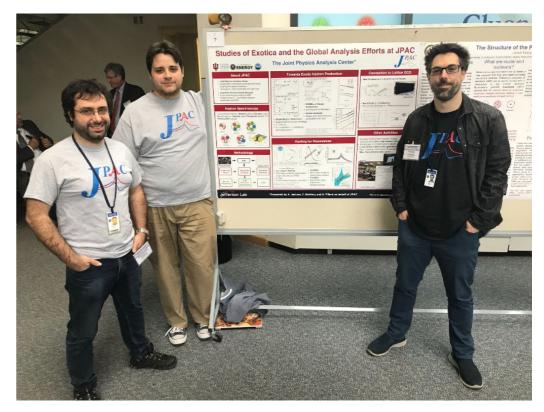
Progress in hadron spectroscopy analysis

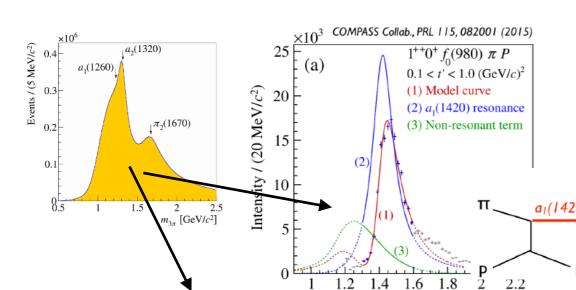
Adam Szczepaniak, Indiana University/Jefferson Lab

Joint Physics Analysis Center

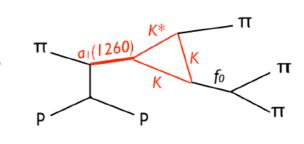
- •JPAC: theory, phenomenology and analysis tools in support of experimental data from JLab12 and other accelerator laboratories.
- •Contribute to education of new generation of practitioners in physics of strong interactions.
- •In this talk: JPAC's role in spectroscopy analysis, new results on di-pion resonance fits to CLAS data, the JPC=1-+ exotic, on connecting with lattice and some "exotic" physics



Signatures of new, unusual light resonances

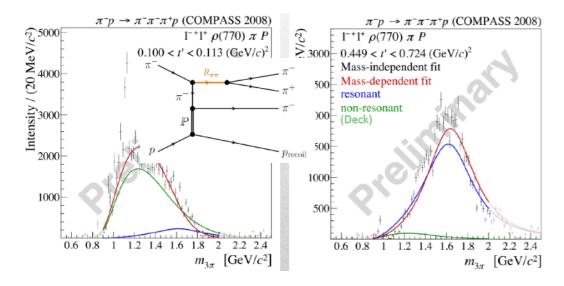


 High precision PWA of 3pi diffractive association yields a new a₁(1420) incompatible with the quark model/Regge expectations.

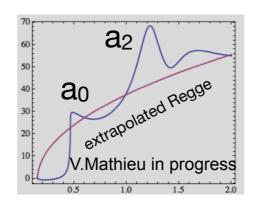


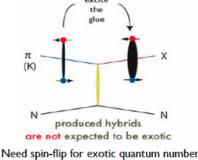
At low-t exotic wave production compatible with one pion exchange

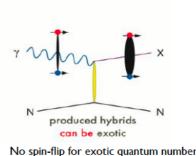
 $m_{3\pi}$ [GeV/ c^2]



 In photoproduction exotic mesons be produced via pion exchange

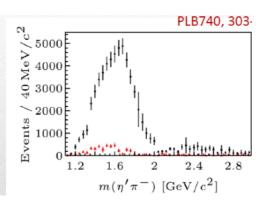


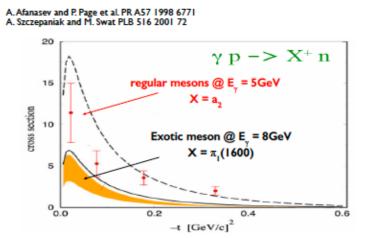




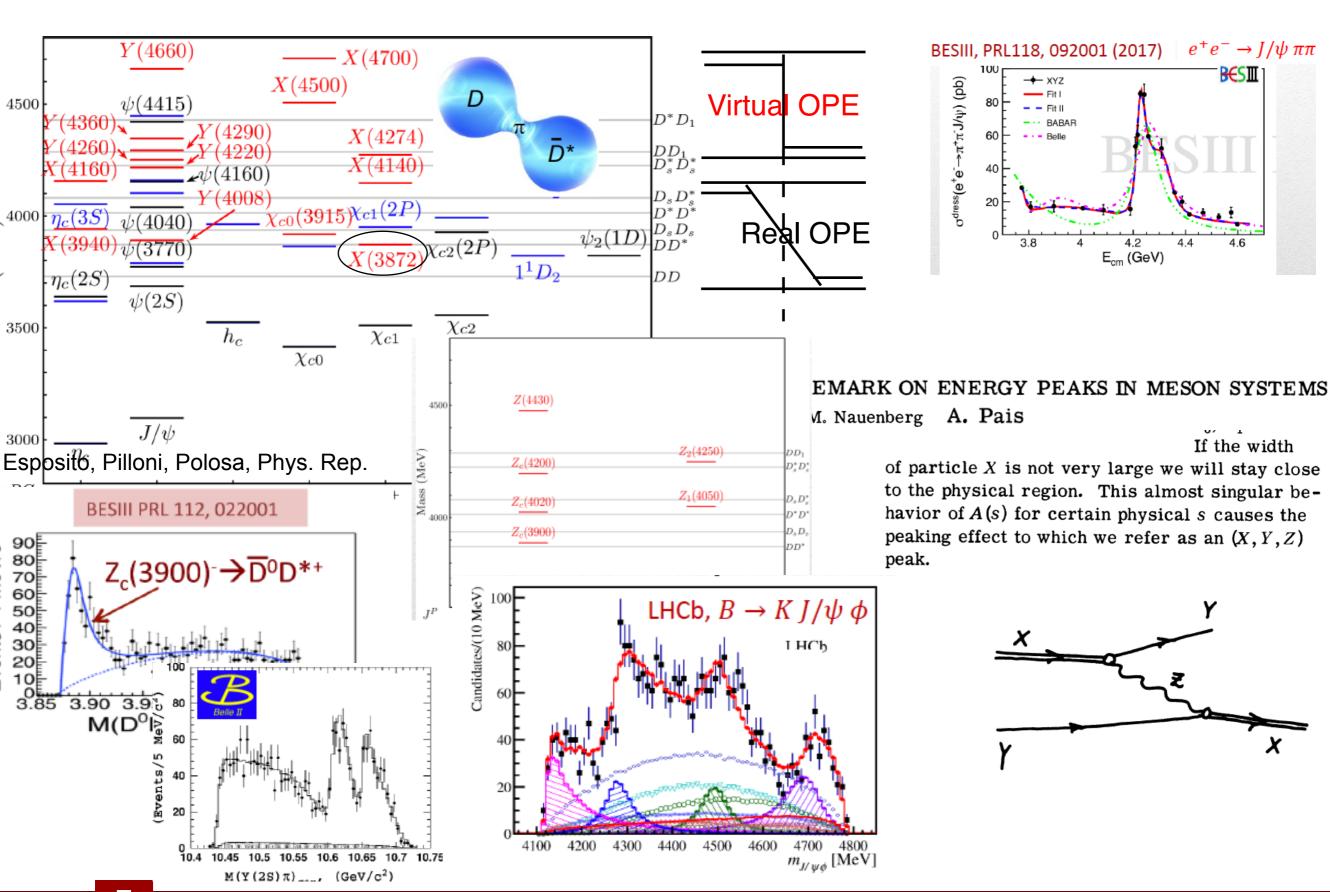
 Large exotic wave seen in $\eta^{(')}\pi$ production: FESR's to constrain P-wave







Signatures of unusual heavy quark resonances

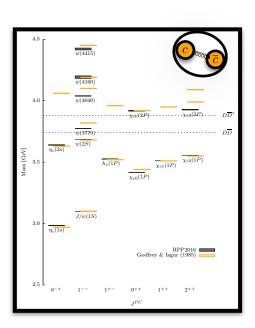


Identifying resonances

Experimental or lattice signatures (real axis data: cross section bumps and dips, energy levels)

Reaction amplitudes

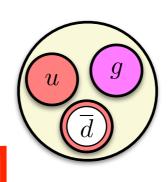
 $x10^{6}$ 0.4 $a_{1}(1260)$ $a_{2}(1320)$ $a_{2}(1670)$ $a_{3}(1670)$ $a_{4}(1670)$ $a_{5}(1670)$ $a_{5}(1670)$ $a_{6}(1670)$ $a_{7}(1670)$ $a_{7}(1670)$



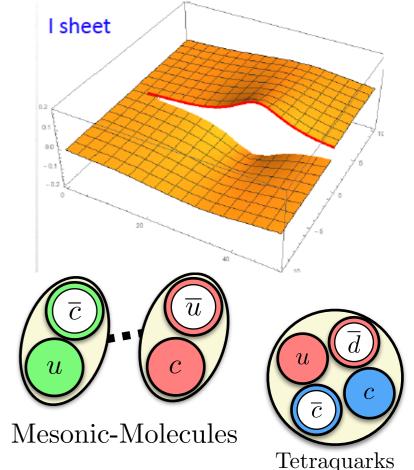
Theoretical signatures (complex plane singularities: poles, cusps)

Microscopic Models

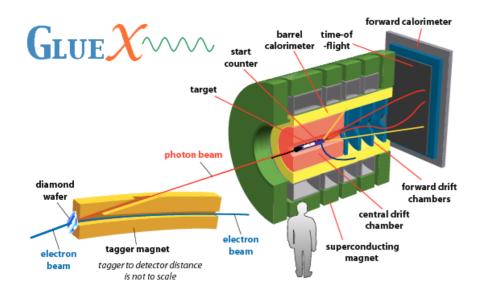
What is the interpretation (constituent quarks, molecules, ...)?

