 - 4.8] \times 10^{-3}$

- Muons represent 44% of the background
- In Phase 2:
 - Muon veto
 - Reflector removed

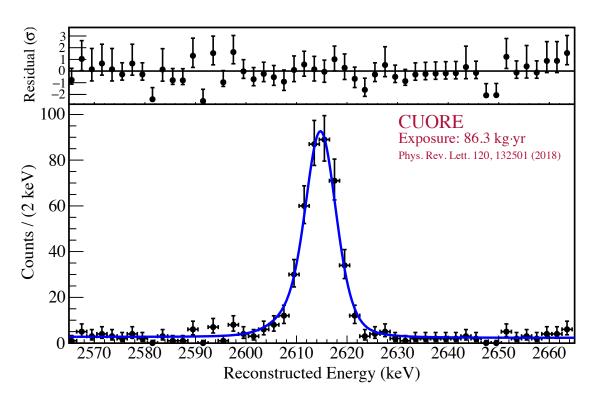
⁸²Se 2vββ Half Life measurement

Evidence of Single State Dominance SSD: $\chi^2/ndf = 253/233 = 1.1$ (p-value =0.18) HSD: $\chi^2/ndf = 360/233 = 1.55$ (p-value <0.00001) Spectra from <u>nucleartheory.yale.edu</u> and Jenni Kotila

	1600 - 2500	500 - 3000
S	6.2×10^{4}	2.7×10^{5}
В	0.4×10^{4}	0.7×10^{4}
S/B	~16	~4

$$T_{1/2}^{2\nu} = [8.62 \pm 0.03 \text{(stat.)} + 0.10 \text{(syst.)}] \times 10^{19} \text{ yr}$$

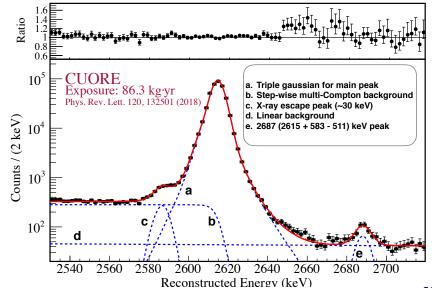
Compatible at 1.3 σ with the recent
NEMO-3 results


$$\mathcal{M}_{2\nu}^{eff} = g_A^2 \mathcal{M}_{2\nu} = 0.0762 \, {}^+_{-} \, {}^{0.0005}_{0.0006}$$

	Systematic Source	$\Delta A_{2\nu}$
Fit	Source localization	$^{+0.74}_{-0.23}$ %
	Reduced sources list	-0.11~%
	Fixed step binning	+0.22~%
	Threshold of \mathcal{M}_1	$^{+0.18}_{-0.06}$ %
	α -identification	+0.01~%
	Prior distributions	+0.02~%
	Combined	$^{+0.8}_{-0.3}$ %
Detector	U	$\pm 0.5~\%$
	82 Se atoms	$\pm 1.0~\%$
Total		$^{+1.4}_{-1.2}$ %

Energy resolution

Line shape per bolometer

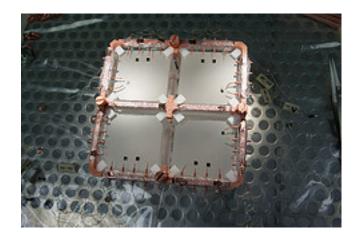

Triple gaussian (a)

+ multi compton (b)+ linear background (d)

+ Te X-ray escape peak (c) + sum peak (e)

Resolution FWHM in Physics runs:

- Dataset 1: (8.3 ± 0.4) keV
- Dataset 2: (7.4 ± 0.7) keV
- Weighted avg: (7.7 ± 0.5) keV


Crystals

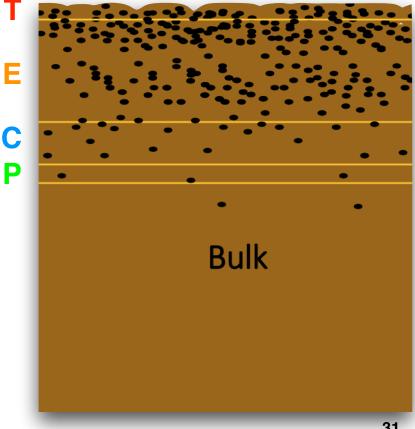
Radio-purity control protocol to limit bulk & surface contaminations in crystal production

