

Consiglio Nazionale delle Ricerche

Measurement of the ¹⁵⁴Gd neutron capture cross-section at n_TOF, and its astrophysical implications

Annamaria Mazzone INFN Bari / CNR-IC on behalf of the n_TOF Collaboration

2018 European Nuclear Physic Conference

September 6, Bologna

The Proposal

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the neutron capture cross section of gadolinium even isotopes relevant to Nucle the shysics

December 5, 2015

C. Massimi^{1,2}, F. Mingrone¹, S. Cristallo³, E. Berthoumieux⁴, D.M. Castelluccio^{1,5}, N. Colonna⁶, M. Diakaki⁴, R. Dressler⁷, E. Dupont⁴, F. Gunsing^{4,8}, S. Lo Meo^{1,8}, P.M. Milazzo⁹, A. Musumarra¹⁰, D. Schumann⁷, G. Tagliente⁶, G. Vannini^{1,2}, V. Variale⁶

- ¹ INFN Section of Bologna, Bologna Italy
- ² Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna Italy
- ³ INAF Osservatorio Astronomico di Collurania, TERAMO Italy
- ⁴ CEA, Saclay, Irfu/SPhN, Gif-sur-Yvette France
- ⁵ ENEA Research Centre E. Clementel, Bologna Italy
- ⁶ INFN Section of Bari, Bari Italy
- ⁷ Paul Scherrer Institute, Villigen Switzerland
- ⁸ European Organization for Nuclear Research (CERN), Geneva Switzerland
- ⁹ INFN Section of Trieste, Trieste Italy
- ¹⁰ INFN Section of Catania, Catania Italy

10 INFN Section of Catania, Catania - Italy

2018 European Nuclear Physic Conference

2

Solar Nucleosynthesis

Chemical elements beyond Iron are synthesized via neutron capture reactions in stars

- $\approx \frac{1}{2}$ by the s-process
- $\approx \frac{1}{2}$ by the r-process

5

s-Process

- The time scale for n capture reactions being much slower than for beta-decays implies that the reaction path follows the stability valley
- Low-mass Asymptotic Giant Branch (AGB) stars are the sites for the main component of the s-process, for elements between strontium and lead.

Istituto Nazionale di Fisica Nucleare

Consiglio Nazion delle Ricerche

The n_TOF project

E _n [eV]	FWHM [cm]	∆E _n [eV]	
1	3	3.2×10^{-4}	(
10	3	3.2 × 10 ⁻³	
10 ²	4	4.3 × 10 ⁻²	*
10 ³	5	5.4 × 10 ⁻¹	X
104	10	11	20 GeV Proton beam
10 ⁵	27	2.9×10^{2}	TT2
10 ⁶	49	5.3 × 10 ³	
		1	

10 production angle	
Neutron-Beam	

n_TOF is a **spallation** neutron source based on **20 GeV/c protons** from the CERN PS hitting a **Pb block** (~300 neutrons per proton and ~ 7x10¹² ppp).

BOOSTER

LINAC

PS

Experimental area at 185 m and 18.5 m.

Capture reactions are measured by detecting γ -rays emitted in the deexcitation process

Consiglio Nazionale delle Ricerche

ntof

n-capture Gd Campaing

lsotope	Protons	note	
¹⁹⁷ Au	4 × 10 ¹⁶	Cyclic – after calibration	
¹⁵⁴ Gd	1.88 × 10 ¹⁸		2.6 × 10 ¹⁸
^{nat} Gd	2.3 × 10 ¹⁷		
Carbon	4 × 10 ¹⁶	From ⁸⁸ Sr and ⁸⁹ Y campaign	
Lead	1.2 × 10 ¹⁷		
Empty	3.5 × 10 ¹⁷		
Others	2.0×10^{17}	Filters bkg	

Full calibration (¹³⁷Cs, ⁸⁸Y, Am-Be and Cm-C composite γ-ray source) every week !!!

14th August 2017 10th September 2017

Istituto Nazionale di Fisica Nucleare

Detection Efficiency

 ϵ_c was calculated using the Pulse Height Weighting Technique (PWHT)

- ε_c independent of the unknown decay pattern
- $\epsilon_c = \Sigma \epsilon_{\gamma} = Ec = Sn(155Gd) + En$, where En is negligible for the eV neutrons of interest.

Background Subtraction

- Beam related background → Empty Frame
- Scattered neutrons in the sample \rightarrow Pb Sample

ICD Maxwellian Averaged Istituto Nazionale di Fisica Nucleare **Cross Section (MACS)** $MACS = \frac{2}{\sqrt{\pi}} \frac{1}{(kT)^2} \cdot \int_0^\infty E\sigma(E) \cdot \exp\left(-\frac{E}{kT}\right) dE$ Cross section averaged on a maxwellian distributi Kadonis 1.19 ENDF/B-7.1 1.18 ∧n TOF 1.17 1 16 1.15 MACS (mb) 1.14 1.13 1000 1.12 1.1 Kadonis/ENDF 1. Kadonis/n_TOF 1.09 20 10 20 30 50 80 Thermal Energy kT (keV) Thermal Energy kT (keV) 2018 European Nuclear Physic Conference September 6, Bologna 28

Single stellar model

Conclusion

- The evaluated MACS is 15-10% lower than that obtained in KADONIS 1.0 starting from the CS (Wisshak 1995) with an error of 1% but in a narrow energy range.
- The strength of n_TOF is the large energy range it can cover (meV-GeV) -> it's possible calculate the cross section in a large energy range.

stituto Nazionale di Fisica Nucleare

• 2) change the main neutron source mechanism into the FRUITY models

Istituto Nazionale di Fisica Nucleare

