Continuous Gravitational-Wave: the enchanting adventure towards their detection

ELBA 2019 – Lepton Interactions with Nucleons and Nuclei

Paola Leaci on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration

The most recent observing advanced LIGO-Virgo runs

O3 has started on April 1, 2019 01: Sept. 12, 2015 – Jan. 19, 2016

O2: Nov. 30, 2016 – August 25, 2017

GW detector sensitivity progression

GW detector sensitivity progression

	01		0	2 💻	03		 O4 		05		
LIGO	80 Мрс	100 Mp) c	1	20+ Mpc		175 Mp	c	3	Target 30 Mp	t IC
Virgo		Ň	30 1pc	6	60-80 Mpc		80-125 Mpc	5	1	25-23 Mpc	0
KAGRA					8-25 Mpc		25-130 Mpc		1:	30+ M	pc
LIGO-India										33)	arget 0 Mpc
2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026

What are the missing Gravitational-Wave (GW) signals?

- Supernovae, GRBs (*bursts*), unmodeled waveforms. Shortduration GW events in coincidence with signals in electromagnetic (EM) radiation/neutrinos
- Fast-spinning NSs in our galaxy (either <u>isolated</u> or in <u>binary</u> <u>systems</u>); monochromatic waves; modeled waveform
- Cosmological GW (stochastic background); A background of primordial and/or astrophysical GWs; unmodeled waveform
- X

http://en.wikipedia.org/

The Continuous-Wave (CW) signal

- Quasimonochromatic waves with a slowly decreasing intrinsic frequency
- Constant amplitude, weak, but persistent over years of data taking
- Sensitivity increases with observation time
- Computation cost scales with a high power of the observation time
- More than 2800 observed NSs (mostly pulsars) and $O(10^8 10^9)$ expected to exist in the Galaxy
- To emit CWs a NS must have some degree of non-axisymmetry due to
 - * deformation caused by elastic stresses or magnetic field not aligned to the rotation axis $(f_{GW} = 2 f_{rot})$
 - * free precession around rotation axis $(f_{GW} \sim f_{rot} + f_{prec}, f_{GW} \sim 2f_{rot} + 2f_{prec})$ * excitation of long-lasting oscillations (*e.g. r*-modes; $f_{GW} \sim 4/3 f_{rot}$)

 - * deformation due to matter accretion (e.g. LMXB; $f_{GW} \sim 2 f_{rot}$)

The CW signal II

$$h_0 = 4 \cdot 10^{-25} \left(\frac{\varepsilon}{10^{-5}}\right) \left(\frac{I_{zz}}{10^{45} \text{g cm}^2}\right) \left(\frac{f_r}{100 \text{ Hz}}\right)^2 \left(\frac{1 \text{ kpc}}{d}\right)$$

◦ $\mathcal{E} \le 10^{-5}$ normal NS PRD 87, 129903 (2013) ◦ $\mathcal{E} \le 10^{-3}$ hybrid (hadron-quark core) stars ◦ $\mathcal{E} \le 10^{-1}$ extreme quark stars

$$h_0^{\rm sd} = \left(\frac{5}{2} \frac{GI_{zz} \dot{f}_{\rm rot}}{c^3 d^2 f_{\rm rot}}\right)^{1/2} = 8.06 \times 10^{-19} \frac{I_{38}^{1/2}}{d_{\rm kpc}} \sqrt{\frac{|\dot{f}_{\rm rot}|}{f_{\rm rot}}} \quad \epsilon^{\rm sd} = 0.237 \left(\frac{h_0^{\rm sd}}{10^{-24}}\right) I_{38}^{-1} (f_{\rm rot}/{\rm Hz})^{-2} d_{\rm kpc}.$$

Going below the spindown limit means we are putting a constraint on the fraction of spindown energy due to the emission of GWs.

