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Outline
• Physics Motivation

– Electric and Magnetic form factors extracted from 
electron and muon scattering

– Axial vector form factors of nucleon needed for the 
analysis of neutrino-nucleus scattering:

• Monitoring neutrino flux
• Cross-section off various nuclear targets (LAr) 

• Challenge: controlling systematic errors in the lattice 
QCD calculations of the matrix elements of axial and 
vector current operators within nucleon states

See Community White Paper:  arXiv:1904.09931



High precision estimates of the matrix elements of quark 
bilinear operators within the nucleon state, obtained from 

“connected” and “disconnected” 3-point correlation functions, 
are needed to address a number of important physics questions 
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Connected Disconnected



Matrix elements within nucleon 
states required by many experiments

• Isovector charges gA, gS, gT

• Axial vector form factors 

• Vector form factors

• Flavor diagonal matrix elements

• nEDM: Θ-term, quark EDM, quark chromo 
EDM, Weinberg operator, 4-quark operators

• 0νββ

• Generalized Parton Distribution Functions
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e, 𝝻, ν-Z scattering ➡ 5 Form Factors

• 𝐺$ 𝑄& Electric
• 𝐺' 𝑄& Magnetic
• 𝐺( 𝑄& Axial
• )𝐺* 𝑄& Induced pseudoscalar
• 𝐺* 𝑄& Pseudoscalar
• The lattice methodology is the same
• Precise experimental data exit for 𝐺$ 𝑄& and 𝐺' 𝑄&

• Axial ward identity relates 𝐺( 𝑄& , )𝐺* 𝑄& , 𝐺* 𝑄&

Lattice QCD has to predict all 5, gA, μ



Calculating matrix elements using Lattice QCD
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O

n p
×

Isolate the neutron e-Mn (t-|τ) Project on the proton e-Mpτ

ud

uu
d d

Ω N̂(t, p ')Ô(τ, p '− p)N̂(0, p) Ω =

Ω N̂(p ') N j e
− dt H∫ N j Ô(τ, p '− p) Ni e

− dt H∫ Ni N̂(p) Ωi, j∑ =

Ω N̂(p ') N j e
−Ej (t−τ ) N j Ô(τ, p '− p) Ni e

−Eiτ Ni N̂(p) Ωi, j∑



Electric & Magnetic form factors
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N(pf ) V
µ (q) N(pi ) = u(pf ) γ

µF1(q
2 )+σ µνqν

F2 (q
2 )

2M
⎡

⎣
⎢

⎤

⎦
⎥u(pi )

GE (q
2 ) = F1(q

2 )− q2

4M 2 F2 (q
2 ), GM (q

2 ) = F1(q
2 )+F2 (q

2 )

Matrix Elements of Vμ → Dirac (F1) and Pauli (F2) form factors

Define Sachs Electric (GE) and Magnetic (GM) form factors



Challenges to obtaining high precision results 
for matrix elements within nucleon states

– High Statistics: O(𝟏𝟎𝟓 − 𝟏𝟎𝟔) measurements to beat 
the signal to noise problem:

– Demonstrating control over all Systematic Errors:  
• Excited States Contamination (ESC)
• Q2 behavior of form factors
• Non-perturbative renormalization of bilinear operators (RIsmom scheme)
Ø Finite volume effects
Ø Chiral extrapolation to physical mu and md (simulate at physical point)
Ø Extrapolation to the continuum limit (lattice spacing a → 0)

Perform simulations on ensembles with multiple values of 
Ø Lattice size: Mπ L→ ∞
Ø Light quark masses: → physical mu and md
Ø Lattice spacing: a → 0

𝑒 1.3'45'6 7



Analyzing lattice data Ω(a, Mπ, Mπ L): 
Simultaneous CCFV fits versus  a, Mπ

2, Mπ L

10

Include leading order corrections to fit lattice data w.r.t.

• Lattice spacing: a

• Dependence on light quark mass: mq ~  Mπ
2

• Finite volume:  Mπ L

r2
A 𝑎,𝑀;,𝑀;𝐿 = 𝑐? + 𝑐1a + 𝑐& 𝑀;

& + 𝑐@𝑀;
& 𝑒5'4A+ …



Toolkit
• Multigrid Dirac invertor → propagator  SF = D-1η
• Truncated solver method with bias correction (AMA)
• Coherent source sequential propagator
• Deflation + hierarchical probing
• High Statistics
• 3-5 values of tsep with smeared sources for SF

• 2-, 3-, n-state fits to multiple values of tsep

• Non-perturbative methods for renormalization constants
• Combined extrapolation in a,  Mπ ,  MπL  (CCFV)
• Variation of results with CCFV extrapolation Ansatz



Controlling excited-state contamination: n-state fit
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M0, M1, … masses of the ground & excited states 
A0, A1, …   corresponding amplitudes 

Fit the data for Γ& 𝑡 versus t to extract 

Γ2 (t) = A0
2 e−M0 t + A1

2 e−M1 t + A2
2 e−M2 t + A3

2 e−M3 t +....