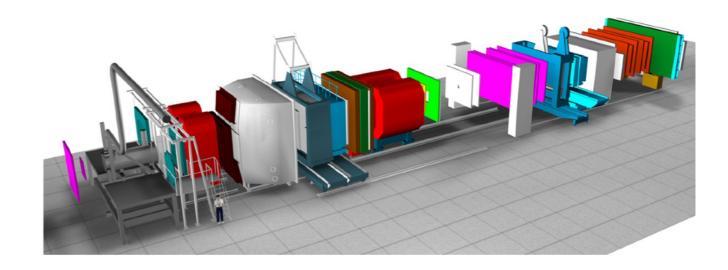


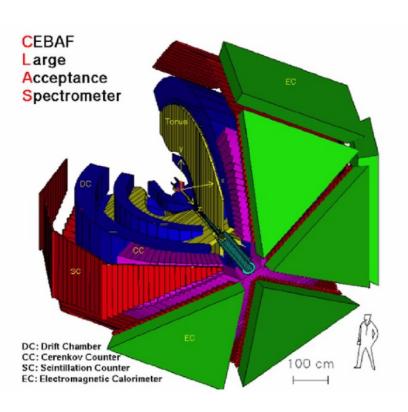
Hybrids



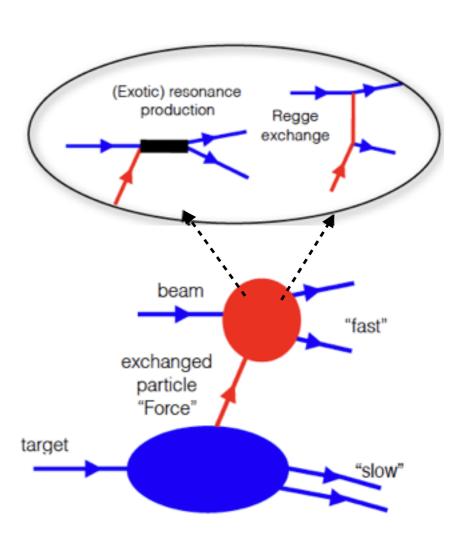
Spectroscopy from peripheral production





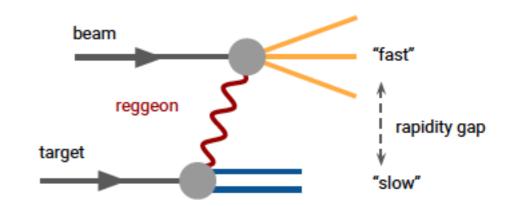


- Need to establish factorization between beam and target fragmentation (Regge factorization)
- Single Regge pole exchange dominate over cut other singularities (cuts, daughters)



Global Regge analysis

 Test Regge pole hypothesis and estimate corrections (daughters, cuts)



Factorizable Regge pole exchange

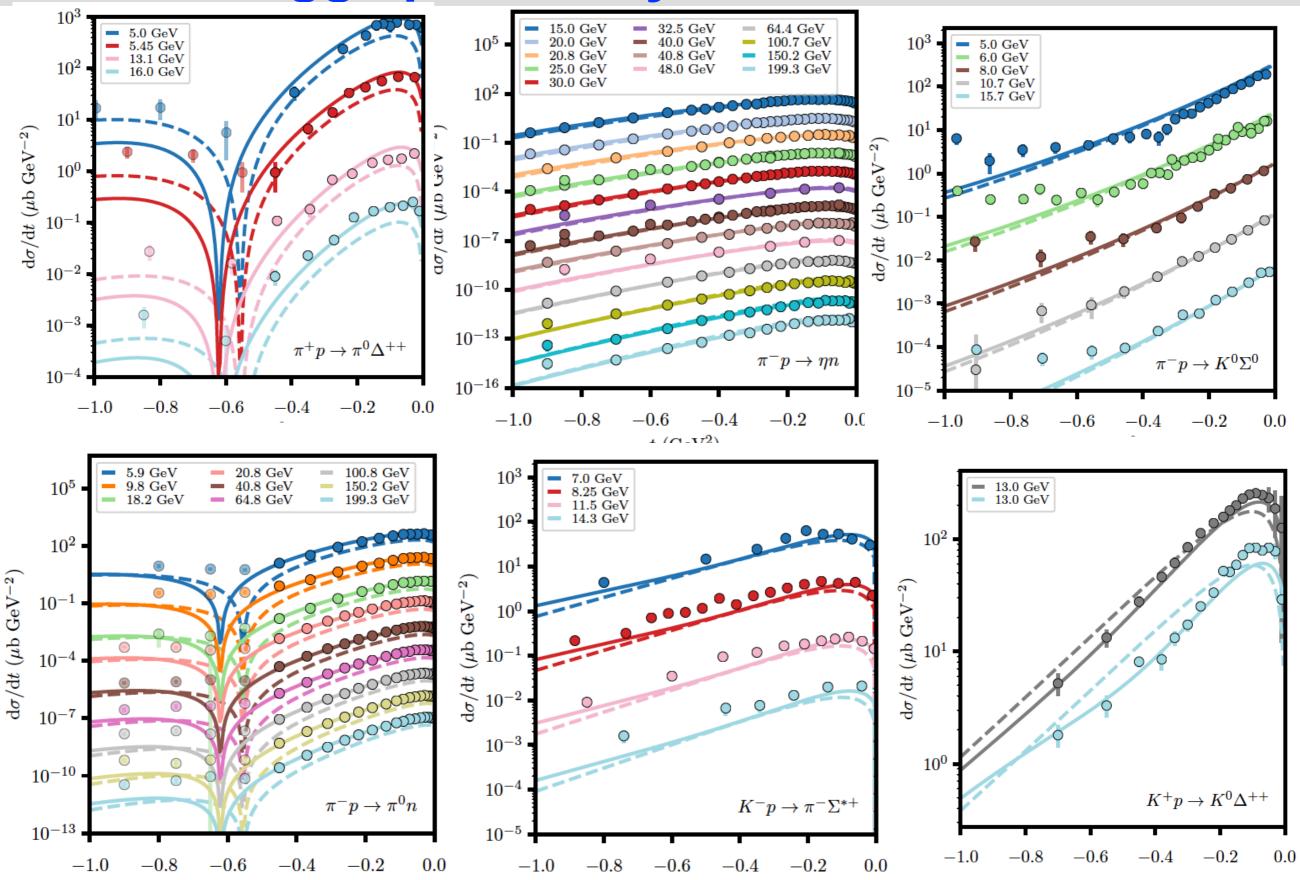
$$\mathcal{R}(s,t) \equiv \left(\frac{1-z_s}{2} \frac{\nu}{-t}\right)^{\frac{1}{2}|\mu-\mu'|} \left(\frac{1+z_s}{2}\right)^{\frac{1}{2}|\mu+\mu'|}$$

$$\begin{split} A_{\mu_4 \mu_3 \mu_2 \mu_1} = & \mathcal{R}(s,t) \sqrt{-t}^{|\mu_1 - \mu_3|} \sqrt{-t}^{|\mu_2 - \mu_4|} \, \hat{\beta}_{\mu_1 \mu_3}^{e13}(t) \hat{\beta}_{\mu_2 \mu_4}^{e24}(t) \mathcal{F}_e(s,t) \\ \mathcal{F}_e(s,t) = & -\frac{\zeta_e \pi \alpha_e^1}{\Gamma(\alpha_e(t) - l_e + 1)} \frac{1 + \zeta_e e^{-i\pi\alpha_e(t)}}{2 \sin \pi \alpha_e(t)} \left(\frac{s}{s_0}\right)^{\alpha_e(t)} \end{split}$$

$$\mathcal{F}_e(s,t) \xrightarrow[t \to m_e^2]{} \frac{(s/s_0)^{J_e}}{m_e^2 - t}$$

