

Marciana Marina, Isola d'Elba, Italy

K. Long, 2 July 2019

Authors and acknowledgements ...

J.T. Sobczyk Institute of Theory

Input to the European Particle Physics Strategy Update 2018-2020

 Americas:
 29

 Asia:
 7

 Europe:
 81

 Total:
 112

nuSTORM at CERN: Executive Summary

Contact*: K. Long Imperial College London, Exhibition Road, London, SWZ 2AZ, UK; and STFC, Rutherford Appleton Laboratory; Harwell Campus, Didcot, OX11 0QX, UK

Abstract

The Neutrinos from Stored Muons, nuSTORM, facility has been designed to deliver a definitive neutrino-nucleus scattering programme using beams of $\frac{1}{\nu_{\mu}}$ and $\frac{1}{\nu_{\mu}}$ from the decay of muons confined within a storage ring. The facility is unique, it will be capable of storing μ^{\pm} beams with a central momentum of between I GeV/c and 6 GeV/c and a momentum spread of 16%. This specification will allow neutrino-scattering measurements to be made over the kinematic range of interest to the DUNE and Hyper-K collaborations. At nuS-TORM, the flavour composition of the beam and the neutrino-energy spectrum are both precisely known. The storage-ring instrumentation will allow he neutrino flux to be determined to a precision of 1% or better. By exploiting sophisticated neutrino-detector techniques such as those being developed for the near detectors of DUNE and Hyper-K, the nuSTORM facility will:

- Serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of ^(ν)_{νμ}A and ^(ν)_{νμ}A scattering cross-sections with percent-level precision;
- Provide a probe that is 100% polarised and sensitive to isospin to allow incisive studies of nuclear dynamics and collective effects in nuclei;
- Deliver the capability to extend the search for light sterile neutrinos beyond the sensitivities that will be provided by the FNAL Short Baseline Neutrino (SBN) programme; and
- Create an essential test facility for the development of muon accelerators to serve as the basis of a multi-TeV lepton-antilepton collider.

To maximise its impact, nuSTORM should be implemented such that datataking begins by $\approx 2027/28$ when the DUNE and Hyper-K collaborations will each be accumulating data sets capable of determining oscillation probabilities with percent-level precision.

With its existing proton-beam infrastructure, CERN is uniquely well-placed to implement nuSTORM. The feasibility of implementing nuSTORM at CERN has been studied by a CERN Physics Beyond Colliders study group. The muon storage ring has been optimised for the neutrino-scattering programme to store muon beams with momenta in the range 1 GeV to 6 GeV. The implementation of nuSTORM exploits the existing fast-extraction from the SPS that delivers beam to the LHC and to HiRadMat. A summary of the proposed implementation of nuSTORM at CERN is presented below. An indicative cost estimate and a preliminary discussion of a possible time-lune for the implementation of nuSTORM are presented the addendum.