KEY quantity to control: M1 (first excited state mass)

n n

t



4-state fit to 2-point correlation function
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Controlling excited-state contamination: n-state fit

14

M0, M1, … masses of the ground & excited states 
A0, A1, …   corresponding amplitudes 

Γ3(t,Δt) = A0
2 0 O 0 e−M0 Δt + A1

2 1O 1 e−M1Δt +

A0A1
* 0 O 1 e−M0 Δte−ΔM (Δt−t ) + A0

*A1 1O 0 e−ΔM te−M0Δt +...

n p
×

ti
Δt = tsep = tf - ti tf

O(t)

Make a simultaneous fit to data at multiple Δt and t

Γ2 (t) = A0
2 e−M0 t + A1

2 e−M1 t + A2
2 e−M2 t + A3

2 e−M3 t +....

KEY quantity: M1 (first excited state mass)



gA: Excited State Contamination (ESC)

15Data from 9 clover-on-HISQ ensembles and 3*-state fits : Gupta et al, PhysRevD.98.034503

1.1

1.2

1.3

−10 −5 0 5 10

τ :∞ 16 18 20 22

a06m135

1.1

1.2

1.3

−10 −5 0 5 10

τ :∞ 16 20 22 24

a06m220

1.1

1.2

1.3

−10 −5 0 5 10

τ :∞ 20 22 24

a06m310

1.1

1.2

1.3

1.4

−10 −5 0 5 10

τ :∞ 12 14 16

a09m130W

1.1

1.2

1.3

1.4

−10 −5 0 5 10

τ :∞ 12 14 16

a09m220

1.1

1.2

1.3

1.4

−10 −5 0 5 10

τ :∞ 12 14 16

a09m310

1.1

1.2

1.3

−5 0 5

τ :∞ 5 6 7 8 9

a15m310

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8 10 12

a12m310

1.1

1.2

1.3

1.4

−5 0 5

τ :∞ 8 10 12 14

a12m220L



Status 2018: Isovector gA, gS, gT
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PNDME: Gupta et al, Phys. Rev. D98 (2018) 034503



𝒈𝑨𝒖5𝒅: PNDME & CalLat agree within errors on 7 ensembles

PNDME CalLat
a15m310 1.228(25) 1.215(12)
a12m310 1.251(19) 1.214(13)
a12m220S 1.224(44) 1.272(28)
a12m220 1.234(25) 1.259(15)
a12m220L 1.262(17) 1.252(21)
a09m310 1.235(15) 1.236(11)
a09m220 1.260(19) 1.253(09)

CalLat uses a variant of the summation method

CalLat: Nature: https://doi.org/10.1038/s41586-018-0161-8 
PNDME: Gupta et al, Phys. Rev. D98 (2018) 034503

Difference comes from the Chiral-Continuum fits:
• CalLat chiral fit anchored by heavier pion masses
• CalLat have not yet analyzed the a=0.06fm lattices



Electric and Magnetic Form Factors

arXiv:1906.07217

https://arxiv.org/abs/1906.07217


Steps in the FF calculations
• Calculate matrix elements for different tsep

• Control excited-state contamination: p=0, p≠0
• From different Lorentz components of the 

currents extract various form factors Gi(q2) 
• Fit Q2 behavior of Gi(q2): (dipole, z-expansion, …)

• Calculate ri(a, Mπ, MπL):

• Extrapolate ri (a→0,  MπL→∞,  Mπ→135MeV)

ri
2 = −

6
dq2

Ĝi (q
2 )

Ĝi (0)

⎡

⎣
⎢

⎤

⎦
⎥
q2=0



Electric & Magnetic form factors
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N(pf ) V
µ (q) N(pi ) = u(pf ) γ

µF1(q
2 )+σ µνqν

F2 (q
2 )

2M
⎡

⎣
⎢

⎤

⎦
⎥u(pi )

GE (q
2 ) = F1(q

2 )− q2

4M 2 F2 (q
2 ), GM (q
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2 )+F2 (q

2 )