(6 SU(3) couplings, 1 mixing angle, 2 exp. slopes)

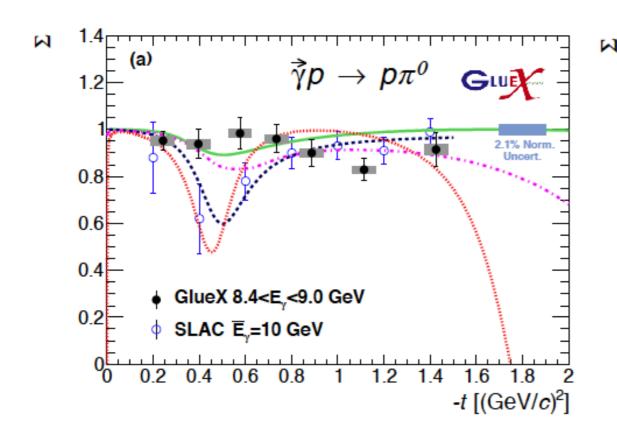
Global Regge pole analysis

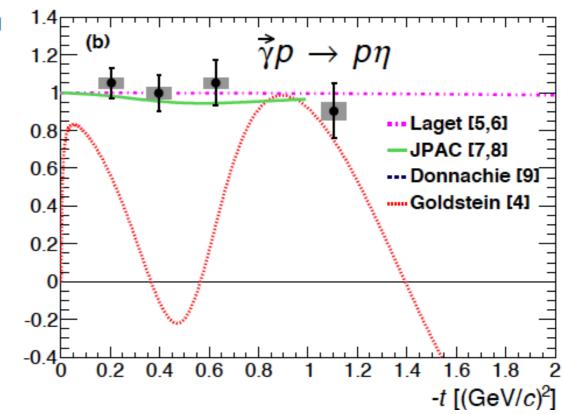


Beam asymmetry: measurement of the exchange process

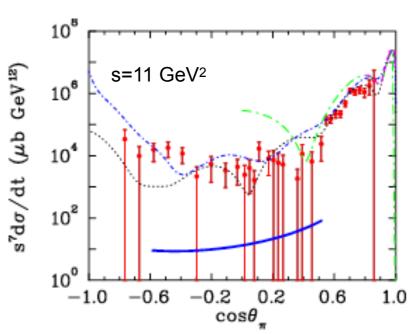
$$\Sigma = \frac{\sigma_{\perp} - \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}} = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2}$$

H. Al Ghoul et al. [GlueX] Phys. Rev. C95 (2017) no.4, 042201 +V. Mathieu, J. Nys [JPAC]

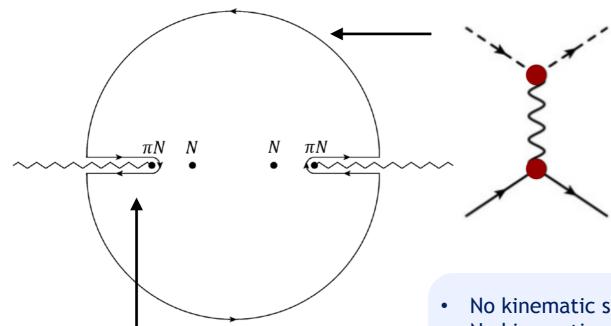




- Possible tension between GlueX and SLAC data?
 - Regge theory agrees with CLAS data (what's going on with QCD-based models ——?)



Finite Energy Sum Rules

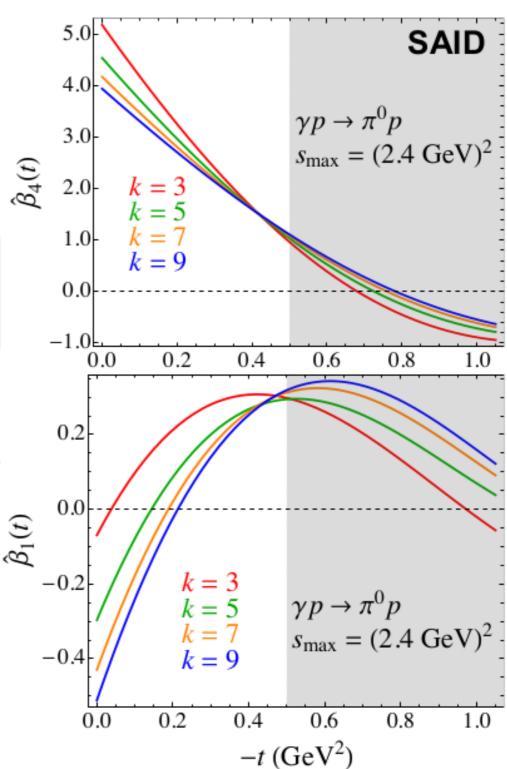


- No kinematic singularities
- No kinematic zeros
- **Discontinuities:**
 - Unitarity cut
 - Nucleon pole

$$A_{\lambda';\lambda \lambda_{\gamma}}(s,t) = \overline{u}_{\lambda'}(p') \left(\sum_{k=1}^{4} A_k(s,t) M_k \right) u_{\lambda}(p)$$

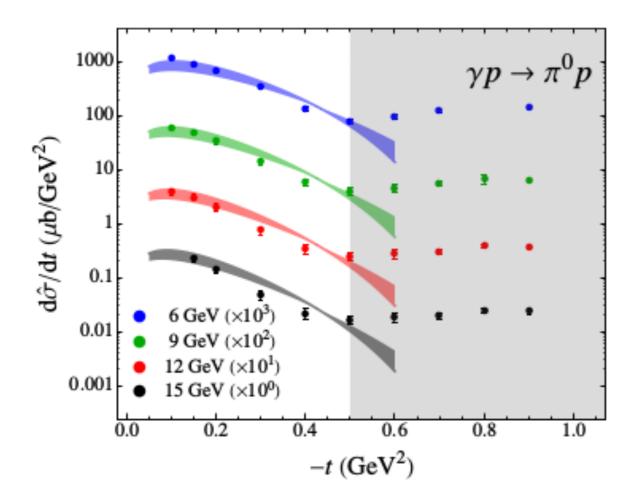
$$\int_0^{\Lambda} \operatorname{Im} A_i(\nu, t) \nu^k d\nu = \underbrace{\beta_i(t)}_{\alpha(t) + k} \underbrace{\Lambda^{\alpha(t) + k}}_{\alpha(t) + k}$$

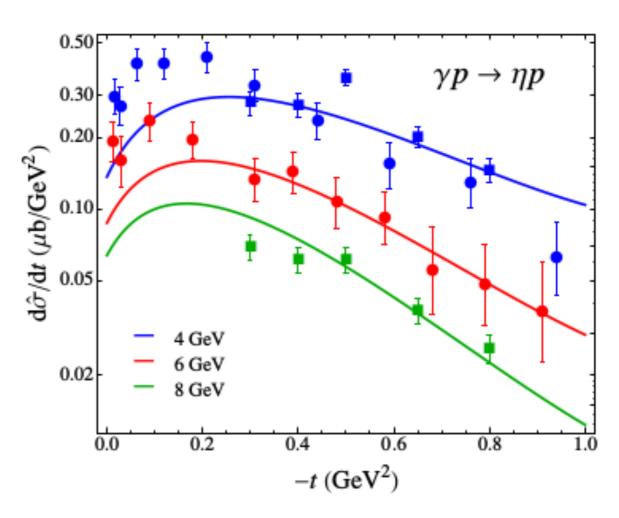
$$\beta_i(t) = \frac{\alpha(t) + k}{\Lambda^{\alpha(t) + k}} \int_0^{\Lambda} \operatorname{Im} A_i(\nu, t) \nu^k d\nu$$



Finite Energy Sum Rules

[V. Mathieu, J.Nys. et al. (JPAC) 1708.07779 (2017)]





Combine energy regimes

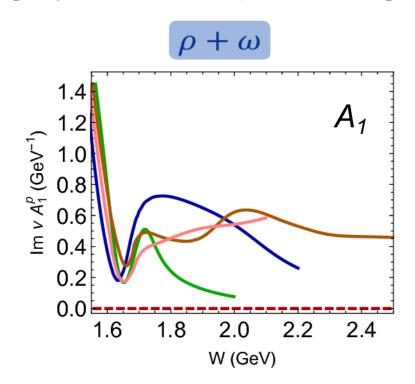
- Low-energy model ((SAID, MAID, Bonn-Gatchina, Julich-Bonn,...)
- Predict high-energy observables