ical Physics, University of Wroclaw, nl. M	M. Borna 9.50-204, Wroclaw, Poland		10tul. 117
,, c, c,c.am, pr. n			
K.T. McDonald			
Princeton University, Princeton, NJ, 0			
	N. McCauley, C. Touramanis	CLD: ADD. C.D. N.M.H.	
G. Hanson	Department of Physics, Oliver Lodge La	S.J. Brice, A.D. Bross, S. Fener, N. Moknov, S. Strigonov	Addendum to the Executive Summary of nuSTORM at CERN
Department of Physics and Astronomy		S. Sulgalov Fermilah BO Pox 500 Patavia II 60510 5	
	J. Lopez Pavon [†]	Termilab, T.O. Box 500, Balavia, 12 00510-5	
D. Orestano, L. Tortora	Departamento de Física Teórica and Ins	C.C. Abdida W. Bartmann, I. Barraha, M. C.	Editors of the ESPPU Executive Summary:
INFN Sezione di Roma Tre and Dipar.	Maaria, Cantobianco, 28049 Maaria, Sp	C.C. Anulua, w. Barunann, J. Bauche, M. Ca	
	Theoretical Physics Department, CERN, 1.	CERN CH-1211 Ganava 23 Switzarland	C.C. Ahdida ¹ , R. Appleby ² , W. Bartmann ¹ , J. Bauche ¹ , M. Calviani ¹ , J. Gall ¹ , S. Gilardoni ¹ ,
R.E. Edgecock, J.B. Lagrange, W. Mu		[†] Also at PRISMA Cluster of Excellence, Johanne	B. Goddard ¹ , C. Hessler ¹ , P. Huber ³ , I. Efthymiopoulos ¹ , J.B. Lagrange ⁴ , M. Lamont ¹ ,
STFC Rutherford Appleton Laborator	R. Appleby, S. Tygier	Also al I Risma Cluster of Excellence, Johanne	K. Long ^{5,4} , J.A. Osborne ¹ , J. Pasternak ^{5,4} , F.J.P. Soler ⁶ , S. Tygier ¹ , and F.M. Velotti ¹
	Ine University of Manchester, 7.09, Schi	A Blandal E N Massama E Sanahar Niata	¹ CERN Esplanade des Particules 1–1217 Meyrin Switzerland
J.A. Hernando Morata	Institute, Daresbury Laboratory, WA4 4A	A. Biondei, E.N. Messonio, F. Sanchez Nielo University de Geneve 24 Quai Ernest-Anser	² School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
Universidade de Santiago de Composi		Oniversity de Geneve, 24, Quai Ernesi-Auser	³ Virginia Polytechnic Institute and State University, 925 Prices Fork Road, Blacksburg, VA 24061, USA
ago de Compostela, Spain	H.A. Tanaka	LL Comer Codence	⁴ STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX ⁵ Impagial Collage London Exhibition Road, London SWZ 2AZ, UK
	SLAC National Accelerator Laboratory,	J.J. Gomez-Cadenas	School of Physics and Astronomy University of Glassow Glassow G12 800 UK
C. Booth		bastián Cinuskoa Spain	
University of Sheffield, Dept. of Physic	M. Bonesini	bushun, Gipuzkou, Spuin	
	Sezione INFN Milano Bicocca, Dipartim		
S.R. Mishra		U. Mosei Justus Lishia Universität m. Ludwiestreße 22	
Department of Physics and Astronomy	A. de Gouvêa	Justus Liebig Oniversitat,m, Luawigstrape 25	
	Northwestern University, Dept. of Phy	D.D. C.D.U.U.S. DID.C.I	1 Full author list
S. Bhadra	60208-3112 USA	R. Bayes, SP. Hallsjo, F.J.P. Soler	The full author list is presented to indicate the community that is interested in the implementation and
Department of Physics and Astronom		School of Physics and Astronomy, Kelvin Bull	exploitation of nuSTORM
Canada	Y. Kuno, A. Sato	UK	exploration of his forcial
	Osaka University, Graduate School, Scho	UMOW CLE IN LDD.	6 Communi
L. Alvarez Ruso, A. Cervera, A. Do	0043, Japan	H.M. O Keelle, L. Kornios, J. Nowak, P. Kat	3. Goswann Bhusiaal Basaanah Lahanatana, Ahmadahad 280000, Judia
M. Sorel, P. Stamoulis		Physics Depariment, Lancaster University, La	r nysicui Research Eaboraion y, Anmedabaa 560009, maia
Instituto de Fisica Corpuscular (IFIC)	S.K. Agarwalla		E Eilthaut
terna, Apartado 22085, 46071 Valenci	Institute of Physics, Sachivalaya Marg, S	D. Colling, P. Dornan, P. Dunne, P.M. Jonsso	1. Filindu' Nikhof Ametowdam The Nethaulanda
		Rhusias Danastmant, Rlashatt Laboratory, B	Also at Radboud University Niimenen The Netherlands
M. Chung	W. Winter	2AZ UK	Also ul Raabbau Oniversity, Nijmegen, The Netherlands
UNIST, Ulsan, Korea	Deutsches Elektronen-Synchrotron, Notk	[†] Also at STEC Butharford Applaton Laboratory	I True
		Also al SITC, Rainerjora Appleton Eaboratory,	J. Tang Institute of High Energy Physics, Chinase Academy of Sciences, Reijing, China
M. Hartz [†]	K. Mahn	E di Ladaviaa	nonne of mgn energy raystes, entrese retutenty of sciences, beijing, entru
TRIUMF, 4004 Wesbrook Mall, Vanco	High Energy Physics, Biomedical-Physic	Dueen Mary University of London Mile Fud	P Kyberd D P Swith
[†] Also at Department of Physics, Universi	Rd, East Lansing, MI 48824, USA	Queen mary University of London, Mile End	r. Kyuciu, D.K. Shilui
		D. Nishal	Conege of Engineering, Design and Enysical Sciences, Drunei University London, UXDridge, Middlesex,
M. Palmer	D. Wark, A. Weber [†]	K. INICHOI Department of Physics and Astron. Univ	UB0 JTH, UK
Brookhaven National Laboratory, P.O	Particle Physics Department, The Denys	Department of r nysics and Astronomy, Unive	M A TI-Lile
	[†] Also at STFC, Rutherford Appleton Labora	UN	M.A. Ucinida Canandish Laboratory (HEP) 11 Thomson Avenue, Cambridge, CP2 0HE 11K
P. Huber, C. Mariani, J.M. Link. V. Pa		C A Deserve	Cavenaisn Laboratory (HEP), JJ Thomson Avenue, Cambridge, CB3 UHE, UK
Virginia Polytechnic Inst. and State U	L.Cremaldi, D. Summers	S.A. DUgaCZ	
· ·	University of Mississippi, Oxford, MS, U	1 nomas jejjerson ivational Accelerator Facili	D.M. Kaplan, P. Snopok
J.J. Back, G. Barker, S.B. Boyd, P. Fra			Illinois Institute of Technology, Chicago, IL, USA
Department of Physics, University of	L. Stanco	Y. Mori	
- ipacia, chiterally of	INFN, Sezione di Padova, 35131 Padova	Kyoto University, Research Reactor Institute,	M. Hostert, S. Pascoli
		0494 Japan	Institute for Particle Physics Phenomenology, Department of Physics, University of Durham, Science

