Exotic quarkonia from effective field theories of QCD

Joan Soto

Universitat de Barcelona) Departament de Física Quàntica i Astrofísica Institut de Ciències del Cosmos

Elba 2019, 26/06/19

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Exotic Quarkonia

- Quarkonium, $\bar{q}q'$ states, q, q' = u, d, s, c, b
- Exotic, non-trivial quark or/and gluon content beyond the constituent $\bar{q}q'$
 - May lead to exotic J^{PC} : 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, ...

Godfrey, Olsen, 2008

Exotic Heavy Quarkonia

- ${\scriptstyle \bullet}$ We shall restrict ourself to q,q'=Q,Q'=c,b
- Motivation:
 - Undestanding the XYZ states from QCD:
 - * Hidden charm (hidden bottom)
 - * Above open charm (bottom) threshold
 - * Do not fit usual potential model expectations
 - Tools:
 - Effective Field Theories
 Lattice QCD inputs

XYZ with $c\bar{c}$ (Olsen, 15)

State	M (MeV)	Γ (MeV)	JPC	Process (decay mode)
X(3872)	$3871.68 {\pm} 0.17$	< 1.2	1++	$B \rightarrow K + (J/\psi \pi^+\pi^-)$
				$par{p} ightarrow (J/\psi \pi^+\pi^-) +$
				$B ightarrow K + (J/\psi \pi^+ \pi^- \pi^0)$
				$B ightarrow K + (D^0 ar{D}^0 \pi^0)$
				$B ightarrow K + (J/\psi\gamma)$
				$B ightarrow {\it K} + (\psi'\gamma)$
				$pp ightarrow (J/\psi \pi^+ \pi^-) +$
X(3915)	3917.4 ± 2.7	$28^{+10}_{-\ 9}$	0++	$B ightarrow K + (J/\psi\omega)$
				$e^+e^- ightarrow e^+e^- + (J/\psi\omega)$
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$0(?)^{-(?)+}$	$e^+e^- ightarrow J/\psi + (D^*ar D)$
				$e^+e^- ightarrow J/\psi + ()$
G(3900)	3943 ± 21	$52{\pm}11$	$1^{}$	$e^+e^- o \gamma + (Dar{D})$
Y(4008)	4008^{+121}_{-49}	$226{\pm}97$	1	$e^+e^- ightarrow \gamma + (J/\psi \pi^+\pi^-)$
Y(4140)	4144 ± 3	17 ± 9	? ^{?+}	$B ightarrow K + (J/\psi \phi)$
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$0(?)^{-(?)+}$	$e^+e^- ightarrow J/\psi + (D^*ar{D})$
	=0			

State	M (MeV)	Г (MeV)	J ^{PC}	Process (decay mode)
Y(4260)	4263 ⁺⁸ _9	95±14	1	$e^+e^- ightarrow \gamma + (J/\psi \pi^+\pi^-)$
				$e^+e^- o (J/\psi\pi^+\pi^-)$
				$e^+e^- ightarrow (J/\psi\pi^0\pi^0)$
Y(4360)	4361 ± 13	$74{\pm}18$	1	$e^+e^- o \gamma + (\psi'\pi^+\pi^-)$
X(4630)	$4634^{+ 9}_{-11}$	92^{+41}_{-32}	$1^{}$	$e^+e^- ightarrow \gamma \left(\Lambda^+_c \Lambda^c ight)$
Y(4660)	4664±12	48±15	1	$e^+e^- o \gamma + (\psi'\pi^+\pi^-)$
$Z_{c}^{+}(3900)$	3890 ± 3	33 ± 10	1^{+-}	$Y(4260) o \pi^- + (J/\psi \pi^+)$
				$Y(4260) ightarrow \pi^- + (Dar{D}^*)^+$
$Z_{c}^{+}(4020)$	4024 ± 2	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) o \pi^- + (h_c \pi^+)$
				$Y(4260) o \pi^- + (D^* ar D^*)^+$
$Z_{c}^{0}(4020)$	4024 ± 4	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) o \pi^0 + (h_c \pi^0)$
$Z_1^+(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$B ightarrow K + (\chi_{c1} \pi^+)$
$Z^{+}(4200)$	4196_{-32}^{+35}	370^{+99}_{-149}	1^{+-}	$B ightarrow K + (J/\psi \pi^+)$
$Z_{2}^{+}(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$B \rightarrow K + (\chi_{c1} \pi^+)$
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1^{+-}	$B ightarrow {\cal K} + (\psi' \pi^+)$
				$B ightarrow K + (J\psi \pi^+)$

Joan Soto (Universitat de Barcelona) Exotic quarkonia from effective field theories

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

XYZ with $b\bar{b}$ (Olsen, 15)

State	M (MeV)	Γ (MeV)	J ^{PC}	Process (decay mode)
$Y_b(10890)$	$10888.4{\pm}3.0$	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- ightarrow (\Upsilon(nS) \pi^+\pi^-)$
$Z_b^+(10610)$	$10607.2{\pm}2.0$	$18.4{\pm}2.4$	1^{+-}	$\Upsilon(5S) ightarrow \pi^- + (\Upsilon(1,2,3S) \pi^+)$
				$\Upsilon(5S) ightarrow \pi^- + (h_b(1,2P) \pi^+)$
				$\Upsilon(5S) o \pi^- + (Bar{B}^*)^+$
$Z_b^0(10610)$	10609 ± 6		1^{+-}	$\Upsilon(5S) o \pi^0 + (\Upsilon(1,2,3S)\pi^0)$
$Z_b^+(10650)$	$10652.2{\pm}1.5$	$11.5{\pm}2.2$	1^{+-}	$\Upsilon(5S) ightarrow \pi^- + (\Upsilon(1,2,3S) \pi^+)$
				$\Upsilon(5S) ightarrow \pi^- + (h_b(1,2P) \pi^+)$
				$\Upsilon(5S) o \pi^- + (B^*ar{B}^*)^+$

イロト イヨト イヨト イヨト

3

Heavy Quarkonium Hybrids

We shall further restrict ourself to the case of hybrids

• Hybrids: have a non-trivial gluon content

Pioneering works:

- Exotics: MIT bag model (Jaffe, Johnson, 76)
- Heavy Hybrids:
 - ▶ String model (Giles, Tye, 77; Horn, Mandula, 78)
 - Born-Oppenheimer approximation (Hasenfratz, Horgan, Kuti, Richard, 80)
 - Lattice potentials (Griffiths, Rakow, Michael, 83)

Outline

1 Heavy Quarkonium

- 2 Exotic Heavy Quarkonia
- 3 Heavy Quarkonium Hybrids
 - Spectrum
 - Mixing
 - Decay
 - Hyperfine splittings

