Precision Studies with Reactor Neutrinos Understanding Flux and Spectrum

Karsten M. Heeger Yale University

June 27, 2019

Reactor Antineutrinos

\overline{v}_{e} from β -decays, pure \overline{v}_{e} source

of n-rich fission products on average ~6 beta decays until stable

> 99.9% of \overline{v}_{e} are produced by fissions in ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

mean energy of $\overline{v_e}$: 3.6 MeV

only disappearance experiments possible

Relative Measurement of \overline{v}_e Flux and Spectrum

Absolute Reactor Flux Largest uncertainty in previous measurements

Relative Measurement Removes absolute uncertainties!

relative measurement (largely) cancels reactor systematics

Daya Bay Reactor Experiment

Antineutrino Detector mineral oil Gd-doped liquid scintillator liquid scintillator γ-catcher

6 detectors, Dec 2011- Jul 2012

running with 8 detectors

target mass: 20 ton per AD photosensors: 192 8"-PMTs energy resolution: $(7.5 / \sqrt{E} + 0.9)\%$

Daya Bay Neutrino Oscillation (1958 Days)

$$\boldsymbol{P}_{i \to j^{\pm}} = \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

Neutrino oscillation is energy and baseline dependent

Phys. Rev D 95, 072006 (2017). Daya Bay

Daya Bay Neutrino Oscillation (1958 Days)

nGd Analysis

 $sin^22\theta_{13}$ uncertainty: 3.4% $|\Delta m^2_{32}|$ uncertainty: 2.8%

Daya Bay Phys.Rev.Lett. 121 (2018) no.24, 241805

 $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$ $|\Delta m_{ee}^2| = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2$

Reactor Antineutrino "Anomalies" (RAA)

Spectral Deviation 80000**–**(a) 1.2 🔶 data entries / 250 keV full uncertainty 60000 Data / Prediction reactor uncertainty 40000 evious data integrated 20000 Dava Bav 0.8 Global average ratio to prediction (Huber + Mueller) 1-σ Experiments Unc. 1.2 <u>(b)</u> -σ Model Unc. 1.1 0.6 10² 10³ 10 1.0Distance (m) 0.8 E 2 6 prompt energy/MeV

Deficit due to extra (sterile) neutrino oscillations or artifact of flux predictions? Measured spectrum does not agree with predictions. Daya Bay, CPC 41, No. 1 (2017)

Understanding reactor flux and spectrum anomalies requires additional data

Flux Deficit

Reactor Antineutrino "Anomalies" (RAA)

Deficit due to extra (sterile) neutrino oscillations or artifact of flux predictions?

Measured spectrum does not agree with predictions. Daya Bay, CPC 41, No. 1 (2017)

Understanding reactor flux and spectrum anomalies requires additional data

\overline{v}_e Fluxes and Fuel Content

Isotopes in PWR Reactor: ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

flux changes with fission fractions, measured slop^{F230} different by 2.6 σ

Fuel Evolution and \overline{v}_e Fluxes

Daya Bay Fuel Evolution Analysis

Daya Bay reported IBD yields of ²³⁵U and ²³⁹Pu using evolution of LEU reactors. Fitted ²³⁵U lower than model.

Analysis of Daya Bay with Fuel Burnup Hayes et al, Phys.Rev.Lett. 120 (2018) no.2, 022503

Improved Determination of Fluxes

Giunti et al, Phys.Rev. D96 (2017) no.3, 033005

IBD yields calculated from reactor rates (of 26 reactor experiments) do not agree with Daya Bay measurement.

"not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos"

Spectral Deviation θ13 in Experiments

all Θ_{13} experiments observe deviations throughout the spectrum, prominent excess 4-6 MeV prompt energy (5-7 MeV neutrino energy)

cannot be explained by a sterile neutrino

tracks with reactor power (LEU power), appears in near and far detectors

Most likely an issue with nuclear models - one, some, all isotopes?