Neutrinos from stored muons

- Scientific objectives:
 - 1. %-level (v_eN)cross sections
 - Double differential
 - 2. Sterile neutrino search
 - Beyond Fermilab SBN

- Precise neutrino flux:
 - Normalisation: < 1%</p>
 - Energy (and flavour) precise
- $\pi \rightarrow \mu$ injection pass:
 - "Flash" of muon neutrinos

Neutrino flux

- v_u flash:
 - Pion: 6.3 × 10¹⁶ m⁻² at 50m
 - Kaon: 3.8 × 10¹⁴ m⁻² at 50m
 - Well separated from pion neutrinos

- v_e and v_u from muon decay:
 - ~10 times as many v_e as, e.g. J-PARC beam
 - Flavour composition, energy spectrum
 - Use for energy calibration

Sterile neutrino search @ FNAL

Adey et al., PRD 89 (2014) 071301

To understand the nucleon and the nucleus

- Neutrino unique probe: weak and chiral:
 - Sensitive to flavour/isospin and 100% polarised
- How could neutrino scattering help?
 - Development of understanding of nucleus/ nucleon (e.g.):
 - Multi-nucleon correlations
 - Precise determination of:
 - Model parameters or, better,
 - Theoretical (ab initio) description
- Precise vN scattering measurements to:
 - Constrain models of nucleus/nucleon:
 - Exploiting isospin dependence, chirality, ...
- Benefit of nuSTORM:
 - Precise flux and energy distribution

Search for CPiV in lbl oscillations

- Seek to measure asymmetry:
 - $P(v_{\mu} \succ v_{e}) P(\overline{v}_{\mu} \succ \overline{v}_{e})$
- Event rates convolution of:
 - -Flux, cross sections, detector mass, efficiency, E-scale
 - Measurements at %-level required
 - -Theoretical description:
 - Initial state momentum, nuclear excitations, final-state effects
- Lack of knowledge of cross-sections leads to:
 - -Systematic uncertainties; and
 - Biases; pernicious if ν and $\overline{\nu}$ differ

Systematic uncertainty and/or bias

Uncertainty (cross section

and ratio)

Missing energy (neutrons)

Specification: energy range

- Guidance from:
 - Models:
 - Region of overlap 0.5—8 GeV
 - DUNE/Hyper-K far detector spectra:
 - 0.3-6 GeV
- Cross sections depend on:
 - Q^2 and W:
 - Assume (or specify) a detector capable of:
 - Measuring exclusive final states
 - Reconstructing Q² and W
 - $\rightarrow E_{\mu} < 6 \text{ GeV}$
- So, stored muon energy range:

nuSTORM for vN scattering @ CERN — parameters

New specification!