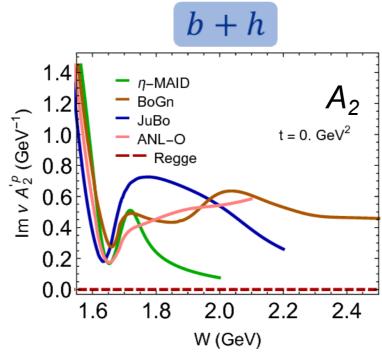
Two applications

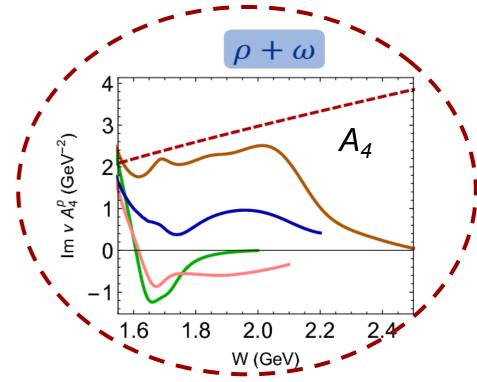
- Understand high-energy dynamics
- Constraining low-energy models

Constraining the resonance spectrum

[J.Nys et al., PRD95 (2017) 034014]





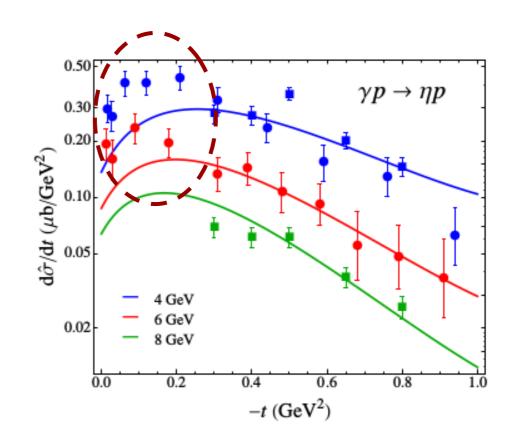


Ambiguities in the low-energy model (η -MAID)

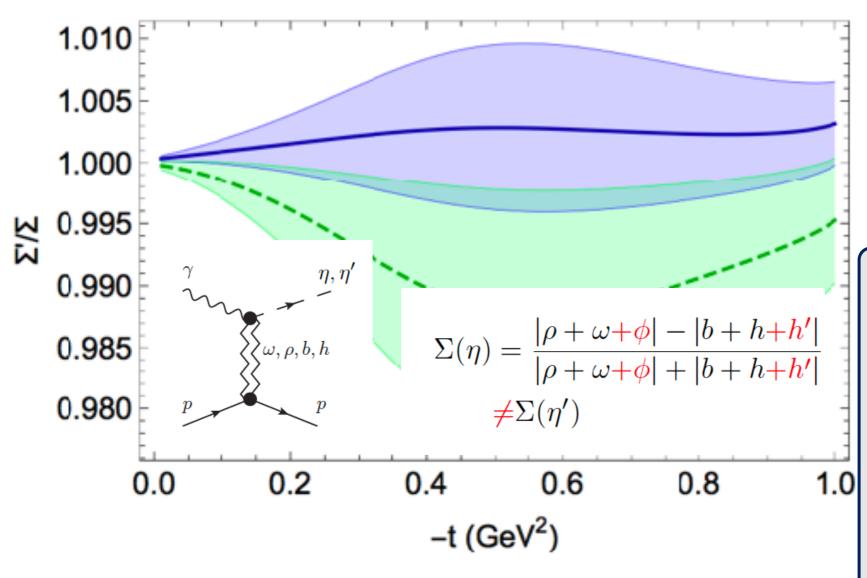
→ Mismatch with high-energy data

Possibilities

- Low-energy model inconsistent
- Cut-off not high enough
 - High mass resonances!



n/n' asymmetry probes coupling to strangness



Based on the FESR for η : predict beam asymmetry for η '

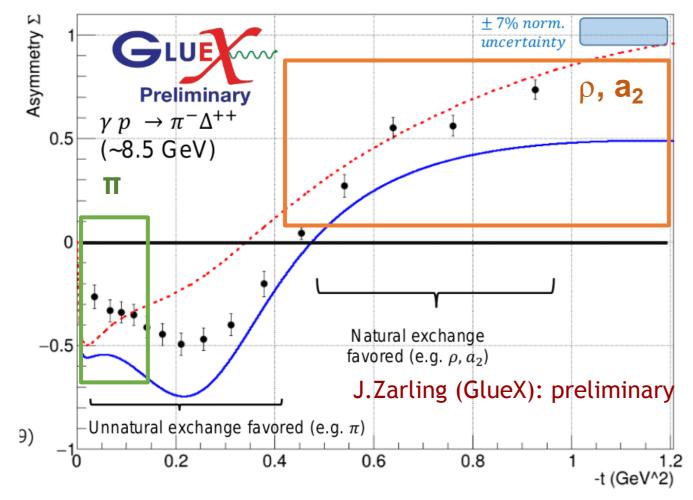
- Same exchanges
- Natural exchanges (ρ, ω) dominant
 - Couplings from radiative decays
 - Mixing angle cancels in ratio
- Unknown behavior of
 - φ exchange
 - unnatural exchanges (b,h)

Prediction: ≈ same beam asymmetry

V.Mathieu et al. (JPAC) Phys. Lett. B774, 362 (2017)

πΔ photoproduction

B.G Yu (Korea Aerospace U.), arxiv:1611.09629v5 (16 GeV)
 J. Nys (J PAC), arxiv: 1710.09394v1 (8.5 GeV)

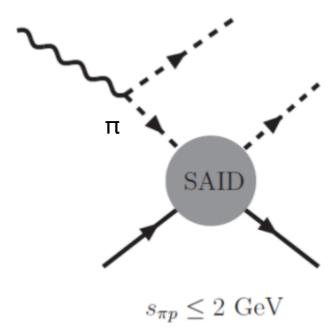


Comparison to GlueX data

- Confirmation of interference pattern
- High -t: natural, low -t: unnatural
- Mismatch: oddly behaved π exchange
 - Ongoing analysis
 - Experimental or theoretical?

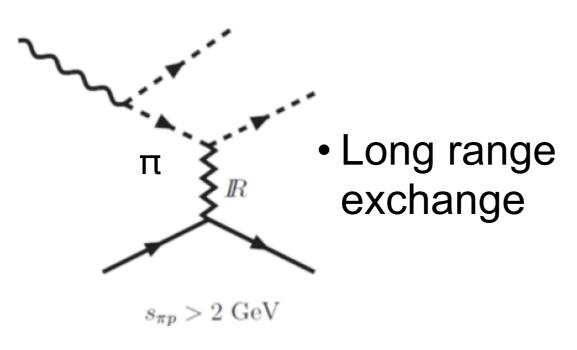
- Stringent test of onepion-exchnage production
- Possible to make parameter-free predictions

J.Nys et al. (JPAC) Phys.Lett. B779, 77 (2018)



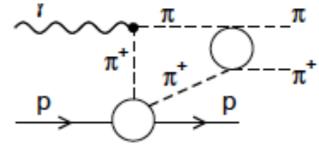
Łukasz Bibrzycki et al. (Cracow, JPAC)

OPE vs other exchanges



Short range exchange

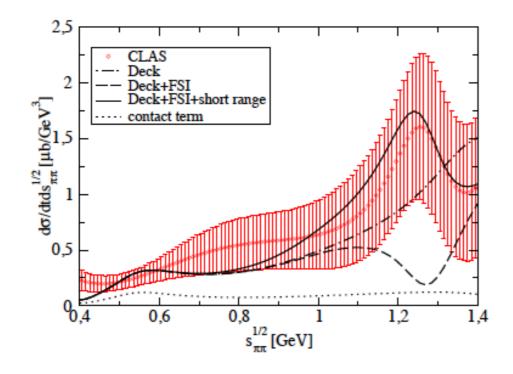
 When Final State Interactions are taken into account one produces a dip the other a pick at a resonance mass

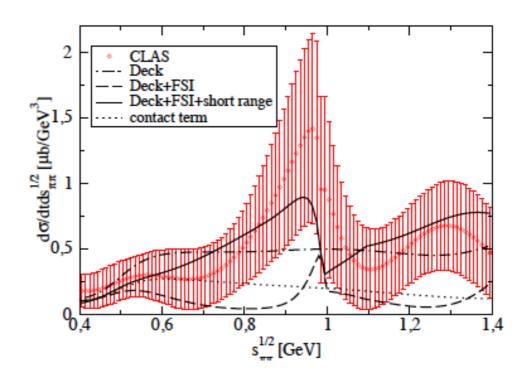


everything

else

Bibrzycki, Bydzovsky, Kaminski, AS (2018)