4 Conclusions

3. 3

Heavy Quarkonium

 $Qar{Q}$ bound state , $m_Q >> \Lambda_{QCD}$, $lpha_{
m s}(m_Q) << 1$

- Heavy quarks move slowly v << 1
- Non-relativistic system \rightarrow multiscale problem
 - $m_Q >> m_Q v$ (Relative momentum)
 - $m_Q v >> m_Q v^2$ (Binding energy)
 - $m_Q >> \Lambda_{QCD}$
- EFTs are useful (N. Brambilla, A. Pineda, JS and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005))
 - ▶ NRQCD: $m_Q \gg m_Q v$, $m_Q v^2$, Λ_{QCD} (W.E. Caswell and G.P. Lepage, Phys. Lett. **167B**, 437 (1986))
 - ▶ pNRQCD (weak coupling): $m_Q v \gg m_Q v^2$, Λ_{QCD} (A. Pineda, JS, Nucl.Phys.Proc.Suppl.64:428-432,1998)
 - ▶ pNRQCD (strong coupling): $m_Q v$, $\Lambda_{QCD} \gg m_Q v^2$ (N. Brambilla, A. Pineda, JS, A. Vairo, Nucl.Phys.B566:275,2000)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

9 / 49

NRQCD

W.E. Caswell and G.P. Lepage, Phys. Lett. **167B**, 437 (1986)
G. T. Bodwin, E. Braaten and G. P. Lepage, Phys. Rev. D **51** (1995) 1125

$$m_Q >> m_Q v$$
 , $m_Q v^2$, Λ_{QCD}

$$\mathcal{L}_{\psi} = \psi^{\dagger} \left\{ i D_0 + \frac{1}{2m_Q} \mathbf{D}^2 + \frac{1}{8m_Q^3} \mathbf{D}^4 + \frac{c_F}{2m_Q} \boldsymbol{\sigma}.g\mathbf{B} + \frac{c_D}{8m_Q^2} \left(\mathbf{D}.g\mathbf{E} - g\mathbf{E}.\mathbf{D} \right) + i \frac{c_S}{8m_Q^2} \boldsymbol{\sigma}.\left(\mathbf{D} \times g\mathbf{E} - g\mathbf{E} \times \mathbf{D} \right) \right\} \psi$$

 c_F , c_D and c_S are short distance matching coefficients calculable from QCD in powers of α_s . They depend on m_Q and μ (factorization scale) but not on the lower energy scales.

$$pNRQCD \text{ weak coupling regime } \Lambda_{QCD} \lesssim m_Q v^2$$
$$\mathcal{L}_{pNRQCD} = \int d^3 \mathbf{r} \operatorname{Tr} \left\{ S^{\dagger} (i\partial_0 - h_s(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_1, \mathbf{S}_2, \mu)) S + O^{\dagger} (iD_0 - h_o(\mathbf{r}, \mathbf{p}, \mathbf{P}_{\mathbf{R}}, \mathbf{S}_1, \mathbf{S}_2, \mu)) O \right\}$$
$$+ V_A(\mathbf{r}, \mu) \operatorname{Tr} \left\{ O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S + S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O \right\} + \frac{V_B(\mathbf{r}, \mu)}{2} \operatorname{Tr} \left\{ O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O + O^{\dagger} O \mathbf{r} \cdot g \mathbf{E} \right\} + \mathcal{O}(\mathbf{r}^2, \frac{1}{m_Q})$$

- $h_{s,o} = \frac{\mathbf{p}^2}{m_Q} + V_{s,o}(r,\mu) + \mathcal{O}(\frac{1}{m_Q})$, quantum mechanical hamiltonians with scale dependent potentials calculable in pertubation theory in $\alpha_s(m_Q v)$ and $1/m_Q$
- Spin symmetry holds in $h_{s,o}$ up to $\mathcal{O}(\frac{1}{m_o^2})$
- $S=S(\mathbf{r}, \mathbf{R}, t)$, $O=O(\mathbf{r}, \mathbf{R}, t)$ are the color singlet/octet wave function fields

11 / 49

• $\mathbf{E} = \mathbf{E}(\mathbf{R}, t)$ is the chromoelectric field

pNRQCD strong coupling regime $\Lambda_{QCD} \lesssim mv$

$$L_{\text{pNRQCD}} = \int d^3 \mathbf{x}_1 \int d^3 \mathbf{x}_2 \ S^{\dagger} (i\partial_0 - h_s(\mathbf{x}_1 - \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2)) S,$$

$$h_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2) = \frac{\mathbf{p}_1^2}{2m_Q} + \frac{\mathbf{p}_2^2}{2m_Q} + V_s(\mathbf{x}_1, \mathbf{x}_2, \mathbf{p}_1, \mathbf{p}_2, \mathbf{S}_1, \mathbf{S}_2),$$

$$V_s = V_s^{(0)} + rac{V_s^{(1)}}{m_Q} + rac{V_s^{(2)}}{m_Q^2} + \cdots,$$

All V_s s can be, and most of them have been, calculated on the lattice

V_s⁽⁰⁾ and V_s⁽¹⁾ are central Spin Symmetry holds
V_s⁽²⁾ contains spin and velocity dependent terms

pNRQCD strong coupling regime at LO

- Matching to NRQCD in the static limit ⇒ V_s⁽⁰⁾ is the ground state energy of two static color sources separated at a distance r
- Can be extracted from lattice calculations of the Wilson loop

13 / 49

pNRQCD strong coupling regime at LO Charmonium spin averages

$$m_c = 1.47 \, GeV \quad , \quad E_g^{c\bar{c}} = -0.242 \, GeV$$

nL	M _{cc}	M _{cīEXP}	<i>S</i> = 0	S=1
1S	3068 (0)	3068	0-+	1
1P	3494 (-31)	3525	1+-	$(0, 1, 2)^{++}$
2S	3678 (4)	3674	0-+	1
1D	3793 (20)	3773	2-+	$(1, 2, 3)^{}$
2P	3968 (41)	3927	1+-	$(0, 1, 2)^{++}$
3S	4130 (91)	4039	0-+	1
2D	4210 (57)	4153	2-+	$(1, 2, 3)^{}$
4S	4517 (96)	4421	0-+	1

・ 同 ト ・ ヨ ト ・ ヨ ト

э

pNRQCD strong coupling regime at LO Bottomonium spin averages

$$m_b = 4.88 \, GeV \quad , \quad E_g^{b\bar{b}} = -0.228 \, GeV$$

nL	$M_{b\bar{b}}$	M _{bbexp}	<i>S</i> = 0	S=1
1S	9442 (-3)	9445	0-+	1
1P	9908 (8)	10017	0-+	1
1D	10155 (-9)	10164	2-+	$(1, 2, 3)^{}$
2P	10265 (5)	10260	1+-	$(0, 1, 2)^{++}$
3S	10356 (1)	10355	0-+	1
4S	10638 (59)	10579	0-+	1
5S	10885 (9)	10876	0-+	1
6S	11110 (91)	11019	0-+	1