Matrix Elements of Vμ → Dirac (F1) and Pauli (F2) form factors

Define Sachs Electric (GE) and Magnetic (GM) form factors



Extracting EM form factors

2𝐸K 𝑀L + 𝐸K 𝑅𝑒 𝑅O = −𝜖OQ@𝑞Q 𝐺'

2𝐸K 𝑀L + 𝐸K 𝐼𝑚 𝑅O = 𝑞O 𝐺$

2𝐸K 𝑀L + 𝐸K 𝑅𝑒 𝑅U = 𝑀L + 𝐸K 𝐺$

Each matrix element gives one form factor

ESC in Im (𝑅O) is large 



Experimental Results
rE = 0.875(6) fm
rE = 0.8409(4) fm

rM = 0.86(3) fm

μP =   2.7928
μN = -1.9130

Electron scattering     
Muonic hydrogen

𝑟$
K5W = 0.93 fm
𝑟'
K5W = 0.87 fm Isovector radii

We will focus on the primary quantities 𝐺$ 𝑄& , 𝐺' 𝑄&



Clover-on-HISQ data
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Does collapse of data into a single curve imply 
that 𝐺$ 𝑄& , 𝐺' 𝑄& are insensitive to the 
lattice spacing, pion mass, lattice volume?

The phenomenological Kelly curve shown for reference.
It is not the target of lattice calculations! 



Fits vs. Q2 or X
Y

'6
Y : Clover-on-HISQ data
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Comparison of world Mπ ~ 135MeV data
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Mπ ~ 135MeV data for 𝐺$ 𝑄& , 𝐺' 𝑄& from different 
collaborations also collapse close to a single curve. 



Comparison of Mπ ~ 135MeV data
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Data collapse into a single curve more evident vs. X
Y
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Does collapse versus 𝑄&/𝑀L
& imply that 

𝐺$ 𝑄& , 𝐺' 𝑄& are insensitive to

• the lattice spacing, 
• pion mass, 
• lattice volume,
• number of flavors: 2,  2+1,  2+1+1???

The movement in FF when plotted versus 
𝑸𝟐 and 𝑸𝟐/𝑴𝑵

𝟐 is a measure of systematics



Clover-on-clover data
NME unpublished: 5 ensembles with ~2000 configs each
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The movement in FF when 
plotted versus 

𝑸𝟐 or 𝑸𝟐/𝑴𝑵
𝟐 is a measure of 

systematics



fit ansatz
A model independent approach is the z-expansion:

Ĝ(Q2) =
1X

k=0

akz(Q
2)k with z =

p
tcut +Q2 �

p
tcut +Q2

0p
tcut +Q2 +

p
tcut +Q2

0

with tcut = 4m2
⇡ for GE,M and tcut = 9m2

⇡ for GA. We choose Q0 = 0

Kelly parameterization of the experimental data for GE , GM

ĜX(Q2) =
Ĝ(0)

Pn
k=0 ak⌧

k

(
1 +

n+2X

k=1

bk⌧
k

) , ĜY (Q
2) =

A⌧

1 +B⌧

1
⇣
1 +Q2/0.71GeV2

⌘2

where ⌧ = Q2/4M2. The parameters M, G(0), ak, bk, A, and B are
determined from fit to the data.

4 / 4

Kelly Parameterization

Do the ”experimental data” that are fit using the Kelly
parameterization have all significant corrections included?



fit ansatz
A model independent approach is the z-expansion:

Ĝ(Q2) =
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2)k with z =
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determined from fit to the data.

4 / 4

z-expansion
The form factors are analytic functions of Q2

below a cut starting at n-particle threshold tcut. 

Impose Bound |𝑎`| < 5

Results independent of truncation for k ≥ 4

Incorporate 1/Q4 behavior as Q2 →∞ via sum rules



Is dipole a good model?
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dipole fit to Mainz data for GE

Thanks to D. Higinbotham for providing his version of the binned Mainz data

Mainz GE data
dipole fit

Yes for GE (~1%), not so for GM (~6%)



Summary: 
Electric and Magnetic form factors

• 𝐺$ 𝑄& , 𝐺' 𝑄& show small variation with a, Mπ ,Mπ L, Nf: 
PNDME (11 clover-on-HISQ ensembles) and NME data 
(5 clover-on-clover ensembles) collapse onto a single curve

• The curve becomes narrower and closer to the “Kelly curve” 
when plotted versus 𝑄&/𝑀L

& as compared to 𝑄&

• World data for 𝐺$ 𝑄& , 𝐺' 𝑄& with Mπ ~ 135MeV also 
collapse on to this curve

• Movement versus “Kelly curve” within possible systematics
– 𝐺' 𝑄& : Excited-state effects are large at small 𝑄&