J. Crys.Growth 312 (2010) 2999-3008

Isotope	Allowed Contamination
²³⁸ U	$< 3 \cdot 10^{-13} m g/g$
$^{232}\mathrm{Th}$	$< 3 \cdot 10^{-13} \mathrm{g/g}$
²¹⁰ Pb	$< 1 \cdot 10^{-5} \text{ Bq/kg}$
²¹⁰ Po	$< 0.1 \; \mathrm{Bq/kg}$

• Benchmarked in dedicated runs at LNGS

Astropart. Phys.	35 (2012)	839–849
------------------	-----------	---------


	Bulk(90% C.L. U.L.)	Surface(90% C.L.U.L)
238U	5 · 10 ⁻¹⁴ g/g	1 · 10 ⁻⁹ Bq/cm²
²³² Th	2 ⋅ 10 ⁻¹³ g/g	2 · 10 ⁻⁹ Bq/cm²
²¹⁰ Pb	3.3 ⋅ 10 ⁻⁶ Bq/kg	9.8 ⋅ 10 ⁻⁷ Bq/cm²
²¹⁰ Po	0.05 Bq/kg	

Copper Cleaning

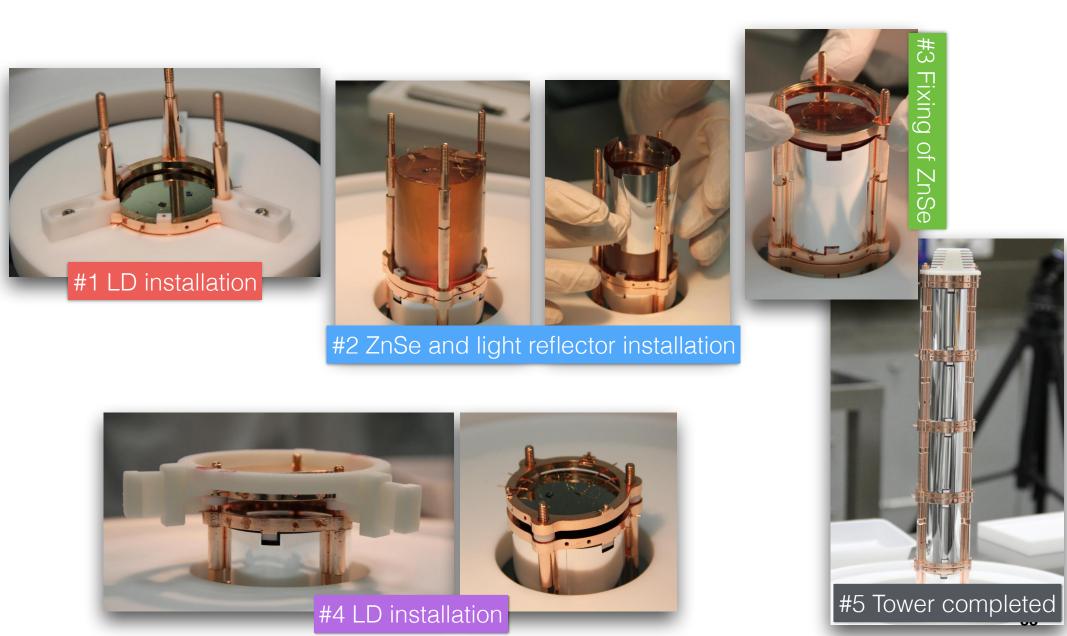
- Bolometers: fully-active detectors, slow (~few sec)
 - Reduce near ²³²Th bkgd: 2615+583 keV γ lines
 - Reduce detector counting rate: pile-up

- **Pre-cleaning**: lubricant removal from machining
- **Tumbling**: abrasion + smoothening removal 1.2 um (0.06 um/h)
- **Electropolishing**: smoothening+contaminants dissolution
 - removal 100 um (12 um/h)
- **Chemical etching:** SUBU+passivation ▶ removal 10 um (120 um/h)
- **Plasma etching:** desorption ▶0.2 um (1um/h)

	Surface (90% C.L.U.L)
238U	7 ⋅ 10 ⁻⁷ Bq/cm²
²³² Th	7 ⋅ 10 ⁻⁸ Bq/cm ²
²¹⁰ Po	9 ⋅ 10 ⁻⁷ Bq/cm²