・ 同 ト ・ ヨ ト ・ ヨ ト

э

pNRQCD strong coupling regime beyond LO An example at $O(1/m_Q^2)$: the $V_{L_2S_1}^{(1,1)}$ spin-orbit potential

$$\mathcal{W}_{L_2S_1}^{(1,1)}(\mathbf{r}) = -rac{c_F}{r^2} i \mathbf{r} \cdot \lim_{T o \infty} \int_0^T dt \ t \, \langle\!\langle g \mathbf{B}(t,\mathbf{r}/2) imes g \mathbf{E}(0,-\mathbf{r}/2)
angle\!
angle$$

$$V_2 = V_{L_2S_1}^{(1,1)}/c_F$$
 , Koma, Koma, 09

Joan Soto (Universitat de Barcelona) Exotic quarkonia from effective field theories Elba

pNRQCD strong coupling regime beyond LO An example at $O(1/m_Q^2)$: the $V_{L_2S_1}^{(1,1)}$ spin-orbit potential

• Short distance constraint: it must coincide with the perturbative evaluation,

$$V^{(1,1)}_{L_2S_1}(r) \sim c_F rac{C_F lpha_{
m s}}{r^3} ~,~r
ightarrow 0$$

(Gupta, Radford, 81)

 Long distance constraint: it must coincide with the QCD effective string theory result

$$V^{(1,1)}_{L_2S_1}(r) = -rac{c_F g^2 \Lambda^2 \Lambda'}{\kappa r^2} \quad , r o \infty$$

(Perez-Nadal, JS, 08)

Exotic Heavy Quarkonia: The Static Limit

G.S. Bali at al. (TXL Collaboration), Phys. Rev. D62, (2000):054503

- Heavy Quarkonium: states built on the Σ_g^+ potential (color singlet)
- Heavy Hybrids: states built on the Π_u , ... potentials (color octet)
- Heavy Tetraquarks, Pentaquarks, ...: analogous to Hybrids but using operators that involve light quarks

18 / 49

• Molecular states: states built on $D\bar{D}$ or $B\bar{B}$

The Static Limit

Juge, Kuti, Morningstar (2002)

∃ →

< 行

The Static Limit

Capitani, Philipsen, Reisinger, Riehl, Wagner (2018)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

20 / 49

- The symmetry group of a diatomic molecule (two equal atoms separated at a distance *r*)
- The generators are
 - ► Rotations around the z-axis, labeled by $|L| = 0, 1, 2, \dots \equiv \Sigma, \Pi, \Delta, \dots$
 - \blacktriangleright Reflections about the xz plain, labeled by \pm (only important for Σ states)
 - ▶ Parity, labeled by g (positive) and u (negative). In the case of a $Q\bar{Q}$ pair is replaced by CP.
- When $r \to 0$ reduces to O(3) (plus C in the case of $Q\bar{Q}$), which implies short distance degeneracies

$$(\Sigma_u^-, \Pi_u)$$
 , $(\Sigma_g^-, \Pi_g, \Delta_g)$, $(\Sigma_g^{+\prime}, \Pi_g^{\prime})$, $(\Sigma_u^+, \Pi_u^{\prime}, \Delta_u)$, .

• When $r \to \infty$ the degeneracies of the QCD string must be reproduced

$$(\Pi_u)$$
, $(\Sigma_g^{+\prime}, \Pi_g, \Delta_g)$, $(\Sigma_u^+, \Sigma_u^-, \Pi_u^{\prime\prime}, \Pi_u^{\prime\prime}, \Delta_u, \Phi_u)$, ...

Heavy Hybrids (Oncala, JS, 17)

- ullet The Hybrid potentials have a minimum at $r\sim 1/\Lambda_{\it QCD}$
- The energy fluctuations about the minimum $\frac{1}{2}$

$$\Xi \sim \sqrt{\Lambda_{QCD}^3/m_Q} \ll \Lambda_{QCD}$$

- The energy scale Λ_{QCD} can be integrated out
- An EFT can be built for the short distance multiplets, in a way analogous to the strong coupling regime of pNRQCD
- We focus on the lowest lying doublet
 - \blacktriangleright At short distances it is described by tr(OB) in weak coupling pNRQCD
 - ► We introduce a wave function field H with the same symmetry properties as tr(OB) [tr(OB) ~ QBQ in QCD]
 - The potentials for H are obtained from fitting the static energies of Juge, Kuti, Morningstar (2002), and imposing:
 - ★ Weak coupling pNRQCD constraints at short distances, $V_{\Lambda_{\eta}^{\sigma}} \sim \frac{\alpha_{\rm s}}{2Nc} \frac{1}{r} + \cdots$
 - * QCD string constraints at long distances, $V_{\Lambda_{\eta}^{\sigma}} \sim \kappa r + \cdots$

Short distance operators

Table: Examples of short distance gluonic and light-quark operators for quarkonium hybrids and tetraquarks respectively, $\boldsymbol{q} = (u, d)$ and τ^a are isospin Pauli matrices.

Λ_η^σ	κ	Н	$H = H^{a}T^{a}(I = 0, I = 1)$
Σ_g^+	0++	1	$ar{m{q}}\mathcal{T}^{s}(1, au)m{q}$
Σ_u^{-}	1^{+-}	r·Β	$ar{m{q}} \; [(\hat{m{r}} imes m{\gamma}) \cdot, m{\gamma}] \; T^{s}(1, m{ au}) m{q}$
Π_u	1^{+-}	$\boldsymbol{\hat{r}}\times\boldsymbol{B}$	$ar{m{q}} \; [\hat{m{r}} \cdot m{\gamma}, m{\gamma}] \; T^{s}(1, m{ au}) m{q}$
$\Sigma_{g}^{+\prime}$	$1^{}$	r·Ε	$ar{m{q}}\left(m{\hat{r}}\cdotm{\gamma} ight){T}^{s}(1, au)m{q}$
Пg	1	$\mathbf{\hat{r}} \times \mathbf{E}$	$ar{m{q}}(m{\hat{r}} imesm{\gamma}){T}^{s}(1,m{ au})m{q}$

Tarrús Castellà, 19

For the tetraquark case:

- No lattice data
- Unkown Effective String theory at long distances, if it exists at all
- Only short distance weak coupling pNRQCD constraints can be implemented