Predicting the Antineutrino Flux and Spectrum

Two major approaches

- 1. Ab-initio
 - sum the spectrum from thousands of beta branches using nuclear databases
 - databases incomplete and large uncertainties

2. Beta conversion

- empirical measurements of beta spectra for each isotope (foils, 1980's)
- fit with 'virtual branches' and kinematically convert to antineutrino spectra

Huber-Mueller model used as benchmark to experiment at LEU reactors: Phys. Rev. C 85, 029901 (2012) and Phys. Rev. C 83 (2011)

predicting reactor spectra is complicated, nuclear physics uncertainties

Measured Spectra from ²³⁵U and ²³⁹U

Latest from Daya Bay, arXiv:1904.07812

3.5 million IBD candidates in 1958 days

Individual spectra of the two dominant isotopes, ²³⁵U and ²³⁹Pu, are extracted using the evolution

Shape of prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at 5.30

In 4–6 MeV, a 7% (9%) excess for the ²³⁵U (²³⁹Pu) compared with the normalized Huber-Mueller model prediction.

Measured Spectra from ²³⁵U and ²³⁹U

Latest from Daya Bay, arXiv:1904.07812

Comparison of the measured and predicted ²³⁵U and ²³⁹Pu IBD yields prefers an incorrect prediction of the ²³⁵U flux as the primary source of the reactor antineutrino rate anomaly.

Discrepancy in the comparison of spectrum shape for ²³⁵U suggests incorrect spectral shape prediction for the ²³⁵U spectrum.

Precision Oscillation and Spectrum Experiment

Objectives Search for short-baseline oscillation at <10m Precision measurement of ²³⁵U reactor v_e spectrum

Relative Spectrum Measurement

Karsten Heeger, Yale University

relative measurement of L/E and spectral shape distortions

Elba, June 2019

PRSPECT₇

Segmented, ⁶Li-loaded Detector

PROSPECT Physics

A Precision Oscillation Experiment

Model-independent test of oscillation of eV-scale neutrinos

Objectives 4σ test of best fit after 1 year >3σ test of favored region after 3 years

PROSPECT Physics

A Precision Spectrum Experiment A precision measurement of spectrum

Objectives Measurement of ²³⁵U spectrum Compare different reactor models

Improvement on ILL 1.3 Statistical Errors ~100k events 1.2 per year 1.1 ~4.5%/√E 1.0 0.9 1981 ILL: 0.8 1981 ILL ~5000 events PROSPECT - Phase 1 0.7 2 3 5 Visible Energy (MeV)

Testing models of ${}^{235}U\overline{v_e}$ spectrum

Experimental Site

Reactor Core

Power: 85 MW Core shape: cylindrical Size: h=0.5m r=0.2m Duty-cycle: 46%, 7 cycles/yr, 24 days Fuel: HEU (²³⁵U)

compact reactor core, detector near surface, little overburden

highly-enriched (HEU): >99% of \overline{v}_e flux from ²³⁵U fission

Surface Neutrino Detection

Very close to research reactor

Reactor-related backgrounds (gammas and thermal n)

Detector operates at the surface (or

close to it) so cosmic-ray backgrounds are problematic

Three-pronged approach to backgrounds: New detector design New liquid scintillator New shielding design

PROSPECT Detector Design

Single 4,000 L ⁶Li-loaded liquid scintillator (3,000 L fiducial volume)

11 x 14 (154) array of optically separated segments

Very low mass separators (1.5 mm thick) Corner support rods allow for full *in situ* calibration access

Double ended PMT readout, with light concentrators good light collection and energy response

 $\sim 5\% \sqrt{E}$ energy resolution full X,Y,Z event reconstruction

Elba, Jun

Optimized shielding to reduce cosmogenic backgrounds

Antineutrino Event Identification with ⁶Li PR©SPECT

Inverse Beta Decay

40µs delayed n capture

signal inverse beta decay (IBD) γ-like prompt, n-like delay

backgrounds fast neutron n-like prompt, n-like delay

> accidental gamma γ-like prompt, γ-like delay

Background reduction is key challenge

Background Reduction

detector design & fiducialization

IBD event in segmented ⁶LiLS detector

Pulse Shape Discrimination

Karsten Heeger, Yale University

PROSPECT, arXiv:1805.09245

Background Rejection

before cuts

(1), (2), (3)

