Topology and Center Symmetry in Yang-Mills Theory

Claudio Bonati, **Marco Cardinali**, Massimo D'Elia and Fabrizio Mazziotti.

University of Pisa, INFN sez. Pisa

13 December 2019

The XVIII Workshop on Statistical Mechanics and Nonperturbative Field Theory

Table of Contents

Motivations

Numerical Results

Conclusions

Framework

Yang-Mills theory at LOW-T:

Confined.

- **Strongly coupled** \Rightarrow **no** perturbative methods.
- Center symmetry is realized $\rightarrow \langle \text{Tr} \boldsymbol{P} \rangle = \boldsymbol{0}.$

Yang-Mills theory at HIGH-T:

- Deconfined.
- Weakly coupled \Rightarrow perturbative/**semiclassical** methods.
- Center symmetry is spontaneously broken $\rightarrow \langle \text{Tr} P \rangle \neq 0$.

How the **properties of the confined phase** and $\langle \mathrm{Tr} \boldsymbol{P} \rangle = 0$ are related?

The Deformed Theory

Consider a **deformed theory** in which center symmetry is recovered even at high-*T*.

[M. Unsal and L. Yaffe: PRD **78**, (2008) 065035] Previous lattice study:

- [J.C. Myers and C. Ogilvie: PRD **77**, (2008) 125030].
- [C. Bonati, MC, M. D'Elia: PRD **98**, (2018) 054508].

$$\mathrm{S^{def}} = \mathrm{S_W} + h \sum_{\vec{n}} |\mathrm{Tr} \boldsymbol{P}(\vec{n})|^2$$

deformation

- Gauge **configurations** with $\langle \text{Tr} \boldsymbol{P} \rangle \neq 0$ are **suppressed**.
- The parameter h is chosen in order to restore center symmetry.
- **The theory is on** $\mathcal{R}^3 \times S^1$ + PBC.

The SU(4) Case

$SU(4) \longrightarrow$ Center Simmetry has two breaking patterns:

$$\label{eq:alpha} \boxed{\mathbb{Z}_4 \ \rightarrow \ \mathrm{Id}} \quad \boxed{\mathbb{Z}_4 \ \rightarrow \ \mathbb{Z}_2}$$

The order parameter are

$$\langle \mathrm{Tr} \boldsymbol{P} \rangle \quad \langle \mathrm{Tr} \boldsymbol{P}^2 \rangle$$

In order to recover the full center symmetry we must consider two deformations:

$$\mathbf{S}^{\mathrm{def}} = \mathbf{S}_{\mathrm{W}} + h_1 \sum_{\vec{n}} \left| \mathrm{Tr} \boldsymbol{P}(\vec{n}) \right|^2 + h_2 \sum_{\vec{n}} \left| \mathrm{Tr} \boldsymbol{P}^2(\vec{n}) \right|^2$$

The Aim of This Work

- 1. Consider *SU*(4) **YM** deep in the **deconfined** phase.
- 2. Switch on the deformations.
- 3. **Study** the properties of the **re-confined phase**.

We want to investigate:

- How center symmetry is recovered.
- The phase diagram of the theory.
- The θ dependence of the deformed theory, compared with the one at T = 0.

Are the deformed theory and the usual one equivalent?

Summary of Topology

$$\boxed{\mathcal{L}_{\theta} = \mathcal{L}_{\mathrm{YM}} - i\theta Q(x)} F(\theta, T) = -\frac{1}{V_4} \ln \int [dA] \exp\left\{-\int_0^{\frac{1}{T}} dt \int d^3 x \mathcal{L}_{\theta}\right\}$$

The **free energy** $F(\theta, T)$ can be parametrized as follows:

$$F(\theta,T)-F(0,T)=\frac{1}{2}\chi(T)\theta^2\left(1+\frac{b_2(T)}{2}\theta^2+b_4(T)\theta^4+\cdots\right)$$

and it is easy to see that

$$\chi = \frac{\langle Q^2 \rangle_{\theta=0}}{V_4} \qquad b_2 = -\frac{1}{12 \langle Q^2 \rangle_{\theta=0}} \left[\langle Q^4 \rangle_{\theta=0} - 3 \langle Q^2 \rangle_{\theta=0}^2 \right]$$

 b_2 is a very noisy observable. In order to measure it we used the **imaginary** θ method.

[C. Bonati et al: PRD 93, (2016) 025028].

Topology and Finite Temperature: MC Results

(sx) [Bonati, D'Elia, Panagopoulos, Vicari: PRL 110 (25) 2013]
(dx) [Allès, D'Elia, Di Giacomo: PLB 412 1997] See also:
[C. Gattringer, R. Hoffmann and S. Schaefer, PL B535, 358 (2002)]
[B. Lucini, M. Teper and U. Wenger, Nucl. Phys. B715,461 (2005)]
[L. Del Debbio, H. Panagopoulos and E. Vicari, JHEP0409, 028 (2004)]

■ Topological properties change drastically from the low-T to the high-T regime.

