Measurement of the ²³⁵U(n,f) cross section relative to n-p scattering up to 1 GeV at n_TOF

Meeting n_TOF Italia, Bologna 12 – 13 Novembre 2018

Motivations

INDC International Nuclear Data Commitee

"...Our analysis indicates that the <u>new absolute measurements of the neutron induced fission cross section</u> (e.g. <u>relative to</u> <u>**n**-p scattering</u>) on <u>Uranium</u>, Bismuth, Lead and Plutonium have the highest priority in establishing neutron induced fission reaction standard <u>above 200 MeV</u>..." (INDC(NDS)-0681 Distr. ST/J/G/NM, IAEA 2015)

IAEA

Experimental setup

²³⁵U fission reaction

Fission fragment

- Parallel Plate Ionization Chamber (**IC**)
 - → Ambient gas pressure

Neutron energy: (10-200) MeV

Parallel Plate Avalanche Counter (**PPAC**)

> $- \bullet Low gas pressure$ ~ 4 mbar

> > Neutron energy: (100-1000) MeV

Neutron flux

Elastic scattering

$n + H \rightarrow n + p$

Experimental setup

²³⁵U fission reaction

Fission fragment

Parallel Plate Ionization Chamber (**IC**)

→ Ambient gas pressure

Neutron energy: (10-200) MeV

Parallel Plate Avalanche Counter (**PPAC**)

> Low gas pressure ∼ 4 mbar

> > Neutron energy: (100-1000) MeV

Elastic scattering

<u>A Proton Recoil Telescope</u>

can discriminate the different emitted particles

$\Delta E - E$ Matrix

$\Delta E - E$ Matrix

The INFN Proton Recoil Telescope

	<u>= 5 Telescopes</u>					
Coincidences		Neutron energy				
1. 1st & 2nd Silicon	\rightarrow	< 15 MeV				
<u>2.</u> + 1st Plastic	\rightarrow	15 – 35 MeV				
3. + 2nd Plastic	\rightarrow	35 – 70 MeV				
<u>4.</u> + 3rd Plastic	\longrightarrow	70 – 130 MeV				
5. + 4th Plastic	\rightarrow	> 130 MeV				

NTOF

<u>5.</u>

Results: PRT response to the y-flash

Results: PRT response to the y-flash

Results: $\Delta E - E$ Matrix

Results: Neutron Flux

Results: final experimental setup

PRT: further tests

Ν	New (V)	Old (V)	G	New (V)	Old (V)	0	New (V)	Old (V)
Sci 1-A	750	790	Sci 1-A	640	670	Sci 1-A	810	840
Sci 1-B	745	820	Sci 1-B	630	700	Sci 1-B	810	870
Sci 2	640	640	Sci 2	580	580	Sci 2	700	660
Sci 3	650	650	Sci 3	585	585	Sci 3	710	710
Sci 4	680	660	Sci 4	610	595	Sci 4	730	710
				I				l

INFN

(CERN

TOF

PRT: further tests

NTOF

PRT: further tests

PPAC

Mounting @ n_TOF

NTOF

Mounting @ n_TOF

Alignment

EventDisplay: Silicon detector

EventDisplay: y-flash Plastic Scintillators

EventDisplay: y-flash Plastic Scintillators

EventDisplay: RF test

Statistics

		Old (V)	New (V)	
	PMT 1A	730	690	
	PMT 1B	710	680	
	PMT 2	640 650	640 650	
From 25/09	PMT 3	660	680	
PE 1 mm C 0.5 mm PE 2 mm C 1 mm PE 5 mm C 2.5 mm Empty	$7.08 \cdot 10^{17}$ $3.27 \cdot 10^{17}$ $1,11 \cdot 10^{17}$ $3,88 \cdot 10^{17}$ $7.44 \cdot 10^{17}$ $3.14 \cdot 10^{17}$ $1.11 \cdot 10^{17}$	+ 1.46 · 10 ¹⁶		
PE 5 mm C 2.5 mm Empty	$\begin{array}{c} 2.06 \cdot 10^{18} \\ 1.55 \cdot 10^{18} \\ 1.11 \cdot 10^{17} \end{array}$	PRT 1.12	new 2 · 10 ¹⁷	
	From 25/09 PE 1 mm C 0.5 mm PE 2 mm C 1 mm PE 5 mm C 2.5 mm Empty PE 5 mm C 2.5 mm Empty	$\begin{array}{c} & \begin{array}{c} & PMT \ 1A \\ PMT \ 1B \\ PMT \ 2 \\ PMT \ 3 \\ PMT \ 3 \\ PMT \ 4 \end{array} \\ \hline \\ PE \ 1 \ mm & 7.08 \cdot 10^{17} \\ C \ 0.5 \ mm & 3.27 \cdot 10^{17} \\ PE \ 2 \ mm & 1,11 \cdot 10^{17} \\ PE \ 2 \ mm & 1,11 \cdot 10^{17} \\ C \ 1 \ mm & 3,88 \cdot 10^{17} \\ PE \ 5 \ mm & 7.44 \cdot 10^{17} \\ PE \ 5 \ mm & 7.44 \cdot 10^{17} \\ C \ 2.5 \ mm & 3.14 \cdot 10^{17} \\ I.11 \cdot 10^{17} \end{array} \\ \hline \\ \begin{array}{c} PE \ 5 \ mm & 2.06 \cdot 10^{18} \\ C \ 2.5 \ mm & 1.55 \cdot 10^{18} \\ Empty & 1.11 \cdot 10^{17} \end{array} \\ \hline \end{array}$	$\begin{array}{c c} PMT 1A & 730 \\ PMT 1B & 710 \\ PMT 2 & 640 \\ PMT 2 & 640 \\ PMT 3 & 650 \\ PMT 4 & 660 \\ \end{array}$ $\begin{array}{c c} From 25/09 & PMT 4 & 660 \\ \end{array}$ $\begin{array}{c c} PE 1 mm & 7.08 \cdot 10^{17} \\ C 0.5 mm & 3.27 \cdot 10^{17} \\ PE 2 mm & 1,11 \cdot 10^{17} \\ PE 2 mm & 1,11 \cdot 10^{17} \\ PE 5 mm & 7.44 \cdot 10^{17} \\ PE 5 mm & 7.44 \cdot 10^{17} \\ C 2.5 mm & 3.14 \cdot 10^{17} \\ Empty & 1.11 \cdot 10^{17} & + 1.46 \\ \end{array}$ $\begin{array}{c c} PE 5 mm & 2.06 \cdot 10^{18} \\ C 2.5 mm & 1.55 \cdot 10^{18} \\ Empty & 1.11 \cdot 10^{17} \end{array}$	

T start: $\mathbf{t}_0 - \mathbf{t}_{pkup}$

Coincidences 1st + 2nd

$\Delta E - E$ Matrix

$\Delta E - E$ Matrix

Coincidences 1st + 2nd + 3rd + 4th

$\Delta E - E$ Matrix

ADC

Conclusions

The measurement campaign ended last week

→ First results indicate VERY NICE DATA from PRT detector!!

Analysis ongoing

Calibration with protons at the PIF facility @ PSI

n-p scattering cross section

n-p scattering cross section

n-p scattering cross section

n-p scattering cross section