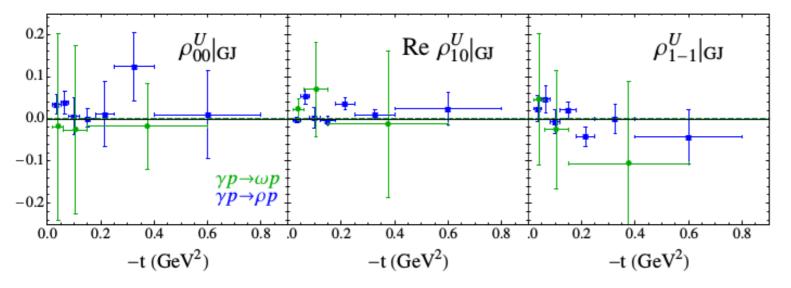


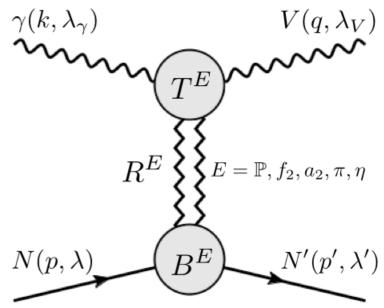
Vector meson production

- Pomeron dominates at high energies
- Isoscalar exchanges dominantly helicity non-flip $(\lambda=\lambda')$
- Unnatural exchanges: only helicity flip $(|\lambda-\lambda'|=1)$

$$\mathcal{M}_{\stackrel{\lambda_V,\lambda_\gamma}{\lambda',\lambda}}\left(s,t
ight) = \sum_{E=\pi,\eta,\mathbb{P},f_2,a_2} \mathcal{M}^E_{\stackrel{\lambda_V,\lambda_\gamma}{\lambda',\lambda}}\left(s,t
ight).$$

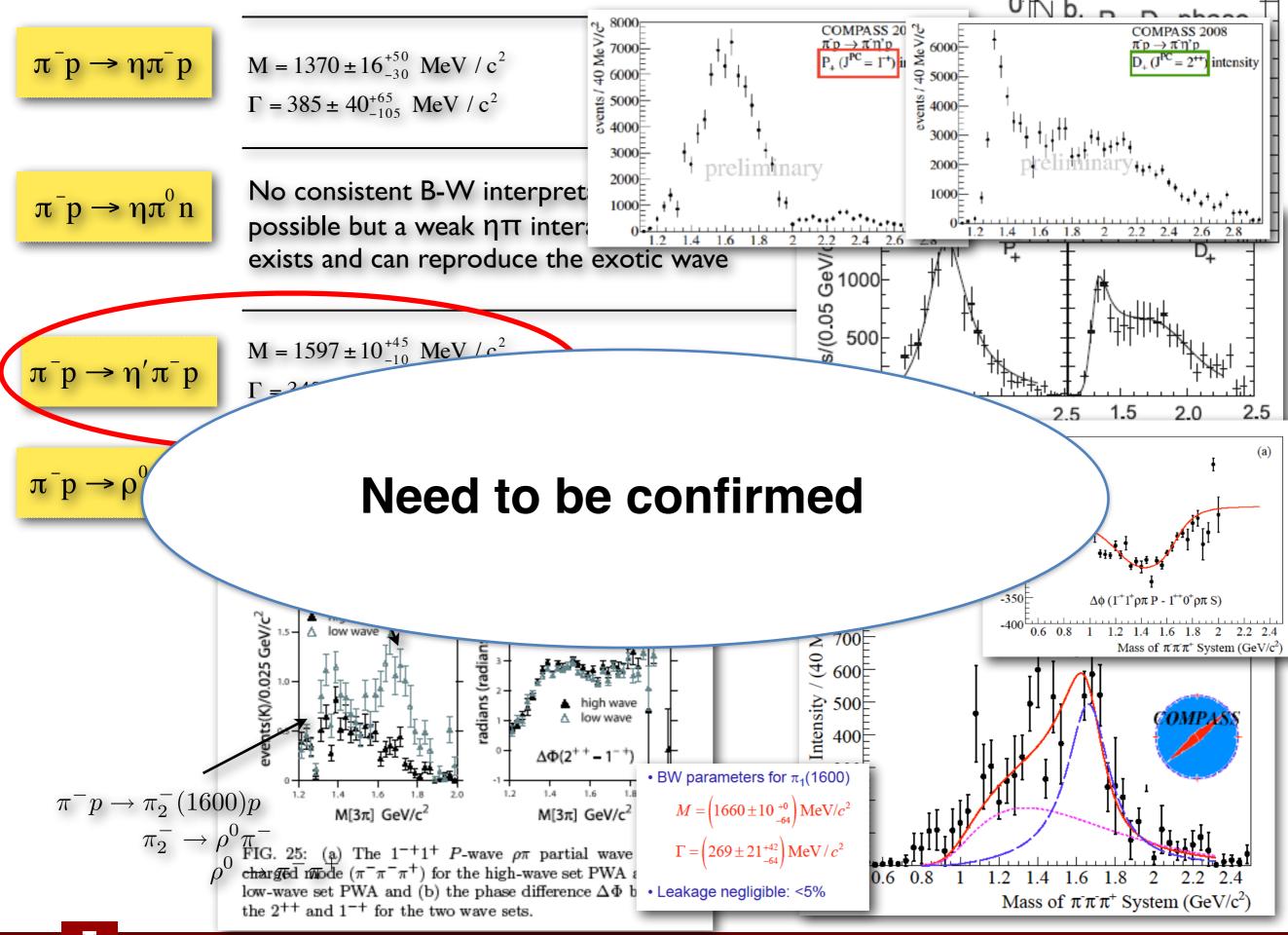
$$\mathcal{M}^{N}_{\substack{-\lambda_{\gamma},-\lambda_{V}\\\lambda,\lambda'}}=\pm(-1)^{\lambda_{\gamma}-\lambda_{V}}\mathcal{M}^{N}_{\substack{\lambda_{\gamma},\lambda_{V}\\\lambda,\lambda'}}$$





$$\begin{split} \rho_{00}^N &= \frac{1}{2} \left(\rho_{00}^0 \mp \rho_{00}^1 \right), \\ \operatorname{Re} \, \rho_{10}^N &= \frac{1}{2} \left(\operatorname{Re} \rho_{10}^0 \mp \operatorname{Re} \rho_{10}^1 \right), \\ \rho_{1-1}^N &= \frac{1}{2} \left(\rho_{1-1}^1 \pm \rho_{11}^1 \right). \end{split}$$

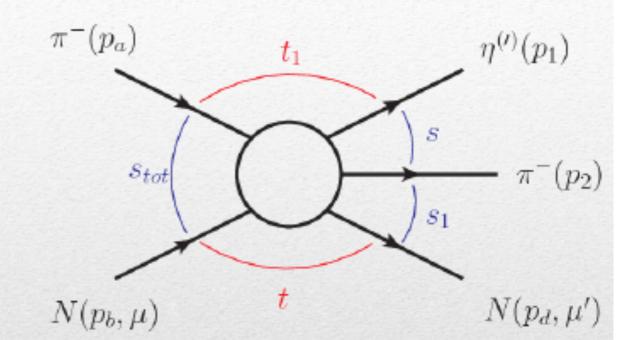
V.Mathieu, et al. (JPAC) Phys.Rev. D97, 094003 (2018)



2-meson peripheral production: ηπ

$$\pi^- p \rightarrow \eta^{(\prime)} \pi^- p$$

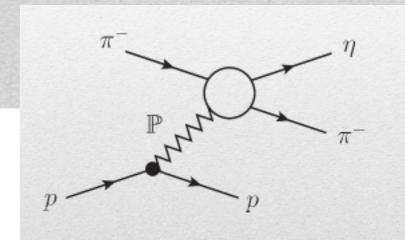
- Process is at fixed s_{tot}, and integrated t. Interested in resonances in s
- Recoil proton kinematically decouples from final state $\eta\pi$



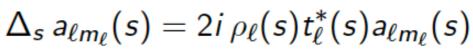
Expand amplitude into partial waves

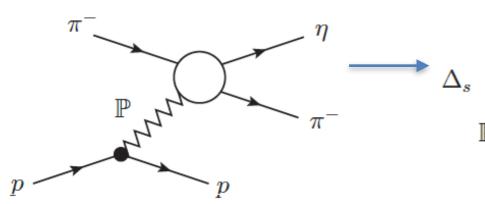
$$A_{\mu'\mu}(s_{tot},s,t,s_1,t_1) = \sum_{LM\epsilon} a_{LM,\mu'\mu}^{\epsilon}(s_{tot},t,s) Y_{LM}^{\epsilon}(\theta,\phi)$$