Numerical Results [arXiv: 1912.02662]

Phase Diagram

- MC simulations show the breaking to Z₂.
- It is possible to recover center symmetry using only one deformation.
- The \mathbb{Z}_2 region becomes larger at higher values of β .

Topological Susceptibility $\beta = 11.40$

Both $\langle \text{Tr} P \rangle$ and $\langle \text{Tr} P^2 \rangle$ must be zero to recover the correct T = 0 result.

Topological Susceptibility $\beta = 11.40$ part 2

 b_2 Coefficient $\beta = 11.40$

Conclusions

- We study a deformed SU(N) YM theory in which center symmetry is recoverd even at high temperature.
- Once center symmetry is recovered the topological properties of the reconfined phase (χ and b_2) are in agreement with the values obtained at T = 0.
- For SU(N) with N > 3 we need more than one deformation in order to avoid different breaking patterns of center symmetry.
- In order to obtaint the T = 0 values of χ and b_2 in SU(4) center symmetry must not be broken to any subgroup.

THANK YOU

BACK-UP SLIDES

Restoration of Center Symmetry

 $\beta = 6.2$, $N_t = 8$, $N_s = 32$

Center Symmetry is recovered increasing *h*.

The local value of TrP? Adjoint Polyakov loop.

$$P^{\mathrm{adj}} = |\mathrm{Tr} P|^2 - 1.$$

A negative value implies that TrP is close to zero locally.

- r₀ is the Sommer parameter, used to fix the scale, and it is approximately 0.5 fm.
- We assumed that the deformation does not modify the lattice spacing.
- If $r_0^4 \chi$ in YM \rightarrow [C. Bonati *et al*: PRD **93**, (2016) 025028].

$r_0^4 \chi$ on Different Lattices ($N_s = 32$)

Beware of N_t

 b_2 on $N_t = 8 N_s = 32$

b₂ is dimensionless \Rightarrow we do not need to fix *a*.

Discretisation of The Topological Charge

In our simulations we will use the discretisation of the topological charge with definite parity

$$q_{L}(x) = -\frac{1}{2^{9}\pi^{2}} \sum_{\mu\nu\rho\sigma=\pm 1}^{\pm 4} \varepsilon_{\mu\nu\rho\sigma} \mathrm{tr} \left[\Pi_{\mu\nu} \Pi_{\rho\sigma} \right]$$

► In the continuum limit q_L(x) must be corrected by a renormalization factor Z introduced by the lattice discretisation

$$q_L(x) \rightarrow a^4 Z q(x) + O(a^6)$$

▶ We remove UV fluctuation using the Cooling procedure.

Dilute Instanton Gas Approximation (DIGA)

We can describe our system as a gas of weakly interacting objects called (anti-) instantons which carry a topological charge equal to (minus) one and a finite action.

The free energy of this system is given by

 $F(\theta) \approx \chi (1 - \cos \theta) \rightarrow b_2 = -\frac{1}{12}$

Lattice Spacing and the Deformation on SU(3)

β	h	t_0/a^2		β	h	t_0/a^2
5.96	0.0	2.7854(62)		6.17	0.0	5.489(14)
5.96	1.0	2.8087(69)]	6.17	1.0	5.530(16)
5.96	2.0	2.8063(74)		6.17	2.0	5.498(16)

To test the independence of the lattice spacing on h we determined the scale t₀ defined by gradeient flow. See [M. Luscher: JHEP 1403, 092 (2014)].

$$\blacksquare$$
 $\beta = 5.96 \rightarrow 24^4$ lattices.

 $\beta = 6.17 \rightarrow 32^4$ lattices.

I Data coincides with those at h = 0 up to less than 1%.

Scatter Plots $SU(4) \beta = 11.15$

13

Scatter Plots $SU(4) \beta = 11.40$

13

Imaginary Theta Method

We add to the Lagrangian an imaginary θ term

$$S^{\text{def},i\theta} = S_W + h \sum_{\vec{n}} |\text{Tr}P(\vec{n})|^2 - \theta_L Q_L$$

where Q_L is the clover discretisation of Q. We perform simulations using different values of θ_L and we obtain χ , b_2 and Z with a combined fit of the first four cumulants

$$\frac{\langle \mathbf{Q} \rangle}{V_4} = \chi \mathbf{Z} \theta_L \left(1 - 2b_2 \mathbf{Z}^2 \theta_L^2 + 3b_4 \mathbf{Z}^4 \theta_L^4 + \cdots \right)$$
$$\frac{\langle \mathbf{Q}^2 \rangle_c}{V_4} = \chi \left(1 - 6b_2 \mathbf{Z}^2 \theta_L^2 + 15b_4 \mathbf{Z}^4 \theta_L^4 + \cdots \right)$$
$$\frac{\langle \mathbf{Q}^3 \rangle_c}{V_4} = \chi \left(-12b_2 \mathbf{Z} \theta_L + 60b_4 \mathbf{Z}^3 \theta_L^3 + \cdots \right)$$
$$\frac{\langle \mathbf{Q}^4 \rangle_c}{V_4} = \chi \left(-12b_2 + 180b_4 \mathbf{Z}^2 \theta_L^2 + \cdots \right)$$