Simulation

topology

(4), (5)

(6)

showers

Detector design further optimized for background rejection

- PSD
- Shower veto

neutrinos

6

- Event topology
- Fiducialization

Assembly of First Row November 1, 2017

Assembly in 30s (video)

Final Row Installation November 17, 2017

First Oscillation Analysis Data Set

33 days of Reactor On 28 days of Reactor Off Correlated S/B = 1.36Accidental S/B = 2.25

24,608 IBDs detected

Average of ~750 IBDs/day

IBD event selection defined and frozen on 3 days of data

Phys.Rev.Lett. 121 (2018) no.25, 251802 PROSPECT Collaboration

Neutrino Rate vs Baseline

Observation of 1/r² behavior throughout detector volume Bin events from 108 fiducial segments into 14 baseline bins 40% flux decrease from front of detector to back

Karsten Heeger, Yale University

Elba, June 27, 2019

Neutrino Spectrum vs Baseline

Spectral Distortion vs Baseline

Compare spectra from 6 baselines to measured full-detector spectrum

Null-oscillation would yield a flat ratio for all baselines

Direct ratio search for oscillations, reactor model independent

Karsten Heeger, Yale University

Elba, June 27, 2019

Oscillation Search Results

Disfavors RAA best-fit point at >95% CL (2.2 σ)

Measurement of ²³⁵U Spectrum

Prompt Energy Spectrum

40.2 days of reactor-on exposure, 37.8 days of reactor-off exposure ~ 31,000 IBD candidate events (reactor-off candidate events scaled to match exposure) measured spectrum with good S/B at surface 1.7/1 (0.8-7.2 MeV) ~ 6x greater statistics than ILL (1981)

Karsten Heeger, Yale University

Elba, June 2019

Prompt Energy Spectrum

Is PROSPECT consistent with Huber ²³⁵U model for HFIR HEU reactor?

 χ^2 /ndf = 52.1/31 p-value = 0.01

Huber model broadly agrees with spectrum but exhibits large χ^2 /ndf with respect to measured spectrum, not a good fit.

Deviations mostly in two energy regions.

Statistics limited measurement.

Prompt Energy Spectrum

Summary

Daya Bay has made a high-precision measurement of the prompt energy spectrum from PWR reactor. Suggests **incorrect prediction of the** ²³⁵U flux as the primary source of the reactor antineutrino rate anomaly.

With a surface-based detector, PROSPECT has made a modern measurement of ²³⁵U antineutrino spectrum from HEU reactor. Statistics limits conclusion on spectral deviation in ²³⁵U.

PROSPECT has world-leading signal-to-background for a surfacebased detector (<1 mwe overburden). Observed antineutrinos from HFIR with good signal/background.

PROSPECT First oscillation analysis on 33 days of reactor-on data disfavors the RAA best-fit at 2.2 σ (based on model-independent measurement).

Based on results from PROSPECT, Daya Bay, and other experiments sterile neutrinos are increasingly disfavored.

Have started joint analysis between Daya Bay and PROSPECT.

prospect.yale.edu

PROSPECT

Funding provided by:

Yale

Daya Bay Collaboration

203 collaborators from 42 institutions:

Europe (2) JINR, Dubna, Russia Charles University, Czech Republic

Asia (23)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Univ. Tech., IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiaotong Univ., Shenzhen Univ.,
Tsinghua Univ., USTC, Zhongshan Univ., Xi'an Jiaotong Univ., NUDT, ECUST, Congqing Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

North America (16)

BNL, Iowa State Univ., Illinois Inst. Tech., LBNL, Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary, Yale

South America (1) Catholic Univ, Chile