– 𝐺$ 𝑄& : Excited-state effects are small for Q& ∼ 0, but increase with 𝑄&

– Lattice artifacts increase as 𝑄& increases

arXiv:1906.07217

https://arxiv.org/abs/1906.07217


Axial-vector form factors
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Aµ

γµγ5
gA

Aµ

γµγ5
GA(Q2)

Aµ

√
2 gπNN γ

5

√

2 qµFπ

∼
1

Q2+M2
π

N(pf ) A
µ (q) N(pi ) = u(pf ) γ

µGA (q
2 )+ qµ

!GP (q
2 )

2M
⎡

⎣
⎢

⎤

⎦
⎥γ5u(pi )

On the lattice we can calculate 3 form factors from ME of Vμ and Aμ: 
• Axial: GA
• Induced pseudoscalar: )𝐺P
• Pseudoscalar: GP

𝑁(𝑝j) 𝑃(𝑞) 𝑁(𝑝O) = m𝑢 𝑝j 𝐺* 𝑞& 𝛾3 𝑢(𝑝O)

The 3 form factors are related by PCAC   𝜕q𝐴q = 2𝑚𝑃



PCAC (𝜕q𝐴q = 2 s𝑚P) requires

t𝐺* 𝑄& = 𝐺( 𝑄&
4𝑀L

&

𝑄& +𝑀;
&

If pion pole-dominance holds 
⇒ there is only one independent form factor

Goldberger-Treiman relation
𝐹; 𝑔;LL = 𝑀L 𝑔(

Pion pole-dominance hypothesis
Aµ

√
2 gπNN γ

5

√

2 qµFπ

∼
1

Q2+M2
π



Dipole ansatz for Q2 behavior of GA

36

Gi(𝑞&) =
yz(?)

1{|Y

}z
Y

Y

• Corresponds to exponential decaying distribution
• Has the desired 1/q4 behavior for q2→∞

The charge radii are defined as

Mi is the dipole mass

𝑟O& =
12
𝑀O
&

ri
2 = −

6
dq2

Ĝi (q
2 )

Ĝi (0)

⎡

⎣
⎢

⎤

⎦
⎥
q2=0



Experimental Results

rA = 0.666(17) fm

rA = 0.74(12) fm

rA = 0.68(16) fm

ν scattering 

Electroproduction

Deuterium target



Extracting Axial form factors

𝑅𝑒 𝑅3U = 4 𝑀L 𝑞@ 𝐺( +
𝑀L − 𝐸
2𝑀L

t𝐺*

ESC in 𝑅3U is large 

Im 𝑅3@ = 4 𝑀L 𝑀L + 𝐸 𝐺( −
��Y

&'6
t𝐺*

Im 𝑅31 = 4 𝑀L −����
&'6

t𝐺*

Im 𝑅3& = 4 𝑀L −����
&'6

t𝐺*



Clover-on-HISQ data
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NOTE: The two dipole curves with 𝑀( = 1.35 and
𝑀( = 1.026 are drawn only as a reference to quantify 
spread and uncertainty in the lattice data

PNDME unpublished



Clover-on-clover data

Increase a091m170 statistics (blue squares) by 2X
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The lines with MA = 1.026 and 1.35 GeV are drawn only as a reference

NME unpublished: 5 ensembles with ~2000 configs each



PACS data at small Q2

PhysRevD.99.014510

Red line (“experiment”) | dipole fit gives MA=1.02 GeV



Do 𝑮𝑨, t𝑮𝒑 , 𝑮𝒑 satisfy PCAC? 

The operator relation (𝜕q𝐴q = 2 s𝑚P) holds when 
inserted in correlation functions in lattice data.  
PCAC also implies a relation between form factors 

This is violated.  

We have tracked the problem to ESC in ME of A4
𝜕U𝐴U ≠ 𝐸 −𝑚 𝐴U in ground state (after ES fits)

Since this relation should hold in the ground state, what do
large violations at tsep ~ 1.5 fm imply for control over ESC?

Brief statement of an unsolved issue



Summary on 𝑮𝑨, t𝑮𝒑 , 𝑮𝒑
• Data for isovector charges and form factors becoming 

precise at the few percent level for Q2 < 1 GeV2

• Making progress in understanding why the 3 form 
factors 𝑮𝑨, t𝑮𝒑 , 𝑮𝒑 do not satisfy PCAC

• Lattice values of the charge radii rA are smaller than 
“phenomenological” estimates.  

• Need data at smaller Q2 to improve < 𝑟O& > (PACS)
• Disconnected contributions reaching similar maturity
• Are all the systematics under control? 


