

Accessing neutrino physics with nuclear experiments at MAMI

Miha Mihovilovič U Ljubljana, JGU Mainz and JSI

Motivation

Precise determination of neutrino properties is a priority and motivates experiments also in nuclear physics.

Current knowledge

	θ_{12}	θ_{13}	θ_{23}	$\Delta m^2_{21}/10^{-5}$	$\Delta m_{3j}^2 / {10}^{-3}$	δ_{CP}
Normal Ordering	$33.56\substack{+0.77\\-0.75}$	$8.46\substack{+0.15 \\ -0.15}$	$41.6^{+1.5}_{-1.2}$	$7.50\substack{+0.19 \\ -0.17}$	$2.524\substack{+0.039\\-0.040}$	261^{+51}_{-59}
Inverted Ordering	$33.56\substack{+0.77\\-0.75}$	$8.49\substack{+0.15 \\ -0.15}$	$50.0^{+1.1}_{-1.4}$	$7.50\substack{+0.19 \\ -0.17}$	$-2.514\substack{+0.038\\-0.041}$	277^{+40}_{-46}

Neutrino oscillations

 The properties of neutrinos determined through the measurement of probability of flavor oscillation:

$$P(\nu_{\alpha} \to \nu_{\beta}) \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$
$$P(\nu_{\mu} \to \nu_{e})$$

Neutrino experiments

 $P(\nu_{\mu} \rightarrow \nu_{e})$

Interactions with neutrinos

- In detector neutrino interacts with nuclear medium, at low energies predominantly through CCQE.
- Contributions of other processes are also present: NCQE, CCRES, ... and accompanying effects: FSI, SRC.
- <u>Cherenkov detector (SK)</u>: Only final lepton is detected.

Problem of energy reconstruction

Detected rates in the far detector:

$$N^{\alpha \to \beta}(\vec{p}_n) = \sum_{i} \Phi_{\alpha}(E_{True}) \cdot P_{\alpha\beta}(E_{True}) \cdot \sigma_{\beta}^{i}(\vec{p}_{True}) \cdot \varepsilon_{\beta}(\vec{p}_{True})$$
$$E_{true} = \frac{m_p^2 - m_\mu^2 - E_n^2 + 2E_\mu E_n - 2\vec{k}_\mu \cdot \vec{p}_n + |\vec{p}_n|^2}{2(E_n - E_\mu + |\vec{k}_\mu|\cos\theta_\mu - |\vec{p}_n|\cos\theta_n)}$$

- Energy reconstructed assuming specific process. The target nucleon embedded in nucleus is not at rest.
- Precise description of v-N interaction needed!

Importance of electron scattering

Existing Inclusive data

A1 Collaboration @ Mainz

- High precision electron scattering experiments below 1GeV.
- Large angular coverage but small angular acceptance.

 $P(\nu_{\mu} \rightarrow \nu_{e})$

Kinematics relevant for T2K

Relative cross-section for CCQE and CCΔ on ¹⁶O.

- A1 optimized for experiment in this kinematic region.
- Almost no data available.

New ¹⁶O(e,e') experiment

$$d\sigma = d\sigma_0 \times \left[v_L R_L + v_T R_T \right]$$

- Dominating terms R_L and R_T sensitive to <u>magnetic density</u> and <u>currents</u>!
- Measurements at kinematics sensitive to R_T are proposed.
- Extend the program for ¹⁶O
 Coulomb sum rule.

The MAMI experiment

Hypersonic jet target

 Target developed for MAGIX, but could be used also in A1.

- No metal frame near the vertex.
- No target walls.
- Width of the jet 2mm (point-like target)
- Originally designed for ¹H, but applicable also for ⁴⁰Ar and ¹⁶O.
- Density of 2.7 × 10⁻³ g/cm³ at 15 bar.
- Luminosity of 1.7 × 10³⁴/cm²s can be achieved at MAMI.

Pilot experiment

- ¹²C(e,e') cross-section measurement at beam energy of 855 MeV.
- With outstanding resolution and luminosity old data can be matched within minutes.

Summary

- Most important questions of today's physics related to neutrinos.
- Neutrino experiments rely on Monte-Carlo simulations, which depend on nuclear structure models.
- Present theoretical models are still deficient.
- A new experimental program at A1 could provide new valuable input to theories relevant for T2K, MiniBooNE, MicroBooNE and DUNE.
- Experiments on ¹²C, ¹⁶O and ⁴⁰Ar are being planned.
- Quasi-elastic experiments on ¹²C ¹⁶O, (⁴⁰Ar) interesting also in the context of fundamental nuclear physics – for validation of modern ab-initio theories.

Further ideas!?

Inclusive reactions (I,I') sensitive to properties of interaction potential.

 The exclusive processes (I,I'p) sensitive to details of the initial nucleon ground-state wave-function.

Double polarized electron scattering

⁴⁰Ar(e,e'p) experiment @ MAMI

- Theoretical description provided by C. Giusti and A. Deltuva.
- Double polarization experiment offers a unique opportunity to study details of the nucleon wave function, not accessible in CS measurement:
 Angular momentum dependence, effects of LS Coupling !!!

⁴⁰Ar(e,e'p) experiment @ MAMI

• Can we distinguish different subshells? Tests need to be done.

Thank you!