- Design update:
 - $1 < E_{\mu} < 6 \text{ GeV}$
- Challenge for accelerator design!
- Benefit:
 - Calibration via energy spectrum
 - Statistical 'mono-energetic beam'

• SPS requirements table

 Table 1: Key parameters of the SPS beam required to serve nuSTORM.

Momentum	100 GeV/c			
Beam Intensity per cycle	$4 imes 10^{13}$			
Cycle length	3.6 s			
Nominal proton beam power	156 kW			
Maximum proton beam power	240 kW			
Protons on target (PoT)/year	$4 imes 10^{19}$			
Total PoT in 5 year's data taking	$2 imes 10^{20}$			
Nominal / short cycle time	6/3.6 s			
Max. normalised horizontal emittance (1σ)	8 mm.mrad			
Max. normalised vertical emittance (1σ)	5 mm.mrad			
Number of extractions per cycle	2			
Interval between extractions	50 ms			
Duration per extraction	$10.5 \ \mu s$			
Number of bunches per extraction	2100			
Bunch length (4 σ)	2 ns			
Bunch spacing	5 ns			
Momentum spread (dp/p)	2×10^{-4}			

Overview

- Extraction from SPS through existing tunnel
- Siting of storage ring:

- Allows measurements to be made 'on or off axis'

Preserves sterile-neutrino search option

Extraction and *p*-beam transport to target

- Fast extraction at 100 GeV:
 - CNGS-like scheme adopted;
 - Apertures defined by horizontal and vertical septa reasonable
 - Pulse structure (2 x 10.5 ms pulses) requires kicker upgrade
- Beam transport to target:
 - Extraction into TT60:
 - Branch from HiRadMat beam line at 230 m (TT61)
 - Require to match elevation and slope
 - New tunnel at junction cavern after 290 m
 - 585 m transport to target

Target and capture

- FNAL scheme adopted:
 - Low-Z target in magnetic horn
 - Pair of quadrupoles collect particles horn focused
 - Target and initial focusing contained in inert helium atmosphere
- Graphite target, based on CNGS experience:
 - Radiation-cooled graphite target embedded in water-cooled vessel
- Containment and transport of pion beam with a 10% momentum spread:
 - Base on scheme used successfully for AD in PS complex
- Target complex design:
 - Exploit extensive work done for CENF

Storage ring

- New design for decay ring:
 - Central momentum between 1 GeV/c and 6 GeV/c;
 - Momentum acceptance of up to ±16%

Systematic uncertainties

- MINERvA example:
 - Flux, detector and 'theory' contributions comparable
 - In some regions detector uncertainties dominate

 So, to exploit nuSTORM require excellent detector

CCQE measurement at nuSTORM

10.1103/PhysRevD.89.071301; arXiv:1305.1419

- CCQE at nuSTORM:
 - Six-fold improvement in systematic uncertainty compared with (present) "state of the art"

Effect

- **Electron-neutrino cross section measurement** unique
- Require to demonstrate:
 - ~<1% precision on flux Cf/synergy with EnuBET

Civil engineering

- Major CE elements:
 - 40m long junction cavern
 - 545m long extraction tunnel
 - Target complex
 - 625m circumference decay ring
 - Near detector facility
 - Support buildings and infrastructure
 - Option: far detector on CERN land
- Ground well understood
 - Tunnelling within molasse
 - ~35m vertical clearance to LHC
- CE works believed to be 'relatively straight forward'

Radiation protection

- ~200 kW proton beam required:
 - Radiation protection places strong constraints on facility design
 - Use radiological/environmental assessments carried out for CENF
- Preliminary evaluation:
 - General feasibility of project established in terms of:
 - Exposure of persons
 - Environmental impact
 - Detailed studies according to the ALARA principle required later
- Conclusion:
 - "At the present state of technological development, engineering solutions by which the radiological impact can be minimised are available."

nuSTORM feasibility

• Goal of PBC nuSTORM study:

- "A credible proposal for siting at CERN ..."

achieved.