Spectrum

$$\mathcal{L} = H^{i^{\dagger}} \left(\delta_{ij} i \partial_{0} - h_{Hij} \right) H^{j}$$

$$h_{Hij} = \left(-\frac{\nabla^{2}}{m_{Q}} + V_{\Sigma_{u}^{-}}(r) \right) \delta_{ij} + \left(\delta_{ij} - \hat{r}_{i} \hat{r}_{j} \right) V_{q}(r)$$

$$V_{q}(r) = V_{\Pi_{u}}(r) - V_{\Sigma_{u}^{-}}(r)$$

$$-\frac{1}{m_{Q}} \frac{\partial^{2}}{\partial r^{2}} + \left(\frac{\frac{(J-1)J}{m_{Q}r^{2}} + V_{q}(r)\frac{J+1}{2J+1}}{V_{q}(r)\frac{\sqrt{(J+1)J}}{2J+1}} - \frac{V_{q}(r)\frac{\sqrt{(J+1)J}}{2J+1}}{(J+1)(J+2)} + V_{q}(r)\frac{J}{2J+1}} \right) + V_{\Sigma_{u}^{-}}(r) \left[\left(\frac{P_{J}^{-}(r)}{P_{J}^{+}(r)} \right) = E \left(\frac{P_{J}^{-}(r)}{P_{J}^{+}(r)} \right) \right] \left(-\frac{1}{m_{Q}} \frac{\partial^{2}}{\partial r^{2}} + \frac{J(J+1)}{m_{Q}r^{2}} + V_{\Pi_{u}}(r) \right) P_{J}^{0}(r) = E P_{J}^{0}(r)$$

- $\mathbf{J} = \mathbf{L} + \mathbf{J}_g$
- $\bullet~\mbox{L}{=}$ orbital angular momentum of the heavy quarks
- $\mathbf{J}_g =$ total angular momentum of the gluons, $|\mathbf{J}_g| = 1$
- Heavy quark spin independence

Results for charm

NLj	w-f	сē	Hybrid	$\mathcal{J}^{PC}(S=0)$	$\mathcal{J}^{PC}(S=1)$	$\Lambda_{\eta}^{\epsilon}$
1s	S	3068		0-+	1	Σ_{σ}^{+}
25	S	3678		0-+	1	Σ_{σ}^{+}
35	S	4131		0-+	1	Σ _σ ⁺
$1p_0, (H_3)$	P ⁺		4486	0++	1+-	Σ
45	5	4512		0-+	1	Σ_{g}^{+}
2 <i>p</i> 0	P ⁺		4920	0++	1+-	Σ_
3 <i>p</i> 0	P ⁺		5299	0++	1+-	Σ
$4p_0$	P ⁺		5642	0++	1+-	Σ_{u}^{-}
1 <i>p</i>	S	3494		1+-	$(0, 1, 2)^{++}$	Σ_g^+
2p	S	3968		1+-	$(0, 1, 2)^{++}$	Σ_g^+
$1(s/d)_1, (H_1)$	P [±]		4011	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
$1p_1, (H_2)$	P ⁰		4145	1++	$(0, 1, 2)^{+-}$	Пи
$2(s/d)_1$	P [±]		4355	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
3р	5	4369		1+-	$(0, 1, 2)^{++}$	Σ_g^+
2 <i>p</i> ₁	P ⁰		4511	1++	$(0, 1, 2)^{+-}$	П
3(s/d)1	P^{\pm}		4692	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
$4(s/d)_1$	P [±]		4718	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
4 <i>p</i>	5	4727		1+-	$(0, 1, 2)^{++}$	Σ_g^+
3 <i>p</i> 1	P ⁰		4863	1++	$(0, 1, 2)^{+-}$	Пи
$5(s/d)_1$	P [±]		5043	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
5 <i>p</i>	5	5055		1+-	$(0, 1, 2)^{++}$	Σ_g^+
1 <i>d</i>	S	3793		2-+	$(1, 2, 3)^{}$	Σ_g^+
2 <i>d</i>	5	4210		2-+	$(1, 2, 3)^{}$	Σ_{g}^{+}
$1(p/f)_2, (H_4)$	P [±]		4231	2++	$(1, 2, 3)^{+-}$	$\Pi_{u} \Sigma_{u}^{-}$
$1d_2, (H_5)$	P^0		4334	2	$(1, 2, 3)^{-+}$	П
$2(p/f)_2$	P [±]		4563	2++	$(1, 2, 3)^{+-}$	$\Pi_u \Sigma_u^-$
3 <i>d</i>	S	4579		2-+	$(1, 2, 3)^{}$	Σ_g^+
2d ₂	P ⁰		4693	2	$(1, 2, 3)^{-+}$	Π.
$3(p/f)_2$	P [±]		4886	2++	$(1, 2, 3)^{+-}$	$\Pi_u \Sigma_u^-$
4 <i>d</i>	5	4916		2-+	(1, 2, 3)	Σ_g^+
$4(p/f)_{2}$	P [±]		4923	2++	$(1, 2, 3)^{+-}$	$\Pi_u \Sigma_u^-$
3d2	P ⁰		5036	2	(1, 2, 3) ⁻⁺	Пи

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Results for bottom

NLJ	w-f	bb	Hybrid	$\mathcal{J}^{PC}(S=0)$	$\mathcal{J}^{PC}(S=1)$	$\Lambda_{\eta}^{\epsilon}$
1s	S	9442		0-+	1	Σ_{σ}^{+}
2s	S	10009		0-+	1	Σ_{σ}^{+}
3s	S	10356		0-+	1	Σ°_{σ}
4s	5	10638		0-+	1	Σ_α
$1p_0, (H_3)$	P ⁺		11011	0++	1+-	Σ
2 <i>p</i> ₀	P ⁺		11299	0++	1+-	Σ
3 <i>p</i> 0	P ⁺		11551	0++	1+-	Σ
$4\rho_0$	P^+		11779	0++	1+-	Σ_{μ}^{-}
1p	S	9908		1+-	$(0, 1, 2)^{++}$	Σ_g^+
2р	S	10265		1+-	$(0, 1, 2)^{++}$	Σ_{σ}^{+}
3р	S	10553		1+-	$(0, 1, 2)^{++}$	Σ _σ ⁺
$1(s/d)_1, (H_1)$	P^{\pm}		10690	1	$(0, 1, 2)^{-+}$	Π"Σ"
$1p_1, (H_2)$	P^0		10761	1++	$(0, 1, 2)^{+-}$	Π,,
4p	5	10806		1+-	$(0, 1, 2)^{++}$	Σ_{g}^{+}
$2(s/d)_1$	P^{\pm}		10885	1	$(0, 1, 2)^{-+}$	ΠΣ
2p1	P^0		10970	1++	$(0, 1, 2)^{+-}$	Π,
5p	S	11035		1+-	$(0, 1, 2)^{++}$	Σ_g^+
$3(s/d)_1$	P±		11084	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
$4(s/d)_1$	P^{\pm}		11156	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
3 <i>p</i> ₁	P ⁰		11175	1++	$(0, 1, 2)^{+-}$	Π_u
бр	S	11247		1+-	$(0, 1, 2)^{++}$	Σ_g^+
$5(s/d)_1$	P±		11284	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
1d	S	10155		2 ⁻⁺	$(1, 2, 3)^{}$	Σ_g^+
2d	5	10454		2 ⁻⁺	$(1, 2, 3)^{}$	Σ_{g}^{+}
3d	5	10712		2-+	$(1, 2, 3)^{}$	Σ_g^+
$1(p/f)_2, (H_4)$	P^{\pm}		10819	2++	$(1, 2, 3)^{+-}$	Π"Σ"
$1d_2, (H_5)$	P^0		10870	2	$(1, 2, 3)^{-+}$	Π,
4 <i>d</i>	5	10947		2-+	$(1, 2, 3)^{}$	Σ_{g}^{+}
$2(p/f)_2$	P±		11005	2++	(1, 2, 3)+-	$\Pi_u \check{\Sigma}_u^-$
2d ₂	P^0		11074	2	$(1, 2, 3)^{-+}$	Π,,
5d	5	11163		2-+	$(1, 2, 3)^{}$	Σ_g^+
$3(p/f)_{2}$	P±		11197	2++	$(1, 2, 3)^{+-}$	ΠΣ
3 <i>d</i> ₂	P^0		11275	2	$(1, 2, 3)^{-+}$	Пи
$4(p/f)_{2}$	P [±]		11291	2++	$(1, 2, 3)^{+-}$	$\Pi_u \Sigma_u^-$
			•	▫▸◂◲▸◂	문에서 문어 문	<u>= १२</u>

