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Summary

. What is multimessenger astronomy? What is the connection with
nuclear physics?

. What is the nuclear physics input affecting astrophysical
observables? (light curves, abundances, luminosity, etc.)

. What are the measurements that can be performed at LNS?
. What are the apparatuses to be used?
. Additional explosive scenarios

. Measurements and papers in nuclear astrophysics in 2017 @LNS



r process nucleosynthesis

- It produces ~“50% of the stable isotopes heavier than Fe
- Candidate site: neutron star mergers
- Nuclear physics input:

Masses, shell structure, half lives, fission parameter, P values

(probability of neutron emission following [ decay)

Example: animation of the

coalescence of two neutron

S. Rosswog

stars with masses 1.4 and 1.5

http://compact-merger.astro.su.se/Moviesl/ns14 ns15_6mio_3D_density_v5.mov

t = 2.06E-03 s N, = B.16E+29 cm™®
p = 2.15E+06 g cm™® S, = 9.96E+01 MeV
T = 8.37E+09 K Y,/Y, = 3.72E+07
X, = 6.29E-01 Ty/Tp = 1.58E+15

https://fr.cdn.v5.futura-sciences.com/sources/images/dossier/rte/18FuturaSciences.gif

Nuclear physics

Stellar
modelling

input

Observations
(GW, e.m.
radiations,
neutrinos)

Some review papers:

Annu. Rev. Nucl. Part. Sci. 67 (2017) 253
Prog. Part. Nucl. Phys. 86 (2016) 86
Prog. Part. Nucl. Phys. 66 (2011) 346

:> Multimessenger
astronomy




Proton Number (2Z2)

Nuclear physics input: f-delayed n-emission
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. A1 41 “Delayed”: emission with f-decay half-life of the precursor nucleus AZ
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Atomic physics: measurement of opacities
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Nuclear physics input: n-capture reactions

Little or no data on n-capture cross 100 . . . : —
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LNS and multimessenger astronomy
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Pandora @ LNS

Production of controlled plasma at the same
densities of kilonovae ejecta at peak
luminosity

- Measurement of opacities of different
mixtures of atomic species

—> Accurate predictions of kilonovae light
curves

— Constraining r-process yields and kilonovae
energetics

Eur. Phys. J. A53 (2017) 145

Cocktail beams
—> Possibility to measure many Bn
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the ECK sources, Lycliotron and FRIBS
(FRAISE) upgrade will extend the range
of the measured nuclei

Polycube neutron detector



Efficiency

More on [f-delayed n-emission

<Eiovel (MeV)
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Opportunities of cocktail beams—> In previous experiments, an opportunity

for parallel studies by means of time correlation and half-life measurements

PHYSICAL REVIEW C 95, 064322 (2017)
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|

FRIBS/FRAISE complementary to other facilities (mostly using U
fragmentation)

Target measurements (IF POSSIBLE!) = reaching A=150, where few measurements are present

- Study of contaminants: which would represent a removable background?
- Effect of daughter nuclei: adding up to the time correlation spectra



Neutron-capture reactions

Direct measurements of neutron-induced reactions on radioactive nuclei are impossible unless lifetimes are large enough to
allow for target preparation.

- Need for indirect techniques
O (n,y) reactions

1. Spectroscopy of neutron rich nuclei = possible use of CHIMERA

2. Use of the surrogate reaction approach  pHysicaL ReviEW LETTERS 121, 052501 (2018)

Q (n,a) or (n,p) reactions

1. Application of the Trojan Horse Method  Rrep. Prog. Phys. 77 (2014) 106901

>
d p
Test measurements: ®Li(n,a)3H, 1°B(n,a)’Li, 17O(n,a)*C n
(using stable nuclei) 15N
18|: 19|:*
Ongoing analysis: 18F(n,a)>N (04

(short-lived radioactive nucleus + neutron)