" ... the SPS can provide the beam and offers a credible fast extraction location allowing the beam to be directed towards a green field site at a suitable distance from existing infrastructure. Initial civil engineering sketches have established a potential footprint and the geology is amenable to an installation at an appropriate depth."

- Challenges:
 - Muon decay ring:
 - FFA concept though feasible
 - Require magnet development to allow production at a reasonable cost
 - Detailed evaluation of:
 - Proton-beam extraction, target and target complex
 - Civil engineering studies and radiological implications

Energy frontier, pptions

Site-A

KITAKAMI

Timescales are long

Proposed Schedules and Evolution

	T ₀	+	+5				+10					+15					+20				+26
ILC	0.5/a 250 G	ab SeV			2	1.5/ab 250 GeV				1.0/ab 500 GeV				0.2/ab 2m _{top}	3/ab 500 Ge			≥V			
CEPC		5.6/al 240 Ge	b ⊵V		16/ M	′ab 1 _z	2.6 /ab 2M _w										9	SppC =>			
CLIC		1.0, 380	/ab GeV						2.5/ab 1.5 TeV					ţ	5.0/ab	=> ur 3.0 Te ^v	ntil +2 √	.8			
FCC	150/ab ee, M _z		10/ab ee, 2M _w	ee,	5/ab 240 G	GeV			1.7/ab ee, 2m _{top}											ł	nh,eh =>
LHeC	0.06/ab 0.2/ab 0.72/ab																				
HE- LHC	10/ab per experiment in 20y																				
FCC eh/hh	20/ab per experiment in 25y																				

M. Benedikt

Project	Start construction	Start Physics (higgs)	Proposed dates from projects
CEPC	2022	2030	
ILC	2024	2033	time to start construction is O(5-10
CLIC	2026	2035	years) for prototyping etc.
FCC-ee	2029	2039 (2044)	
LHeC	2023	2031	2019

D Schulte

FCC integrated project technical schedule

FCC integrated project is fully aligned with HL-LHC exploitation and provides for seamless continuation of HEP in Europe with highest performance EW factory followed by highest energy hadron collider.

Unique advantages of muon accelerators

<u>*I*+*I*- at very high energy</u>

- No brem-/beam-strahlung
 - − Rate ∝ m⁻⁴
 [5 × 10⁻¹⁰ cf e]
- Efficient acceleration
 - Favourable rigidity
- Enhanced Higgs coupling
 - Production rate $\propto m^2$ [5 × 10⁴ cf e^+e^-]

<u>Neutrino beams</u>

- v_e, v_μ
- Precisely known energy spectrum

Neutrino factory and muon collider

cold muons at 22 MeV

Note: LEMMA:

The principle of ionization cooling

The experiment

Core-density change across absorber

R_{amp} = ratio of cumulative density downstream to upstream

Answers to the Key Questions

- · Can muon colliders at this moment be considered for the next project?
 - Enormous progress in the proton driven scheme and new ideas emerged on positron one
 - But at this moment not mature enough for a CDR, need a careful design study done with a coordinate international effort

• Is it worthwhile to do muon collider R&D?

- Yes, it promises the potential to go to very high energy
- It may be the best option for very high lepton collider energies, beyond 3 TeV
- It has strong synergies with other projects, e.g. magnet and RF development
- Has synergies with other physics experiments
- Should not miss this opportunity?

What needs to be done?

- Muon production and cooling is key => A new test facility is required.
 - Seek/exploit synergy with physics exploitation of test facility (e.g. nuSTORM)
- A conceptual design of the collider has to be made
- Many components need R&D, e.g. fast ramping magnets, background in the detector
- Site-dependent studies to understand if existing infrastructure can be used
 - limitations of existing tunnels, e.g. radiation issues
 - optimum use of existing accelerators, e.g. as proton source
- R&D in a strongly coordinated global effort

Muon collider

22

Proposed tentative timeline TechnicalWlimited DETECTOR CDRs TDRs Large Proto/Slice test R&D detectors Prototypes MDI & detector simulations Years? Design **Baseline** design Design optimisation Project preparatio Approve Test Facility MACHINE Construct Exploit Design Exploit Technologies Design / models Prototypes / t. f. comp. Prototypes / pre-series Ready to decide Ready to commit Ready to on test facility to collider construct Cost scale known Cost know