Joan Soto (Universitat de Barcelona

Exotic quarkonia from effective field theories

Elba 2019, 26/06/19

26 / 49

Comments

- Only inputs:
 - Lattice potential
 - Heavy Quarkonium spectrum
 - $m_c = 1.47$ GeV, $m_b = 4.88$ GeV
- Braaten, Langmack, Hudson Smith, 2014
 - Neglect $\Pi_u \Sigma_u^-$ coupled channel
 - Fix the lowest lying state for each potential to the Hadron Spectrum Collaboration, 2012 (HSC)
- Berwin, Brambilla, Tarrús Castellà, Vairo, 2015
 - Based on the weak coupling regime of pNRQCD
 - Equivalent equations, different potentials and normalization
 - Our results are consistent with the lower end of their error bars
- The hierarchy of the lower lying hybrid multiplets agrees with the lattice HSC 2016 for charmonium but our numbers are about 380-150 MeV lower

Hybrids in XYZ?

State	М	J ^{PC}	XYZ	M _{exp}	Γ _{exp}	J_{exp}^{PC}
$1(s/d)_1$	4011	$1^{}$, $(0, 1, 2)^{-+}$	Y(4008)	4008^{+121}_{-49}	226 ± 97	1
$1p_1$	4145	1^{++} , $(0, 1, 2)^{+-}$	Y(4140)	$4144,5\pm2,6$	15^{+11}_{-7}	1++
			X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+
			X(4320)	4320±17	101±30	1
			X(4350)	4351±5	13^{+18}_{-10}	??+
$2(s/d)_1$	4355	$1^{}$, $(0, 1, 2)^{-+}$	Y(4360)	4361 ± 13	74 ± 18	$1^{}$
			Y(4390)	4391±6	$139{\pm}16$	$1^{}$
$1p_{0}$	4486	0++,1+-	X(4500)	4506^{+16}_{-19}	92^{+30}_{-29}	0++
$3(s/d)_1$	4692	$1^{}$, $(0, 1, 2)^{-+}$	Y(4660)	4664 ± 12	48 ± 15	1
			X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1
$2(s/d)_1$	10885	$1^{}$, $(0, 1, 2)^{-+}$	$Y_b(10890)$	$10888,4\pm3$	$30,7^{+8,9}_{-7,7}$	1

- C-parity implies that only spin zero hybrids would have been observed, except for *X*(4350).
- Decays to vector heavy quarkonium states have been observed for all spin zero 1⁻⁻ states above, except for X(4630) and Y(4390), which disfavors the hybrid interpretation due to spin symmetry (Braaten, Langmack, Hudson Smith, 14; Berwin, Brambilla, Tarrús Castellà, Vairo, 15).

Mixing with Heavy Quarkonium (Oncala, JS, 17)

• States with the same quantum numbers may mix

- Mixing is a $1/m_Q$ suppressed effect
- If the energy gap $\Delta E \lesssim \Lambda^2_{QCD}/m_Q$ it becomes next to leading order
- For $\Lambda_{QCD} = 400$ MeV: $\Delta E|_c \sim 100$ MeV, $\Delta E|_b \sim 30$ MeV

NLJ	w-f	сē	Hybrid	$\mathcal{J}^{PC}(S=0)$	$\mathcal{J}^{PC}\left(S=1 ight)$	$\Lambda_{\eta}^{\epsilon}$
3 <i>s</i>	S	4131		0-+	1	Σ_g^+
$1p_0$	P^+		4486	0++	1^{+-}	Σ_u^{-}
2 <i>p</i>	5	3968		1+-	$(0, 1, 2)^{++}$	Σ_g^+
$1(s/d)_1$	P^{\pm}		4011	1	$(0, 1, 2)^{-+}$	$\Pi_u \tilde{\Sigma}_u^-$
$1p_1$	H^0		4145	1++	$(0, 1, 2)^{+-}$	Π_u
$2(s/d)_1$	P^{\pm}		4355	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
3р	S	4369		1+-	(0,1,2) ⁺⁺	Σ_g^+
2 <i>d</i>	S	4210		2-+	(1 , 2, 3)	Σ_g^+
$1(p/f)_{2}$	P±		4231	2++	$(1, 2, 3)^{+-}$	$\Pi_u \Sigma_u^-$

NLJ	w-f	bb	Hybrid	$\mathcal{J}^{PC}(S=0)$	$\mathcal{J}^{PC}\left(S=1 ight)$	Λ_η^ϵ
$2(s/d)_1$	P±		10885	1	$(0, 1, 2)^{-+}$	$\Pi_u \Sigma_u^-$
4 <i>d</i>	S	10947		2-+	$(1, 2, 3)^{}$	Σ_g^+

Elba 2019, 26/06/19 29 / 49

Mixing with Heavy Quarkonium

• Symmetries imply

$$\mathcal{L}_{\text{mixing}} = \operatorname{tr} \left[S^{\dagger} V_{S}^{ij} \left\{ \sigma^{i}, H^{j} \right\} + \text{h.c.} \right]$$

• Matching to NRQCD at O($1/m_Q$) implies $V_S^{ij}({f r})\sim rac{1}{m_Q} imes$

• $\mathcal{O}^i \sim B^i$

This term mixes S = 0 Hybrids with S = 1 Quarkonium, and may explain spin symmetry violating decays of the 1^{--} Y states.