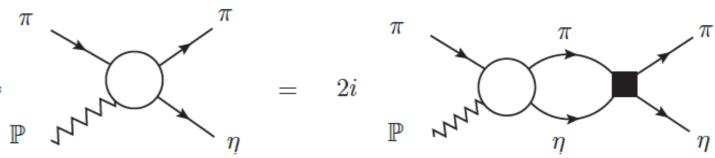
$$a_{LM,\mu'\mu}^{\epsilon}(s_{tot},t,s) \to a_{L,M=\pm 1}^{1}(s_{tot},t,s)$$



A.Jackura et al. (JPAC/COMPASS) Phys.Lett. B779, 464 (2018)







Production(s_m) x Interactions in ηπ (s_m)

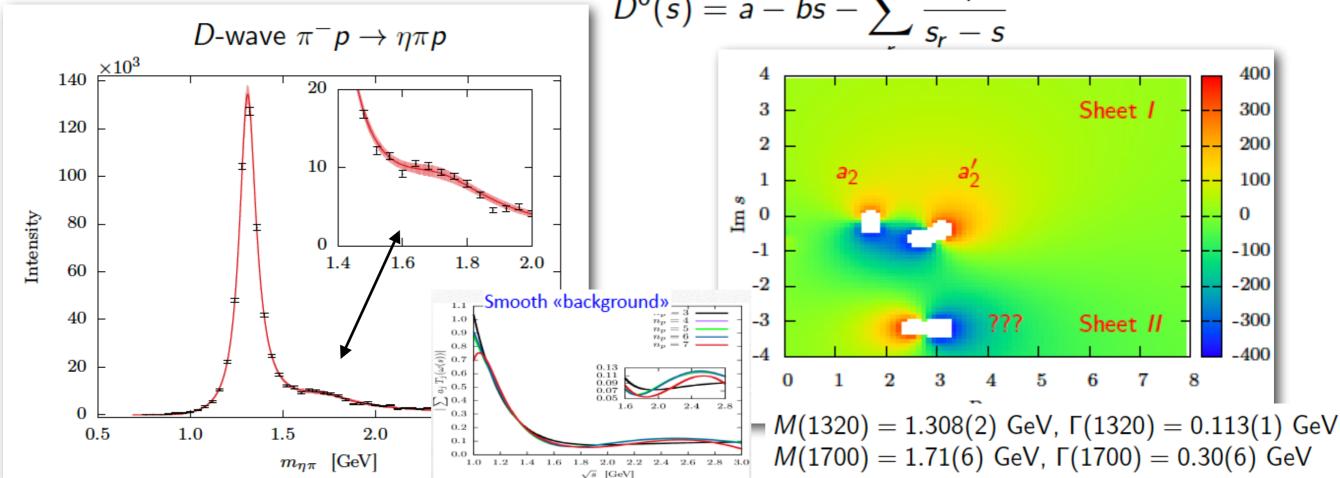
Constrained by unitary

$$a_{\ell m_{\ell}} = f_{\ell m_{\ell}}(s)t_{\ell}(s)$$

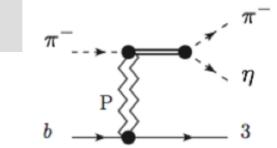
$$f_{\ell m_{\ell}}(s) = \sum_{n=0}^{\infty} \alpha_n T_n(\omega(s)) \quad t_{\ell}(s) = N(s)/D(s) \quad D(s) = D^0(s) - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho(s')N(s')}{s'(s'-s)}$$

$$D^{-\text{wave } \pi^- p \to n\pi p}$$

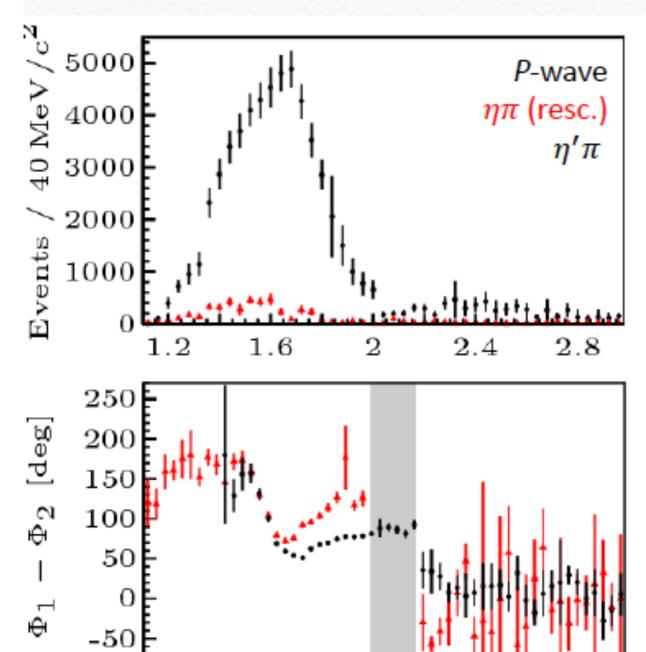
$$D^0(s) = a - bs - \sum_{r=0}^{\infty} \frac{c_r}{s_r - s}$$



adding P wave and η'π channel

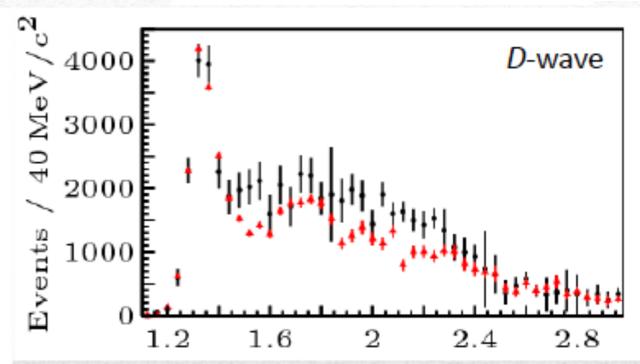


Data



1.6

COMPASS, PLB740, 303-311



A sharp drop appears at 2 GeV in P-wave intensity and phase

No convincing physical motivation for it

It affects the position of the $a_2'(1700)$

We decided to fit up to 2 GeV only

 $m(\eta^{(\prime)}\pi^-)$ [GeV/ c^2]

2.8

0.8

Coupled channel: the model

A. Rodas, AP et al. (JPAC), to appear

Two channels, $i, k = \eta \pi, \eta' \pi$

Two waves, J = P, D

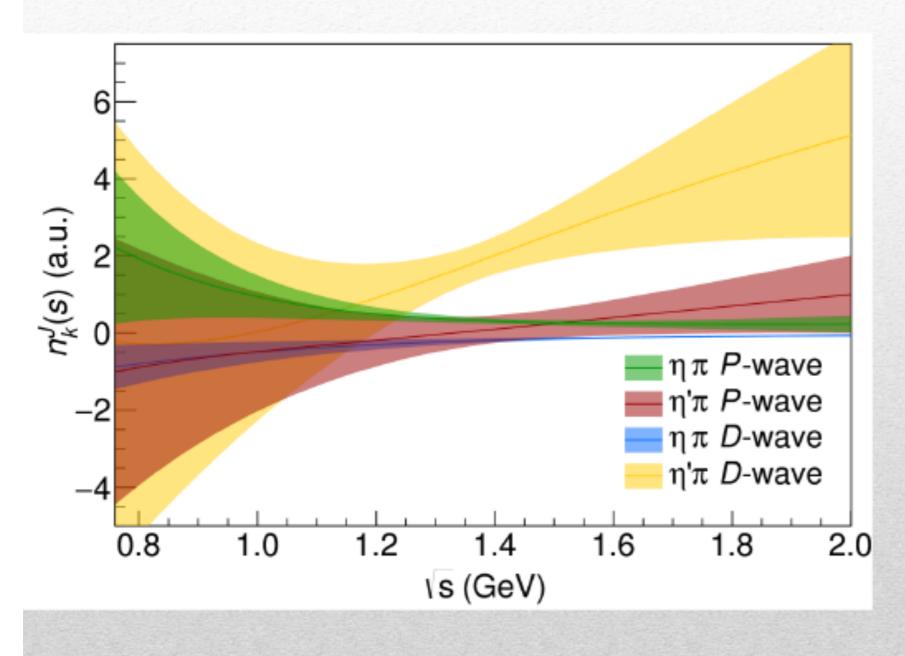
37 fit parameters

$$D_{ki}^{J}(s) = \left[K^{J}(s)^{-1}\right]_{ki} - \frac{s}{\pi} \int_{s_k}^{\infty} ds' \frac{\rho N_{ki}^{J}(s')}{s'(s' - s - i\epsilon)}$$

$$\rho N_{ki}^{J}(s') = g \, \delta_{ki} \, \frac{\lambda^{J+1/2} \left(s', m_{\eta^{(\prime)}}^2, m_{\pi}^2 \right)}{\left(s' + s_R \right)^{2J+1+\alpha}} \qquad n_k^{J}(s) = \sum_{n=0}^3 a_n^{J,k} \, T_n \left(\frac{s}{s+s_0} \right)$$