Constraining r-process abundances

The r-process pattern is extracted from the solar system abundances by subtracting the s-process (and p-process)
contributions

through models, the elemental yield is used to get information of r-process sites (entropy, Y., explosion mechanism, role of
hydrodynamics)

s-process nucleosynthesis plays a crucial to constrain the r-process. At LNS, an intense activity on the s-process is ongoing
focusing on:

1. Investigating the neutron sources of the s-process: 3C(a,n)1%0 and ?2Ne(a,n)*>Mg

2. Constraining astrophysical models of s-process by studying production and destruction of probe nuclei (mainly *°F)
Fluorine is very sensitive on the stellar physical conditions, so its abundance allows us to see “inside” the s-process site
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Other multimessenger astronomy cases

In CAls (the oldest solid of the Solar System): . 26 26 . :
the inferred 6.5 x 10° < (25A7Al), <2 x 105, Observation of 1808.65 keV y-rays from the decay of “°Al to “°Mg in the interstellar

There is no correlation between O- and Mg-isotope compositions. medium demonstrated that Al nucleosynthesis does occur in the present Galaxy.

—>2Al was injected into the 26Al-poor protosolar nebula, possibly b

from a neighboring massive star. The present-day equilibrium mass of 2°Al was found to be 2.8+0.8 M.,

Presolar grains

Corundum, hibonite and carbonaceous chondrites formed before t The jrregular distribution of 26Al emission seen along the plane of the Galaxy

the solar system show excesses in 2Mg. The highest ratios are foul

originated in supernova ejecta, but the largest number of grains wi prOVided the main argument for the Idea that maSSiVE stars dOmlnate the
>3 x 103 (at least 100 times larger than the solar value) are of the t prOdUCtiOn Of 26A|. (Dlehl et aI 2006)

come from low mass stars.

In CAls (the oldest solid of the Solar System):

the inferred 6.5 x 10~ < (2°Al/?7Al), <2 x 10°®.

—>26Al was injected into the 2°Al-poor protosolar nebula, possibly by a wind from
a neighboring massive star.

Presolar grains:

Corundum, hibonite and carbonaceous chondrites formed before the birth of
the solar system show excesses in 22Mg. The highest ratios are found in grains
originated in supernova ejecta, but the largest number of grains with 26Al/?’Al >3
x 1073 (at least 100 times larger than the solar value) are of the type that come
from low mass stars.




STATUS OF THE ART

PHYSICAL REVIEW C 76, 045804 (2007)
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FIG. 5. °Al(n, ag + @1)*Na cross section determined in this
work (black line) compared with the °Al(n, ap)**Na cross section
obtained by Koehler ef al. [11] (gray line).
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Two data sets available at low energies, showing
large discrepancy.

- Koehler et al. (1993)

- De Smet et al. (2007)

The MACS from the latter work s have to be
considered as lower limits for kT above 22 keV



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 193:16 (23pp), 2011 March

STATUS OF THE ART

Temperatures of interest 2 No experimental data available

26 23
Al(n,a)*°Na . .
-~ 10°r (n.c) E » 1.1 GK (convective shell C/Ne burning)
-:—m Koehler Reaction” Rate Multiplied By
g \ Non-Smoker 100 10 2 0.5 0.1 001
“E ,7 s 26718 (n )26 0.017 0.16 0.63 1.3 1.9 2.0
CJ / 26 A18 (n,0)>*Na 0.12 0.54>
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-,' Reaction” Rate Multiplied By
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Y T R %6 Al8 (n,)**Na 0.21 0.54>
26 A1" (n,p)*°Mg 0.36
T (GK) 26 A1™ (n,a)*Na 0.79

Figure 15. Reaction rates for 26Al(n,o:)BNa: black solid line, De Smet et al.