30 / 49

Mixing with Heavy Quarkonium

•
$$V_{S}^{ij} = (\delta^{ij} - \hat{r}^{i}\hat{r}^{j})V_{S}^{\Pi_{u}} + \hat{r}^{i}\hat{r}^{j}V_{S}^{\Sigma_{u}^{-}}$$

- No lattice evaluation of $V_{S}^{\Pi_{u}}$, $V_{S}^{\Sigma_{u}^{-}}$, so far
- Short distance constraints: pNRQCD at weak coupling implies for $r \rightarrow 0$

$$V_S^{\Pi_u}(r) \sim V_S^{\Sigma_u^-}(r)
ightarrow \pm rac{\lambda^2}{m_Q} = const.$$

• Long distance constraints: QCD string (EST) implies for $r
ightarrow \infty$

$$V_{\mathcal{S}}^{\boldsymbol{\Sigma}_{u}^{-}}(r)
ightarrow -rac{2\pi^{2}\Lambda'''}{m_{Q}\kappa r^{3}}\,, \quad V_{\mathcal{S}}^{\Pi_{u}}(r)
ightarrow \sqrt{rac{\pi^{3}}{\kappa}}rac{\Lambda'}{m_{Q}r^{2}}$$

 κ, Λ' and Λ''' also appear in the spin dependent potentials (Perez-Nadal, JS, 2011; Brambilla, Groher, Martinez, Vairo, 2014)
 Can be extracted from available lattice results of the long distance potentials (Koma, Koma, 2007; 2010)

$$\kappa \sim 0.187 {
m GeV}^2$$
 , $\Lambda' \sim -59 {
m MeV}$, $\Lambda''' \sim \pm 230 {
m MeV}$

Modeling the mixing potential

$$\begin{split} V_{S}^{\Pi}[\pm -](r) &= \frac{\lambda^{2}}{m_{Q}} \left(\frac{\pm 1 - \left(\frac{r}{r_{\Pi}}\right)^{2}}{1 + \left(\frac{r}{r_{\Pi}}\right)^{4}} \right) , \quad r_{\Pi} = \left(\frac{|\Lambda'| \pi^{\frac{3}{2}}}{2\lambda^{2}\kappa^{\frac{1}{2}}} \right)^{\frac{1}{2}} \\ V_{S}^{\Sigma}[\pm \pm](r) &= \frac{\lambda^{2}}{m_{Q}} \left(\frac{\pm 1 \pm \left(\frac{r}{r_{\Sigma}}\right)^{2}}{1 + \left(\frac{r}{r_{\Sigma}}\right)^{5}} \right) , \quad r_{\Sigma} = \left(\frac{|\Lambda''| \pi^{2}}{\lambda^{2}\kappa} \right)^{\frac{1}{3}} \end{split}$$

- Simple interpolation that allows for a sign flip between short and long distance behavior
- We focus on charm and scan $\lambda = 100, 300, 600$ MeV
- $V_S^{\Pi}[+-]$ with $V_S^{\Sigma}[++]$ and $\lambda = 600$ MeV produce the maximum mixing
- The spin symmetry violating decays of Y(4008) (29% S=1), Y(4360) (35% S=1) and Y(4660) (17% S=1) are qualitatively explained
- It would be important that lattice calculations confirm the signs and size of the mixing potentials

Hybrid-Quarkonium coupled equations

The S = 0 case:

- $P_{0 \mathcal{JM}}^{L}(r), J = \mathcal{J}, L = J \pm 1(\pm), J(0)$ $S_{1 \mathcal{JM}}^{L}(r), L = \mathcal{J} \pm 1(\pm), \mathcal{J}(0)$
- $S_{1\mathcal{JM}}(r), L = \mathcal{J} \pm I(\pm), \mathcal{J}(0)$
- ► 2 coupled equations for $S^0_{1JM}(r)$, $P^0_{0JM}(r)$
- ▶ 4 coupled equations for $S_{1\mathcal{JM}}^+(r), S_{1\mathcal{JM}}^-(r), P_{0\mathcal{JM}}^+(r), P_{0\mathcal{JM}}^-(r)$

The S = 1 case:

- ► $P_{1\mathcal{JM}}^{LJ}(r)$, $J = \mathcal{J} \pm 1(\pm)$, $\mathcal{J}(0)$, $L = J \pm 1(\pm)$, J(0)
- $S_{0\mathcal{JM}}(r), L = \mathcal{J}$
- 2 coupled equations $P_{1\mathcal{JM}}^{+0}(r), P_{1\mathcal{JM}}^{-0}(r)$
- ► 6 coupled equations $S_{0 \mathcal{JM}}(r), P_{1 \mathcal{JM}}^{++}(r), P_{1 \mathcal{JM}}^{-+}(r), P_{1 \mathcal{JM}}^{+-}(r), P_{1 \mathcal{JM}}^{--}(r), P_{1 \mathcal{JM}}^{00}(r)$

Results

Resonance	J ^{PC}	Assignement	Mass (MeV)	Observations
X(3823)	2	1 <i>d</i>	3792	
X(3860)	$0 \mathrm{or} 2^{++}$	2р	3968	
X(3872)	1++	2р	3967	
X(3915)	$0 \operatorname{or} 2^{++}$	2 <i>p</i>	3968	
X(3940)	? ^{??}	2р	3968	
Y(4008)	1	$1(s/d)_1$	4004	mixing
X(4140)	1++	??	??	$1p_1$ does not decay to quarkonium
X(4160)	? ^{??}	$1p_1$	4146	
Y(4220)	1	2 <i>d</i>	4180	$Y(4260) \rightarrow Y(4220)$, mixing
X(4230)	1	2 <i>d</i>	4180	X(4230) = Y(4220), mixing
X(4350)	? ?+	$2(s/d)_1$ or 3p	4355 or 4369	
Y(4320)	1	$2(s/d)_1$	4366	mixing
Y(4360)	1	$2(s/d)_1$	4366	Y(4360) = Y(4320)?
X(4390)	1	$2(s/d)_1$	4366	Y(4390) = Y(4360)?
X(4500)	0++	$1p_0$	4566	not enough mixing
Y(4630)	1	3 <i>d</i>	4559	
Y(4660)	1	$3(s/d)_1$	4711	mixing
X(4700)	0++	4 <i>p</i>	4703	
$\Upsilon(10860)$	1	5 <i>s</i>	10881	mixing
$Y_{\rm b}(10890)$	1	$2(s/d)_1$	10890	mixing
$\Upsilon(11020)$	1	4 <i>d</i>	10942	