Left-hand scale (Blatt-Weisskopf radius) $s_R = s_0 = 1 \text{ GeV}^2$ $\alpha=2$ as in the single channel, 3rd order polynomial for $n_k^J(s)$

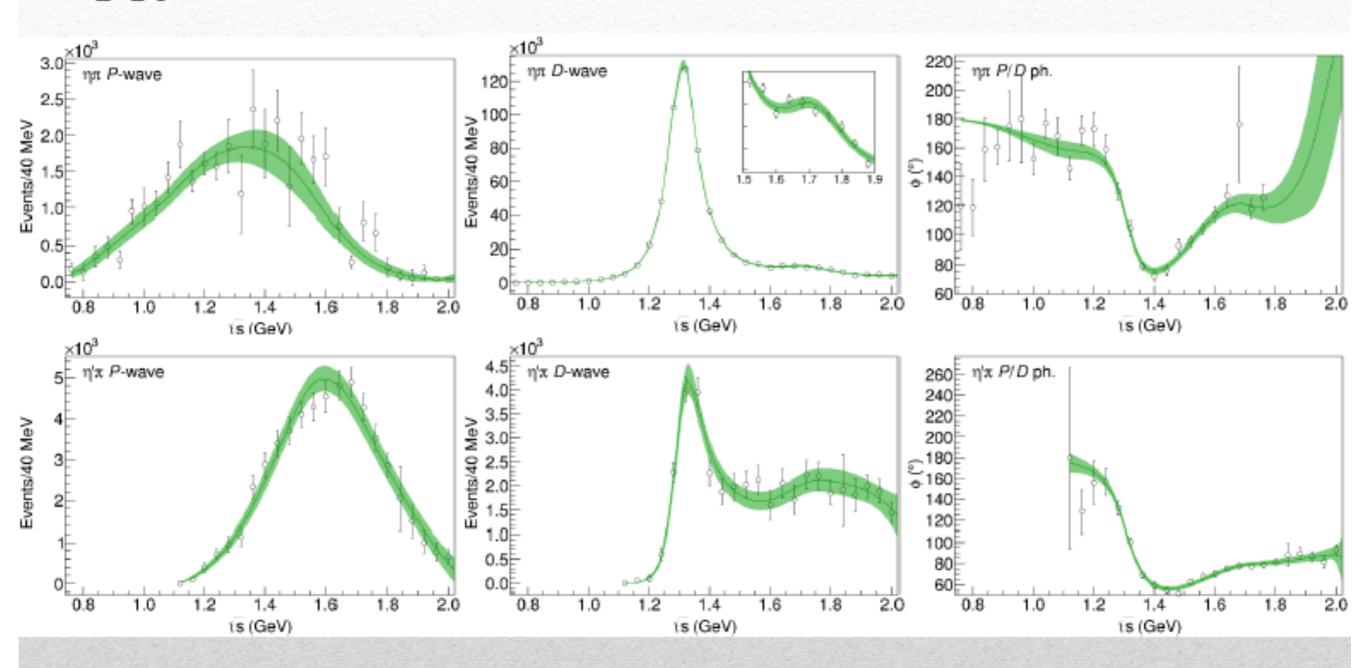
Polynomial in the numerator



The numerator should be smooth and have variation milder that the typical resonance width