Type of searches

- Targeted
- Narrowband
- Directed
- All-Sky
- Post-merger

Main methods

- Time domain methods, including complex hetrodyne
- Matched filter
- 5-vector method relying on carrier frequency sidebands
- Power spectra analysis
- Hough transform

CWs from spinning NSs in binary systems

- A CW signal from a source in a binary system is frequency-modulated by the source's orbital motion, which in general is described by five unknown Keplerian parameters
- Accretion from a companion may cause an asymmetrical quadrupole moment of inertia of the spinning NS
- In some cases the accretion is asymmetric due to the sporadic observation of x-ray pulsations
- This asymmetry can lead to GW emission through various mechanisms:
 temperature-dependent electron capture onto nuclei in the crust [ApJ 501, L89 (1998)]
 - magnetic funneling of accreted material [ApJ 623, 1044 (2005)]
 - sustained instability of rotational r-modes [ApJ 516, 307 (1999)]
- The most rapidly observed accreting NSs do not spin at very high frequencies, and this seems to suggest that their accretion torques are balanced by GW emission torque [ApJ 501, L89 (1998)]

SEARCHES FROM ISOLATED NSs

(01+02) Targeted searches

- CW signals are assumed to be phase-locked to the pulsar beamed emission => O(workstation)
- Observational paper accepted by APJ & https://arxiv.org/abs/ 1902.08507
- Search for 221 pulsars
- Targeted emission at $f_{GW} = 2f_{rot}$ and $f_{GW} = f_{rot}$
- Three pipelines contributing:
 - **TD Bayesian** [PRD 72, 102002, 2005]
 - **TD F/G-Stat** [CQG 27, 194015, 2010]
 - FD 5-vector [CQG 27, 194016, 2010] (only on O2 data)
- Best 95% CL h_0 UL set to 1.4e-25 for the Vela pulsar.
- For the Crab and Vela pulsars our results constrain GW emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively.
- Spindown limit surpassed for 20 young pulsars, including Crab and Vela

(01+02) Targeted searches

O2 Narrowband search

- Accounting for a small mismatch between the GW rotational parameters and those inferred from EM observations => O(workstation)
- Observational paper accepted by PRD & https://arxiv.org/abs/ 1902.08442
- Search parameter space: 33 pulsars, f_{gw} (1+ 1e-3), df_{gw}/dt (1+ 1e-3)
- Best 95% CL h₀ UL set for the 3 millisecond pulsars J0537-6910, J1300+1240 and J2124-3358 and are of the order of 5.5e-26 (above the spin-down limit). The lowest ellipticity UL has been set for J1300+1240, of about 3.3 × 10–7.
- Spindown limit surpassed for 6 pulsars, including Crab (~ 60 Hz) and Vela (~22 Hz).
- The UL on the Vela and Crab pulsars has improved wrt O1 result by 10% and by a factor of 2, respectively.

O2 Narrowband search

O2 All-Sky search

Unknown isolated NSs => computationally expensive (Cloud – Grid Infrastractures)

- Observational PRD paper (in press) & https://arxiv.org/abs/1903.01901
 Search parameter space: [20, 1922] Hz; [-1, 0.2] x 10⁻⁸ Hz/s
- Three pipelines contributing:
 - Frequency Hough [PRD 90, 042002 (2014)]
 - <u>Sky Hough [</u>CQG 31, 085014 (2014)]
 - <u>Time-Domain F-Statistic [CQG 31, 165014 (2014)]</u>
- Best 95% CL h₀ UL: ~ 1.7e-25 at 123 Hz
- ASTROPHYSICAL range: At ~500 Hz we are sensitive to NSs with equatorial ellipticity $\varepsilon > ~ 10^{-6}$ and as far away as 1 kpc

O2 All-Sky search

https://arxiv.org/abs/1903.01901

O1 Directed search

Known sky location, but unknown frequency evolution (e.g. Cassiopeia A, SN1987A, Scorpius X-1, galactic center, globular clusters) => O(cluster)

- Observational APJ paper in press & https://arxiv.org/abs/1812.11656
 Search parameter space: 15 SNRs (including CasA and Vela Jr.) and Fomalhaut B
- Pipeline based on multi-IFO F-statistic (PRD 58, 063001, 1998; PRD 72, 063006, 2005)
- Best h₀ UL: it approaches 2e-25 for many targets and approaches 1e-25 for one
- Sest UL on *r*-mode amplitude: α ~3e-8
- Best UL on NS ellipticity: 2e-9

$$lpha = 0.28 \left(rac{h_0}{10^{-24}}
ight) \left(rac{100 \ \mathrm{Hz}}{f}
ight)^3 \left(rac{D}{1 \ \mathrm{kpc}}
ight)$$

O1 Directed search

SEARCHES FROM NSs IN BINARY SYSTEMS

O1 Directed search from Scorpius X-1

Observational paper: ApJ 847, 47 (2017)