イロト イヨト イヨト イヨト

2

• A recent combined fit to

 $e^+e^- \rightarrow \omega \chi_{c0}, \pi^+\pi^-h_c, \pi^+\pi^-J/\psi, \pi^+\pi^-\psi$ (3686) only needs Y(4220), Y(4390) and Y(4660) in order to describe data

• Implies Y(4220) = X(4230) and Y(4390) = Y(4360) = Y(4320), consistent with our spectrum

Zhang, Yuan, Wang, 18

1^{--} charmonium spectrum

• Y(4008) has not been confirmed by LHCb and BESIII. If it is not there:

NLJ	$\lambda = 0.6$	Hybrid %	PDG
1 <i>s</i>	3.001	4	J/ψ
2 <i>s</i>	3.628	14	$\psi(2S)$
1 <i>d</i>	3.687	12	ψ (3773)
$1(s/d)_1$	4.014	71	$\psi(4040)$
3 <i>s</i>	4.107	10	ψ (4160)
2 <i>d</i>	4.180	79	X(4230) = X(4260) = Y(4220)
$2(s/d)_1$	4.366	65	X(4360) = Y(4390)
4 <i>s</i>	4.497	0	ψ (4415)
3d	4.559	8	Y(4630)
$3(s/d)_1$	4.711	83	X(4660)

• Decays to h_c should be observed for $\psi(4040)$, X(4230)/X(4260), X(4360) and X(4660)

1^{--} bottomonium spectrum

NLj	$\lambda = 0.6$	Hybrid %	PDG
1 <i>s</i>	9.441	0	$\Upsilon(1S)$
2 <i>s</i>	10.000	2	$\Upsilon(2S)$
1 <i>d</i>	10.133	2	$\Upsilon(1D)$
3 <i>s</i>	10.352	0	Υ(3 <i>S</i>)
2 <i>d</i>	10.440	2	$\Upsilon(10.520)$? (Belle, 19)
4 <i>s</i>	10.635	1	$\Upsilon(4S)$
$1(s/d)_1$	10.688	79	??
3d	10.713	56	$\Upsilon(10.750)$ (Belle, 19)
5 <i>s</i>	10.881	17	$\Upsilon(10860)$
$2(s/d)_1$	10.886	75	$Y_b(10890)$
4 <i>d</i>	10.942	11	Ƴ(11020)

• The 17% hybrid component of $\Upsilon(10860)$ may explain the observed spin symmetry violating decays to h_b

Decay to lowest lying Heavy Quarkonium

- If the energy gap ΔE to lowest lying heavy quarkonium is ΔE ≥ 1GeV ⇒ a perturbative estimate makes sense.
- If $\Delta E \langle H | r | Q \bar{Q} \rangle \ll 1 \Rightarrow$ weak coupling pNRQCD can be used

$$\Gamma(H_m \to S_n) = \frac{4 \alpha_{\rm s} T_F}{3 N_c} \langle H_m | r^i | S_n \rangle \langle S_n | r^i | H_m \rangle (\Delta E_n)^3$$

Results

• Hybrids with L = J do not decay to Heavy Quarkonium

Charm

$NL_J ightarrow nL$	ΔE (MeV)	$\langle r \rangle_{nm} (\text{GeV}^{-1})$	$ \Delta E \langle r \rangle_{nm} $	Γ (MeV)
$1 p_0 ightarrow 2 s$	808	0.40	0.32	6.1
$2(s/d)_1 ightarrow 1p$	861	0.63	0.54	19

Bottom

$NL_J \rightarrow nL$	ΔE (MeV)	$\langle r \rangle_{nm} (\text{GeV}^{-1})$	$ \Delta E \langle r \rangle_{nm} $	Γ (MeV)
$1 ho_0 ightarrow 1 s$	1569	-0.416	0.65	31
$1 p_0 ightarrow 2 s$	1002	0.432	0.43	8.7
$2p_0 ightarrow 1s$	1857	-0.422	0.78	53
$2p_0 ightarrow 2s$	1290	-0.137	0.18	1.9
$2p_0 ightarrow 3s$	943	0.462	0.44	8.3
$2(s/d)_1 ightarrow 1p$	977	0.470	0.46	9.6

Hyperfine Splittings Solé; JS, 17

- They appear at $\mathcal{O}(1/m_Q)$ $(\mathcal{O}(1/m_Q^2))$ in hybrids (quarkonium)
- They are controlled by a single operator

$$i\epsilon^{ijk}V^{S}(r)tr\left(H^{i\dagger}\left[\sigma^{k},H^{j}\right]\right)$$

• It leads to the following mass formulae

$$\frac{M_{1\,J+1} - M_{0\,J}}{M_{1\,J} - M_{0\,J}} = -J \quad \frac{M_{1\,J-1} - M_{0\,J}}{M_{1\,J} - M_{0\,J}} = J + 1$$

$$(s/d)_1: \quad M_{2^{-+}} + M_{0^{-+}} = M_{1^{-+}} + M_{1^{--}} \\ p_1: \quad M_{2^{+-}} + M_{0^{+-}} = M_{1^{+-}} + M_{1^{++}} \\ (p/f)_2: \quad M_{3^{+-}} + M_{1^{+-}} = M_{2^{+-}} + M_{2^{++}} \\ d_2: \quad M_{3^{-+}} + M_{1^{-+}} = M_{2^{-+}} + M_{2^{--}} \\ \end{array}$$

Consistent with the values of the lattice HSC

• Induces mixing between different hybrid states

Hyperfine Splittings

(Brambilla, Kin Lai, Segovia, Tarrús Castellà, Vairo, 18)

- $V^{S}(r)
 ightarrow {
 m const.}$ when r
 ightarrow 0
- $\bullet\,$ Calculate the relevant $1/m_Q^2$ potentials in the above limit
- Fit the unkown constants to reproduce the splitting of the HSC for charmonium
- Predict the hyperfine splittings for bottomonium

Conclusions

- Exotic Hadrons containing two heavy quarks can be studied in an EFT framework
 - NRQCD holds
 - Given the light degrees of freedom, an EFT similar to pNRQCD in the strong coupling regime can be built.
 - * The LO is nothing but the Born-Oppenheimer approximation.
 - ★ Lattice inputs are needed
- Heavy Hybrids containing $c\bar{c}$ or $b\bar{b}$ have been studied from QCD in a largely model independent way (EFT+lattice inputs)
 - ► The lower lying states have been calculated at LO in the $1/m_Q$ expansion of the potentials, including the $\Sigma_u^- \Pi_u$ mixing.
 - The mixing with Heavy Quarkonium states has been addressed
 - ★ It is an important source of spin symmetry violations that explains the decays of certain spin zero Hybrids to spin one Quarkonia.