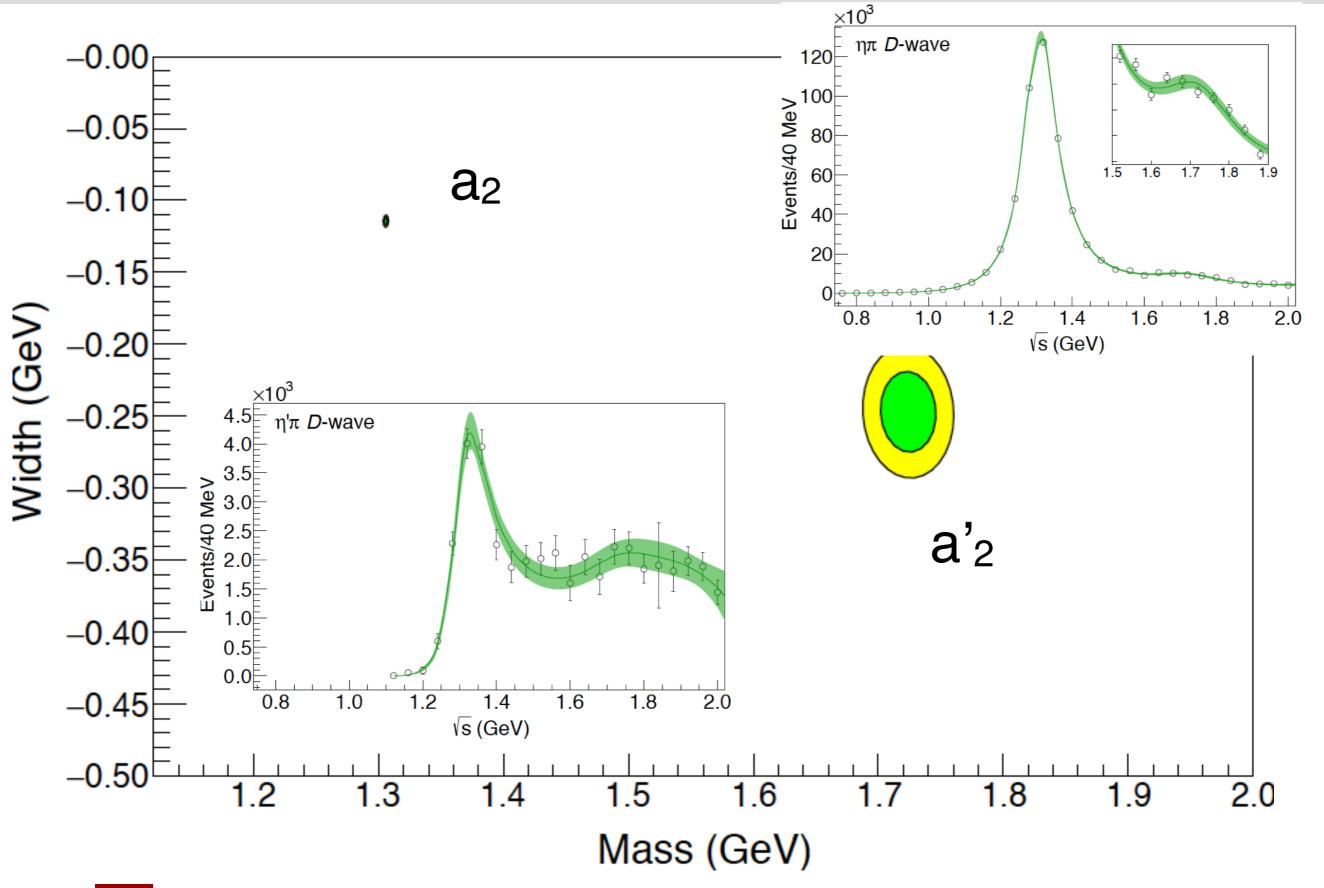
This happens indeed

Fit

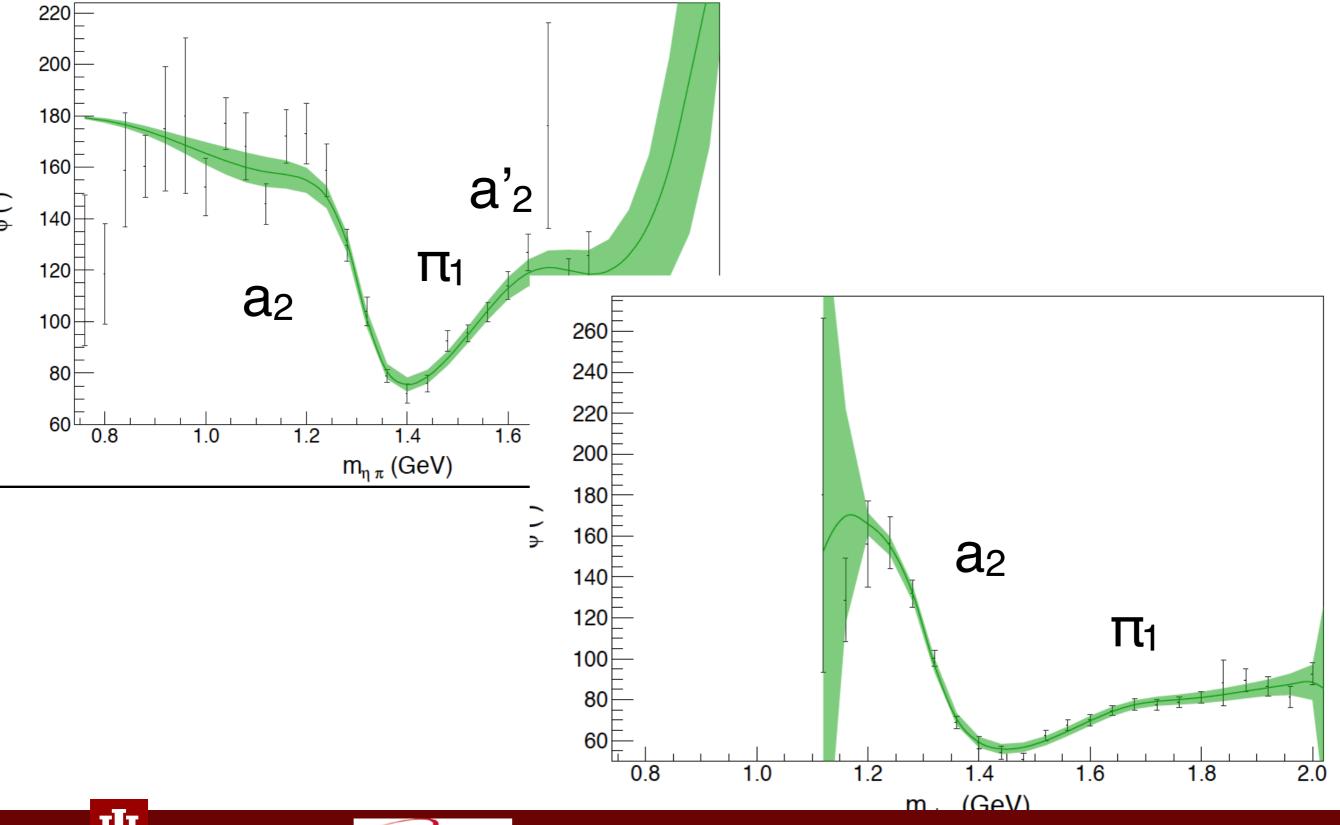


 $\chi^2/{
m dof}=162/122\sim 1.3$, statistical error estimated via 50k bootstraps Bands show the 2σ error

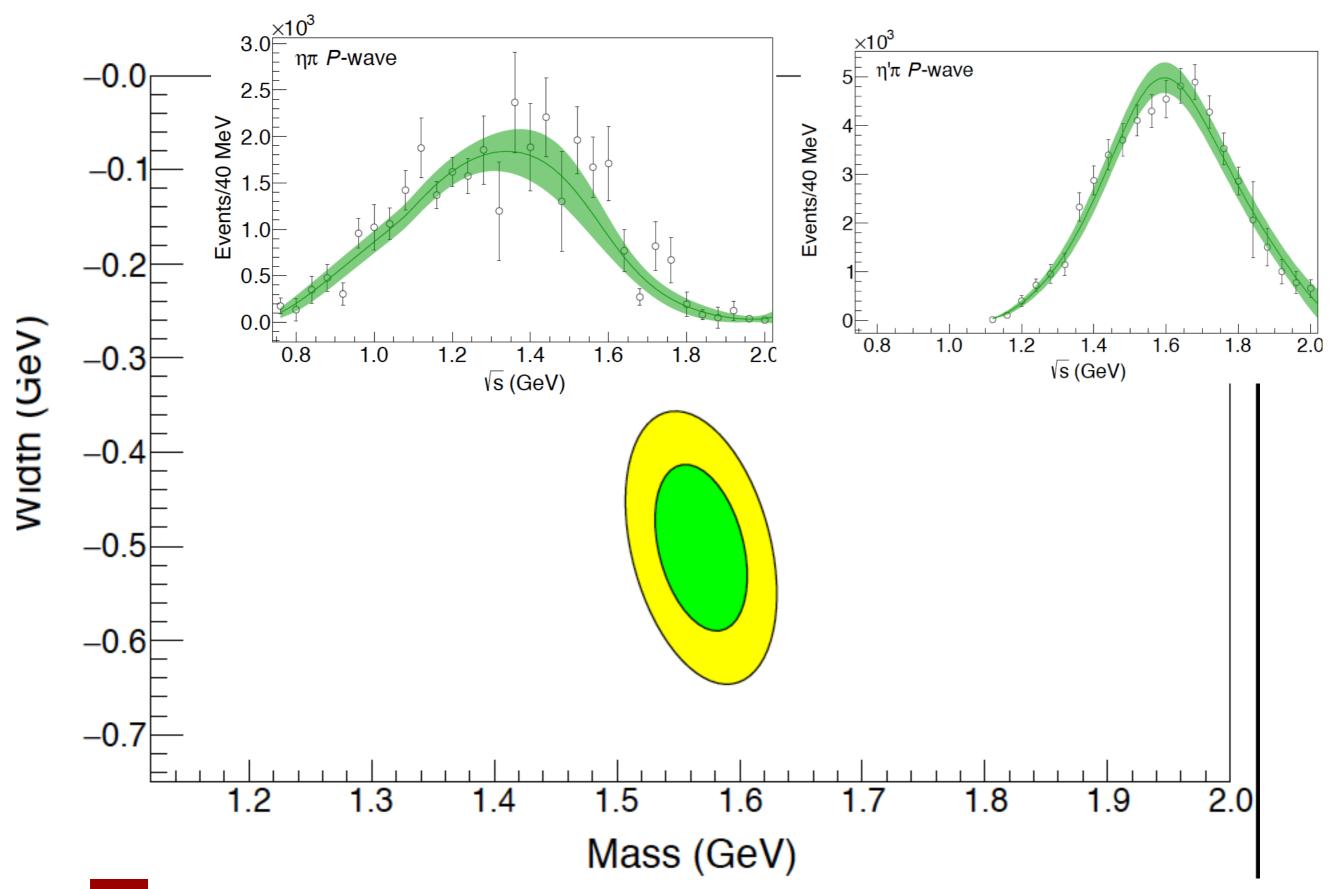
Fits to COMPASS: D-wave



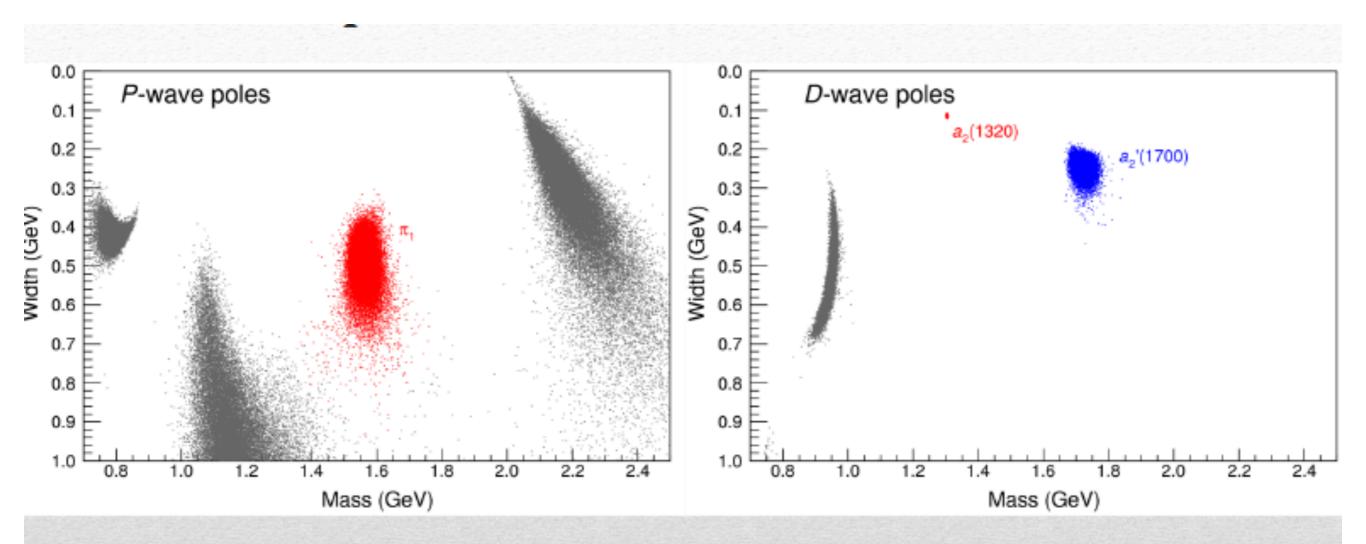
P-D interference



P-wave



Bootstrap



We can identify the poles in the region $m \in [1.2, 2] \text{ GeV}, \Gamma \in [0, 1] \text{ GeV}$

Two stable isolated poles are indentifiable in the *D*-wave Only one is stable in the *P*-wave