(2007); dashed line, Koehler et al. (1997); and blue solid line, Rauscher &
Thielemann (2000). The first two rates are based on experimental results, while

the latter rate is estimated using the Hauser—Feshbach model. Beyond the vertical .
line, near T = 0.26 GK, the experimental rate of De Smet et al. (2007) represents
a lower limit. Note that for this comparison only, the rates represent “laboratory

rates,” i.e., they do not account for thermal target excitations.

0.05 - 0.5 GK (AGB stars)
- Large discrepancy between available data sets



Nuclear astrophysics @ FRIBS/FRAISE
x\ s> Using Li or 2°Ne we can transfer a a particle and
induce the reaction of astrophysical importance

<: at the relevant energies

140(a,p)!"F - breakout from the hot CNO cycle: in explosive hydrogen burning, this reaction
determined the permanent loss of catalysts leading to the production of heavy (A>100) proton-
rich nuclei

BN(a,p)'®O - In asymptotic giant branch (AGB) stars, the 3C(0,n)'°O reaction is the n-
source for heavy element production. However, the *C supply might be reduced if '*N is burnt to
160 before it decays = influence on the s-process in massive AGB stars

Ar(a,p)’’K - 3*Ar is a waiting point in x-ray bursts: if the (o,p) reaction rate is weak OR if
the temperature is too low to overcome the Coulomb barrier, nuclear flow must await 3 decay
before continuing on = influence on nucleosynthesis and luminosity

18Ne(a,p)?'Na -> it influences X-ray burst light curves as well as nucleosynthesis, in particular

the abundance of >N, 8F, 2!Ne and 33S in the ashes of the thermonuclear runaway

Complementary to SPES
https://web.infn.it/spes/images/NEW_SITE/PDF/SPES_Beam_Tables/4_beam_spes_all.pdf



Nuclear astrophysics @ LNS: recent studies

THM has been successfully applied by the LNS nuclear astrophysics group over the past 25 years to many reactions of
astrophysical interests. Here are a few examples of works published in 2018

nature

International journal of science

Letter = Published: 23 May 2018

An increase in the °C + 1°C fusion rate
from resonances at astrophysical energies

A. Tumino , C. Spitaleri, M. La Cognata, S. Cherubini, G. L. Guardo, M. Gulino, S. Hayakawa, I.
Indelicato, L. Lamia, H. Petrascu, R. G. Pizzone, S. M. R. Puglia, G. G. Rapisarda, S. Romano, M. L.
Sergi, R. Sparta & L. Trache

Nature 557,687-690 (2018) = Download Citation

PHYSICAL REVIEW C 97, 065801 (2018)

THE ASTROPHYSICAL JOURNAL, 860:61 (11pp), 2018 June 10 https

dotorg /10,3847 /1538-4357 /aac207

© 2018 The Amerkan Asronomical Society. All rights reserval
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Nuclear astrophysics with LNS tandem in 2017

LNS TANDEM and CT2000 scattering chamber plays a
very important role for nuclear astrophysics
measurements

List of experiments performed in 2017:

1. 25Mg(n,a)22Ne with THM to study the
22Ne(a,n)25Mg reaction

2. 27Al(p,a)24Mg with the THM: study of the 26Al
problem and of the NeNa cycle

3. 10Be-9Be reactions to investigate cluster
structures of astrophysical interest

4. 170-a scattering measured with the TTIK

,. approach for AGB nucleosynthesis

¥ 5. 10Be-a scattering with TTIK for studying 14C

| cluster states

48 6. 19F(p,a)160 cross section measurement to study

fluorine nucleosynthesis




Final remarks

Multimessenger astronomy ushered us into a high-precision
astrophysical era, calling for increasingly accurate measurements of

nuclear properties well outside the stability valley

Facilities and know-how present at LNS make it possible to tackle the
questions raised by observations (with SC and TANDEM)

The physical problems to be investigated are mostly complementary
to the one addressed by many laboratories worldwide

Future upgrades of LNS facilities will make it possible to extend the
fields to be explored and the corresponding precision
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