Conclusions

- Heavy Hybrids containing $c\bar{c}$ or $b\bar{b}$ have been studied from QCD in a largely model independent way (EFT+lattice inputs) (Cont.)
 - The decay width to lower lying Heavy Quarkonium states has been estimated
 - * The decays of J = L states are forbidden
 - ▶ Spin and velocity dependent terms in the hybrid potentials enter at $O(1/m_Q)$
 - ★ Model independent formulas for the hyperfine splittings have been produced
 - ► A number of them can be identified with XYZ states (Y(4008), X(4160), X(4350), Y(4320)/Y(4360)/Y(4390), Y(4660), Y_b(10890))

$D_{h\infty}$

- The symmetry group of a diatomic molecule (two equal atoms separated at a distance *r*)
- The generators are
 - ► Rotations around the z-axis, labeled by $|L| = 0, 1, 2, \dots \equiv \Sigma, \Pi, \Delta, \dots$
 - \blacktriangleright Reflections about the xz plain, labeled by \pm (only important for Σ states)
 - ▶ Parity, labeled by g (positive) and u (negative). In the case of a $Q\bar{Q}$ pair is replaced by CP.
- When $r \to 0$ reduces to O(3) (plus C in the case of $Q\bar{Q}$)
 - Implies short distance degeneracies

$$(\Sigma_u^-, \Pi_u)$$
, $(\Sigma_g^-, \Pi_g, \Delta_g)$, (Σ_g^+', Π_g') , $(\Sigma_u^+, \Pi_u', \Delta_u)$, ...

(Brambilla, Pineda, JS, Vairo, 99)

String breaking

Bali, Neff, Duessel, Lippert, Schilling, 2005

String breaking

Bulava, Hörz, Knechtli, Koch, Moir, Morningstar, Peardon, 2019

XYZ with $c\bar{c}$ (Olsen, 15)

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)
X(3872)	$3871.68 {\pm} 0.17$	< 1.2	1^{++}	$B ightarrow K + (J/\psi \pi^+ \pi^-)$
				$par{p} ightarrow (J/\psi \pi^+\pi^-) +$
				$B ightarrow K + (J/\psi \pi^+ \pi^- \pi^0)$
				$B ightarrow K + (D^0 ar{D}^0 \pi^0)$
				$B ightarrow K + (J/\psi\gamma)$
				$B ightarrow {\it K} + (\psi'\gamma)$
				$pp ightarrow (J/\psi \pi^+\pi^-) +$
X(3915)	3917.4 ± 2.7	$28^{+10}_{-\ 9}$	0++	$B ightarrow K + (J/\psi\omega)$
				$e^+e^- ightarrow e^+e^- + (J/\psi\omega)$
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$0(?)^{-(?)+}$	$e^+e^- ightarrow J/\psi + (D^*ar D)$
				$e^+e^- ightarrow J/\psi + ()$
G(3900)	3943 ± 21	$52{\pm}11$	$1^{}$	$e^+e^- o \gamma + (Dar{D})$
Y(4008)	4008^{+121}_{-49}	$226{\pm}97$	$1^{}$	$e^+e^- ightarrow \gamma + (J/\psi \pi^+\pi^-)$
Y(4140)	4144 ± 3	17 ± 9	? ^{?+}	$B ightarrow K + (J/\psi \phi)$
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$0(?)^{-(?)+}$	$e^+e^- ightarrow J/\psi + (D^*ar{D})$
	=0			

State	M (MeV)	Γ (MeV)	J ^{PC}	Process (decay mode)
Y(4260)	4263 ⁺⁸ _9	95±14	1	$e^+e^- ightarrow \gamma + (J/\psi \pi^+\pi^-)$
				$e^+e^- o (J/\psi\pi^+\pi^-)$
				$e^+e^- ightarrow (J/\psi\pi^0\pi^0)$
Y(4360)	4361 ± 13	$74{\pm}18$	$1^{}$	$e^+e^- o \gamma + (\psi'\pi^+\pi^-)$
X(4630)	$4634^{+ 9}_{-11}$	92^{+41}_{-32}	$1^{}$	$e^+e^- ightarrow \gamma \left(\Lambda^+_c \Lambda^c ight)$
Y(4660)	$4664{\pm}12$	$48{\pm}15$	1	$e^+e^- o \gamma + (\psi' \pi^+\pi^-)$
$Z_{c}^{+}(3900)$	$\textbf{3890}\pm\textbf{3}$	33 ± 10	1^{+-}	$Y(4260) o \pi^- + (J/\psi \pi^+)$
				$Y(4260) ightarrow \pi^- + (Dar{D}^*)^+$
$Z_{c}^{+}(4020)$	4024 ± 2	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) o \pi^- + (h_c \pi^+)$
				$Y(4260) o \pi^- + (D^*ar{D}^*)^+$
$Z_{c}^{0}(4020)$	4024 ± 4	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) o \pi^0 + (h_c \pi^0)$
$Z_1^+(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$B ightarrow {\cal K} + (\chi_{c1} \pi^+)$
$Z^{+}(4200)$	4196_{-32}^{+35}	370^{+99}_{-149}	1^{+-}	$B ightarrow K + (J/\psi \pi^+)$
$Z_2^+(4250)$	4248^{+185}_{-45}	$177^{+\bar{3}2\bar{1}}_{-72}$??+	$B ightarrow K + (\chi_{c1} \pi^+)$
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1^{+-}	$B ightarrow {\cal K} + (\psi' \pi^+)$
				$B ightarrow K + (J\psi \pi^+)$

Joan Soto (Universitat de Barcelona) Exotic quarkonia from effective field theories Elba 2019,

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

XYZ with $b\bar{b}$ (Olsen, 15)

State	M (MeV)	Γ (MeV)	J ^{PC}	Process (decay mode)
$Y_b(10890)$	$10888.4{\pm}3.0$	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- ightarrow (\Upsilon(nS) \pi^+\pi^-)$
$Z_b^+(10610)$	$10607.2{\pm}2.0$	$18.4{\pm}2.4$	1^{+-}	$\Upsilon(5S) ightarrow \pi^- + (\Upsilon(1,2,3S) \pi^+)$
				$\Upsilon(5S) ightarrow \pi^- + (h_b(1,2P) \pi^+)$
				$\Upsilon(5S) o \pi^- + (Bar{B}^*)^+$
$Z_b^0(10610)$	10609 ± 6		1^{+-}	$\Upsilon(5S) o \pi^0 + (\Upsilon(1,2,3S)\pi^0)$
$Z_{b}^{+}(10650)$	$10652.2{\pm}1.5$	$11.5{\pm}2.2$	1^{+-}	$\Upsilon(5S) ightarrow \pi^- + (\Upsilon(1,2,3S) \pi^+)$
				$\Upsilon(5S) ightarrow \pi^- + (h_b(1,2P) \pi^+)$
				$\Upsilon(5S) o \pi^- + (B^*ar{B}^*)^+$

A D N A B N A B N A B N

3