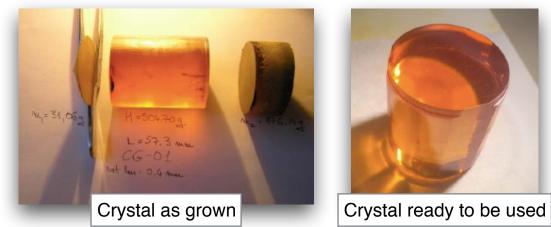
CUPID-0 Phase 2

μ are the main residual background
 Installation of μ-veto


New clear Cu Shield – Thermalization – Additional shielding

- No reflective foil
 - $\begin{array}{c} \, {\rm Sensitivity} \ {\rm to} \\ {\rm M2} \ \alpha \ {\rm events} \end{array}$
 - Data taking already started

Detector assembly (II)


Performed in ~2 weeks inside a low-Rn underground clean room @ LNGS

ZnSe Crystal Production

- Complex process in extreme conditions: 20 bar in Ar & T~1500C
 - Synthesis + growth yield 85%
 - Manufacturing yield 60%

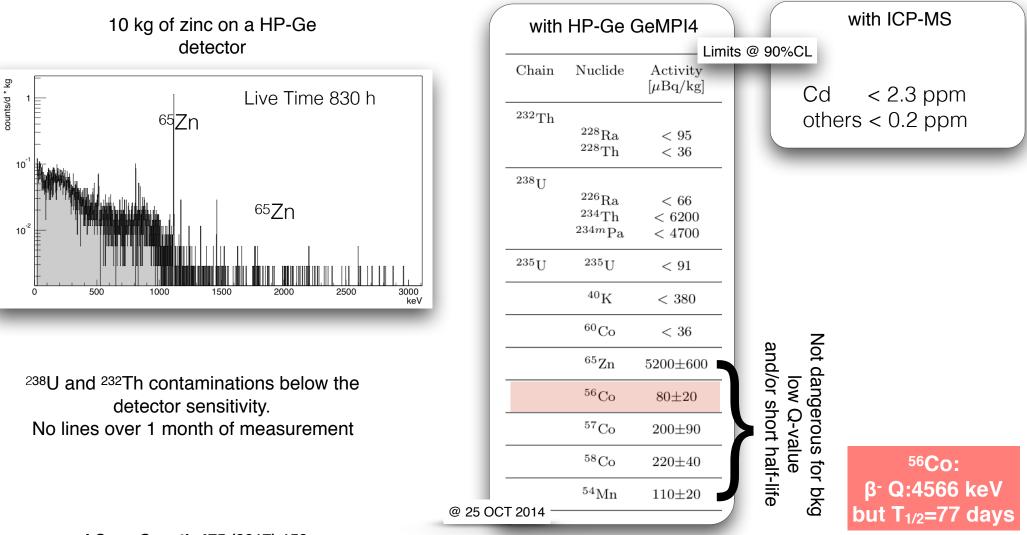
J Crys. Growth 475 (2017) 158

Radio-pure material selection

metal ⁸² Se			metal Zn		
Chain	Nuclide	Activity $[\mu Bq/kg]$	Chain	Nuclide	Activity $[\mu Bq/kg]$
²³² Th	$^{228}_{228}$ Ra 228 Th	< 61 < 110	²³² Th	228 Ra 228 Th	< 95 < 36
²³⁸ U	²²⁶ Ra ²³⁴ Th ^{234m} Pa	< 110 < 6200 < 3400	²³⁸ U	²²⁶ Ra ²³⁴ Th ^{234m} Pa	< 66 < 6200 < 4700

Eur. Phys. J. C (2015) 75:591

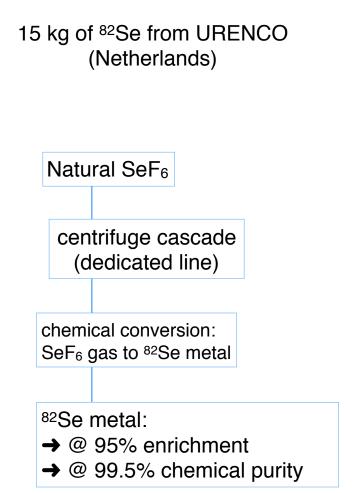
	Zn ⁸² Se-1 (µBq/kg)	Zn ⁸² Se-2 (µBq/kg)	Zn ⁸² Se-3 (µBq/kg)	Array (μBq/kg)
²³² Th	13 ± 4	13 ± 4	<5	7 ± 2
²²⁸ Th	32 ± 7	30 ± 6	22 ± 4	26 ± 2
²²⁴ Ra	29 ± 6	26 ± 5	23 ± 5	27 ± 3
²¹² Bi	31 ± 6	31 ± 6	23 ± 5	29 ± 3
²³⁸ U	17 ± 4	20 ± 5	<10	10 ± 2
²³⁴ U+ ²²⁶ Ra	42 ± 7	30 ± 6	23 ± 5	33 ± 4
²³⁰ Th	18 ± 5	19 ± 5	17 ± 4	18 ± 3
²¹⁸ Po	20 ± 5	24 ± 5	21 ± 5	21 ± 2
²¹⁰ Pb	100 ± 11	250 ± 17	100 ± 12	150 ± 8