Parameter	Search parameter space	Range
<i>f</i> ₀ (Hz)	[2:	5, 2000]
$a \sin i (\text{lt-s})^{a}$	[0.	.36, 3.25]
$T_{\rm asc} ({\rm GPS \ s})^{\rm b}$	11	$31415404 \pm 3 \times 179$
$P_{\rm orb}$ (s)	68	$3023.70 \pm 3 \times 0.04$

- Three pipelines contributing:
 - <u>New Viterbi Sideband [PRD 95, 122003 (2017)]</u>
 - <u>The CrossCorr method [ApJ 847, 47 (2017)]</u>
 - <u>Radiometer search (including also other targets)</u> [PRL 118, 121102 (2017)]
- Best h₀ UL: 2.3e-25 in [100-200] Hz
- At 100 Hz the limits are a factor of ~ 1.2 3.5 above the predictions of the torque balance model, depending on the inclination angle

$$h_0 \sim 3.5 \times 10^{-26} \sqrt{\frac{300 \text{ Hz}}{\nu}}$$

O1 Directed search from Scorpius X-1

OTHER SEARCHES

O2 GW170817 post-merger remnant search

- Search for signal of post-merger remnant; Unknown frequency and frequency evolution
- Observational paper: APJ 875, 2 (2019) & https://arxiv.org/abs/ 1810.02581
- Signal duration from 100 s up to 8.5 d after the merger
- Four pipelines contributing:
 - Stochastic Transient Analysis Multidetector Pipeline [PRD 83, 083004 (2011)] (unmodeled)
 - Hidden Markov Model [PRD 97, 043013 (2018)] (unmodeled)
 - Adaptive Transient Hough [arXiv:1901.01820] (modeled)
 - Generalized FrequencyHough [PRD 98, 102004 (2018)] (modeled)
- ${}^{\bigcirc}$ Waveform model of emitted radiation follows the power law $\dot{f}=-kf^n$
- Distance ~ 40 Mpc => Detection not expected for CW searches, but it is worthwhile to have pipelines ready to perform the search

Why CW searches are relevant to us?

- EM observations alone cannot help us to understand NS composition (highly condensed matter, crystalline structure, viscosity,...)
- Information on NS quadrupolar deformation (ellipticity) will be very valuable to understand whether NSs are composed by only neutrons, quarks, exotic matter, and so on

www.quantamagazine.org/

- Other NS properties (the range of NS masses, radii, sky locations, maximum NS spin frequency, population models, cold dense matter EOS properties)
- Detecting deviations from General Relativity (speed of GWs, existence of other polarizations)

Outlook I: What are we doing to keep detecting CWs?

Getting started to analyze O3 data (LHO, LLO, Virgo):

HIGHEST PRIORITY:

- All-Sky searches,
- Targeted searches (search at one and twice spin frequency)
- Narrowband searches (Vela, Crab,...)
- Directed searches (Galactic center, CasA, Vela Jr. and other young SNRs, FERMI-LAT/INTEGRAL sources, Scorpius X-1)

HIGH PRIORITY:

- Search for *r*-modes applying machine learning techniques (Crab pulsar, J0537-6910, which glitches every ~100 days, and it will be monitored by NICER in X-rays during O3)
- * Stochastic and CW joint search
- * Search for CWs from ultralight **boson clouds** around spinning BHs
- Post-merger transient search
- Search for non-tensorial polarizations
- * Algorithm optimization (including candidate follow up)

Outlook II: What are we doing to keep detecting CWs?

Finish analyzing O2 data

- Galactic center, SNRs directed searches
- Scorpius X-1 directed search
- Subthreshold all-sky search
- Search for CWs in binary systems
- Boson cloud searches

Outlook III: What do we need to facilitate the CW detection?

- UPDATED EPHEMERIS as fully coherent searches for CWs from known pulsars rely on coherent phase models and wrong ephemeris can introduce phase errors, which would result in a loss of signal-to-noise ratio
- RADIO OBSERVATORIES able to monitor the vast majority of radio pulsars, mainly those with high spindown, which translates into a strong CW emission (e.g. PSRs J1952+3252 and J1913+1011)
- GAMMA/X-RAY observations
- NEW PULSAR DISCOVERIES (in all of EM bands)
- <u>ROBUST ALGORITHMS</u> able to detect both our standard signal models and the unexpected!
 - ... and of course (more) SENSITIVE GW DETECTORS

TRANSIENT GWs have been already detected!

We <u>continue</u> hunting for CW signals...

THANKS FOR LISTENING

Paola Leaci