Precision program in Europe

- Squeezing every bit of information out of the future experiments requires a complementary program (special rôle for Europe) to
 - Measure hadroproduction for the neutrino flux prediction (NA61)
 - Understand the neutrino-nucleus cross-section at the % level, both theoretically and with new facilities (Enubet, Nustorm)
 - Collaboration to be developed with nuclear physicists
- Next-to-next generation facilities (ESSnuSB, ...) are also under study

Neutrino Physics (accelerator and non-accelerator) summary of the session

Conveners: Stan Bentvelsen, Marco Zito

ESPPU Open Symposium Granada May 16, 2019

In the session we also covered astroparticle physics

Neutrinos

Neutrino oscillations

- Vibrant program (DUNE, Hyper-Kamiokande, JUNO, ORCA) to fully measure the PMNS mixing matrix and especially the Mass Ordering and the CP violation phase delta, with strong European contribution. Perceived by the community as a priority.
- Neutrino experiments need cutting-edge detectors and % precision on the flux and cross-sections: leading rôle for Europe (NA61, Neutrino Platform). <u>New</u> facilities currently under study.
- Long term future for high precision LBL measurements with new techniques. Time to prepare for it !

In conclusion

- nuSTORM unique facility:
 - %-level *electron* and muon neutrino cross-sections
 - Exquisitely sensitive sterile neutrino searches
 - Serve 6D cooling experiment & muon accelerator test bed
- Feasibility of executing nuSTORM at CERN:
 - Established through Physics Beyond Colliders study
- nuSTORM: a step towards the muon collider:
 - News: ionization cooling demonstrated by MICE collaboration
 - Required in *p*-driven neutrino factory and muon collider
 - nuSTORM:
 - Proof-of-principle and test bed for stored muons for particle physics

Storage ring

- New design for decay ring:
 - Central momentum between 1 GeV/c and 6 GeV/c;
 - Momentum acceptance of up to ±16%
- Hybrid FODO/FFA concept developed:
 - Maintain large momentum and transverse dynamic acceptance simultaneously
 - FODO optics used in the production straight
 - Zero-chromaticity FFA cells used in arcs and return straight
- Hybrid ring properties:
 - Zero dispersion in the quadrupole injection/production straight; and
 - Zero chromaticity in the arcs and return straight
 - Limits overall chromaticity of ring.
- Magnets:
 - Superconducting combined-function magnets (B up to 2.6 T) in arcs
 - Warm combined-function magnets used in return straight
 - Large-aperture warm quadrupoles used in production straight
 - Mean betatron functions in production and return straights large:
 - Minimise betatron oscillations to minimise spread of the neutrino beam

Timeline

Table 1: Outline of a possible nuSTORM time-li
--

Year	Objective					
0-2	Detailed designs and specifications					
	Finalise ring optics and layout					
	Preliminary infrastructure integration & CE designs					
	Preliminary cost estimates and schedule					
End 2	Delivery of Conceptual Design Report					
3-4	Continued design studies and prototyping of key technology					
End 4	Approval to go ahead with TDR					
5-6	Engineering design studies towards TDR					
	Specification towards production					
	CE pre-construction activities					
7	TDR delivery					
8	Seek approval					
8+	Tender, component production, CE contracts					

• Implicit:

- Excellent detector required to exploit exquisite beam
- So, require parallel development of detector concept

Cost

- 'First cut' cost estimate:
 - Based on well-developed FNAL proposal
 - Primary beam line and CE work packages:
 - Itemised evaluation based on best practice CERN experience
 - CENF used as basis for target, target hall, proton absorber and near detector hall estimate
 - Muon decay ring estimate scaled from FNAL study
- Overall material cost estimate (not including far detector): <u>~150 – 200 MCHF</u>
 - Civil engineering (48 MCHF) and primary beam line (21 MCHF) included

Hallsjo, thesis

Preliminary CCQE analysis

- TASD followed by BabyMIND
- Simulation with nuSTORM spectrum:
 - GENIE for event generation; and
 - GEANT4 for detector simultion

Hallsjo, thesis

CCQE performance

CCQE cross section unfolded; 10 ton, 10²¹ POT