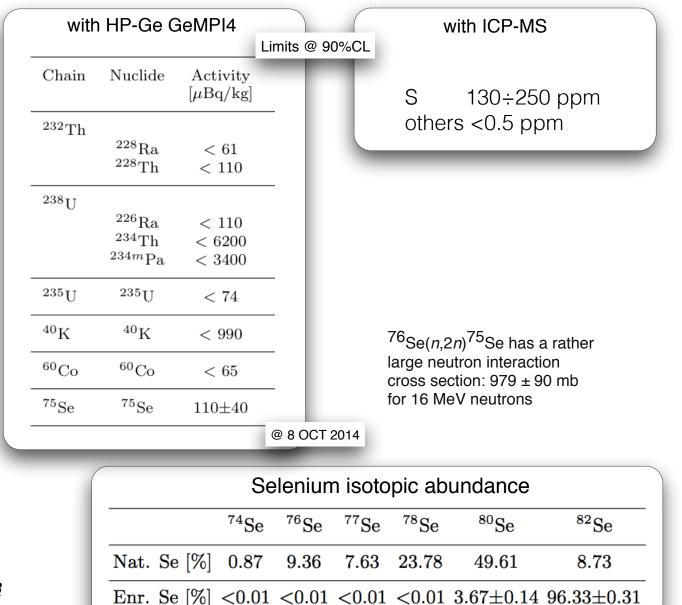

Zn⁸²Se test run

Eur. Phys. J. C76 (2016) 7, 364 34

Starting material: HP-Zinc

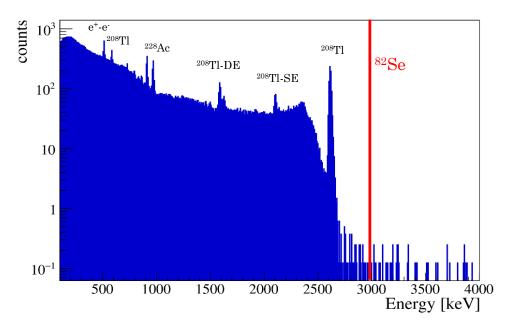
Producer: National Science Center KITP (Ukraine)


