

Istituto Nazionale di Fisica Nucleare

## An Users' open beamline for laser-accelerated ions

GAP Cirrone, INFN-LNS





| Laser characteristics |                                                      | Accelerated beams |                                   |
|-----------------------|------------------------------------------------------|-------------------|-----------------------------------|
| Power                 | PW order (10 <sup>15</sup> W)                        | Beams             | gamma, electrons, ions,           |
| Duration              | fews femto seconds                                   | Energies          | MeV/GeV in broad spectra          |
| Intensity             | 10 <sup>21</sup> -10 <sup>23</sup> W/cm <sup>2</sup> | Intensities       | 10 <sup>9</sup> -10 <sup>12</sup> |

















5





#### ELI (Extreme Light Infrastructure)

new type of European large scale laser infrastructure specifically designed to produce the highest peak power (10 PW) and focused intensity;





#### ELI (Extreme Light Infrastructure)

new type of European large scale laser infrastructure specifically designed to produce the highest peak power (10 PW) and focused intensity;





#### ELI (Extreme Light Infrastructure)

new type of European large scale laser infrastructure specifically designed to produce the highest peak power (10 PW) and focused intensity;



ELIMAIA: (ion accelerator + user station) ELI Multidisciplinary Applications of laser-lon Acceleration

ELIMED: (transport and dosimetry) ELI MEDical and multidisciplinary applications

**ELIMAIA** 

**ELIMED** 

### ELIMED history



#### 7

#### 2011





2013

#### GAP Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@Ins.infn.it





#### WORK SUBJECT-MATTER; WORK SCOPE

The Contract concerns the design, assembling, performance optimization, and delivering to the Client at the Client's Place of Business of a complete transport number of dosimetric endpoints that will enable the users to apply laser-driven ion beams in multidisciplinary fields in accordance with this Contract (hereinafter the "System"). Furthermore, the scope of this Contract mainly encompasses (i) various training services to be provided to the Client's personnel in compliance with Article 13 of this Contract (ii) a royalty free licence, if any according to Article 14, to use the System for the purposes of the use of the ELI-Beamlines Project after completion and (iii) the possible realization of the Additional System, subject to the exercise of the Call Option right by the Client under par. 4.6 (the System and the other parts of the works/services are hereinafter referred to as the "Works")

#### Signed in Rome on

On behalf of: Fyzikální ústav AV ČR, v. v. i.

On behalf of: INFN, Instituto Nazionale di Fisica Nucleare

-5 DIC. 2014

Name: Prof. Jan Řídký, DrSc Title: the Director

Signed in Prague on 8/12/2019

Name: Prof. Fernando Ferron ISTITUTO NAZIONALE DI FISICA NUCLEARE IL PRESIDENTE

2014

Signature

Brok Fernando Ferroni

### ELI-Beamlines, Prague (CZ)

and By Bas ....

-11-

### ELI-Beamlines, Prague (CZ)

1 [2]



GAP Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@Ins.infn.it

- 100

500 m

### ELIMED beam line concept







9



### ELIMAIA-ELIMED Experimental Hall

Interaction chamber

Pasma mirror chamber

Laser L3 beam, 1 PW, 30J, 10 Hz





### **ELIMED** transport elements



Solution of the second second



#### GAP Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@Ins.infn.it

### Beam transmission



#### 12

Angular divergence =  $5^{\circ}$  (FWHM)

#### Transmission efficiency ~12% (9,2e7 H<sup>+</sup>/bunch)





# Which diagnostic and dosimetry?

We will have 10^9 protons in 10 nsec Corresponding to a dose rate of the order of 10^9 Gy/min

Fast, dose-rate independent, on-line





















#### **Absolute dosimetry**

14

Absolute dose with Faraday Cup Correction of ion recombination with a multi-gap chamber

On-line dose monitoring and sample irradiator

#### **Online TOF diagnostics system**

Energy spectrum Fluence Shot to shot reproducibility Tuning laser paramenters

### Beam diagnostic



15

Main goal: ONLINE proton energy spectrum and fluence measurement along the beam line

#### pCVD



Substrate thickness: 100 µm Electrode size: 3 mm diameter Detector capacitance: 4 pF Bias voltage: 200 V

**Detector requirements** 

Radiation hardness (up 10<sup>6</sup> and 10<sup>12</sup> ppp)

Time resolution (of the order ns)

Low-capacitance detector (ten's of pF) Thickness (between 10's and 100's µm) sCVD



Substrate thickness: 500 µm Electrode size: 4 mm diameter Detector capacitance: 3 pF Bias voltage: 400 V

high radiation diamond detector linear response for very high intensity (up to 10<sup>9</sup> ppp) good time resolution excellent signal-to-noise ratio (low noise)

### Absolute dosimetry



#### 16





Faraday cup based detector for the absolute determination of the released dose



Dual-gap transmission ionisation chamber, calibrated against the Faraday cup for the online measure of the released dose





17



D. Margarone, G.A.P. Cirrone et al., "ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications", Quantum Beam Sci. 2 (2018) 8

### System installed at ELI

18





### System installed at ELI





### Sample irradiation system



Radiobiology Cultural heritage Radiation damage Proton imaging Detector and dosimetry tests-bench



### Sample irradiation system



Radiobiology Cultural heritage Radiation damage Proton imaging Detector and dosimetry tests-bench

20



### Monte Carlo simulations



A Geant4 application fully simulates the beamline and will be at the User disposal for their experimental plans

Dose, LET, RBE, secondaries production, rdioprotection, etc

Any specific source and geometry can be implemented







# Expected beams features

### Beamline commissioning: within 2019

Angular divergence: 5° (FWHM)

Angular divergence: 12% (9.2 \*10<sup>7</sup> H+/bunch)



Dose: 0.05 Gy/bunch Fluence: 3\*10<sup>7</sup> H+/cm<sup>2</sup> 60 MeV case Dose rate: 10^5 Gy/sec

Angular divergence: 5° (FWHM)

Angular divergence: 14% (3.2 \*10<sup>9</sup> H+/bunch)



30 MeV case

Dose: 0.35 Gy/bunch Fluence: 3.4\*10<sup>8</sup> H+/cm<sup>2</sup> Dose rate: 10^8 Gy/sec

### Expected beam features and steps

Beamline commissioning: within 2019

```
First phase: 2020 - 2021
```

Beam: 30 MeV proton beams, 10° angular aperture

Intensity: > 10^5 Gy/sec

Beam spot size: uniform on (at least) 2 cm

First experiment with dosimetry and cells irradiation:

First six months 2020

Already in 2019 preliminary test with lower energy protons for Users interested

IV ELIMED Workshop end 2019 (begin 2020)



## Thank you



### ELIMAIA-ELIMED Experimental Hall

![](_page_38_Figure_2.jpeg)