Internal radioactive and chemical contaminations measured @ LNGS

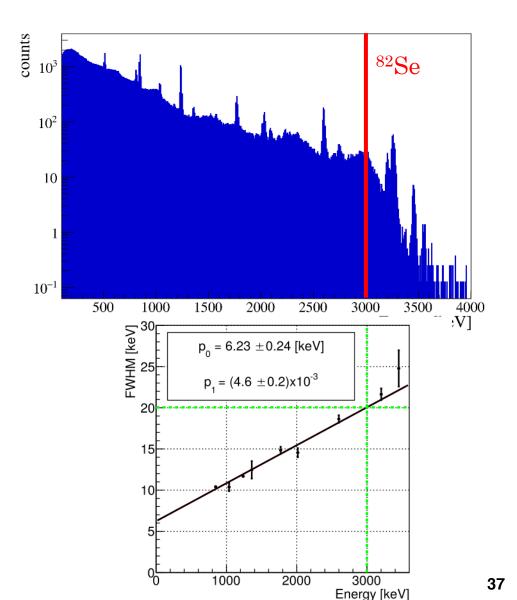

J Crys. Growth 475 (2017) 158

Starting materials: 82Se

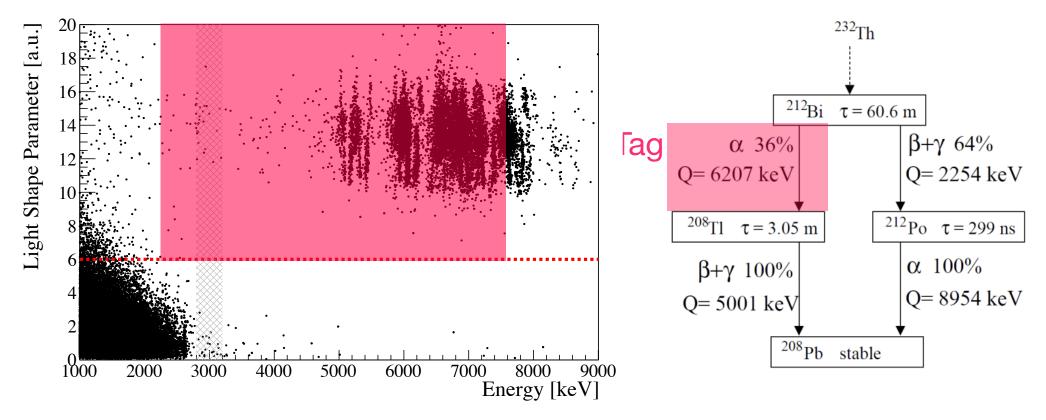
Internal radioactive and chemical contaminations measured @ LNGS



J Crys. Growth 475 (2017) 158
<u>Eur. Phys. J. C (2015) 75:591</u>

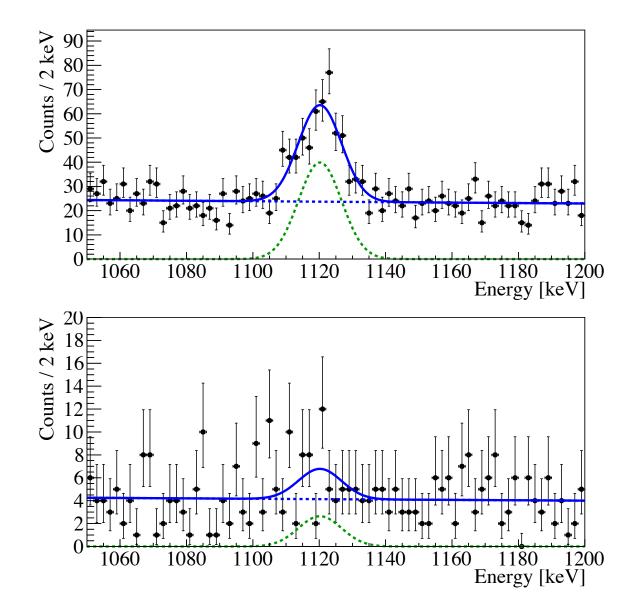

Energy Calibration (I)

Periodical calibration with ²³²Th sources

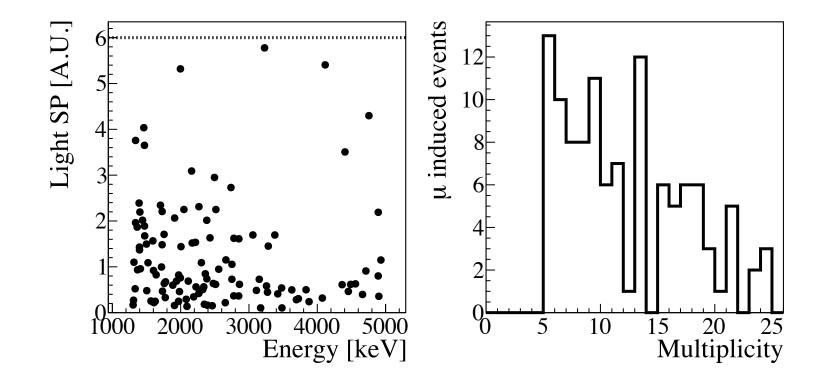

 ΔE_{FWHM} at $Q_{\beta\beta}$: (20.0 ± 0.3) keV

Cross-check with ⁵⁶Co calibration (Qvalue ~ 4.57 MeV, T_{1/2} ~ 77 d

Delayed coincidences


- ²⁰⁸TI internal β/γ decay (Q_{value} ~5 MeV) produces background
- It decays with $\tau_{1/2}$ ~3 min following a ²¹²Bi α decay
- Veto events occurring after a ²¹²Bi decay in $\Delta T = 7 \tau_{1/2}$

- We can tag both internal and surface ²¹²Bi thanks to the Particle ID
- Global Data Selection Efficiency: $(93 \pm 2)\%$


Efficiency on heat channel

 Fit of the most prominent peak (⁶⁵Zn). Cross check on ⁴⁰K peak and double coincident events

Efficiency on light channel

- Select electromagnetic showers induced by muons interactions,
 - Signals in 5 or more ZnSe crystals
- Set the cut to have 100% efficiency on these events

