Perturbations (and boundaries) in Flocking systems

Francesco Ginelli

Universita' degli Studi dell'Insubria, Como, Italy

Introduction: active matter

Active particles are able to extract and dissipate energy from their surroundings to produce systematic and coherent motion

- Energy enters and exits the system \rightarrow out of equilibrium
- Energy is spent to perform actions, typically move (self-propel) in a non-thermal way
- In active systems, energy is injected and dissipated in the bulk, not from the boundaries, in a way that does not explicitly breaks any simmety

Flocking active matter

spontaneous symmetry breaking to collective motion

Wildbeasts

Fish schooling

Starlings flocks

Cellular migration

The Vicsek universality class: a paradigma for collective motion

Which essential ingredients you find in the VM?

- 1. Conservation of particles number
- 2. Dry systems (no hydro interactions)
- 3. Particles are self propelled, i.e. they move and exchange interacting neighbours
 The system is far from equilibrium !!

 4. A continuous symmetry can be spontaneously broken (to polar order) by aligning interactions

The Vicsek model ("moving XY spins")

- Off lattice self propelled particles that move with constant speed v_0
- Local *ferromagnetic (or polar)* alignment with local neighbors (inside a metric range R_0 .)
- Environmental white noise

In d=2 one may write the VM as

Vicsek phase diagram

Toner and Tu field theory

Spontaneous symmetry breaking of a continuous symmetry + non-equilibrium effects

In the symmetry-broken state, large wavelength velocity fluctuations are easily excited and decay slowly (Nambu-Goldstone modes)

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0,$$

 $\partial_t \mathbf{v} + \lambda_1 (\mathbf{v} \cdot \nabla) \mathbf{v} + \lambda_2 (\nabla \cdot \mathbf{v}) \mathbf{v} + \lambda_3 \nabla |\mathbf{v}|^2 = [\alpha - \beta |\mathbf{v}|^2] \mathbf{v}$ $- \nabla P + D_0 \nabla^2 \mathbf{v} + D_1 \nabla (\nabla \cdot \mathbf{v}) + D_2 (\mathbf{v} \cdot \nabla)^2 \mathbf{v} + \mathbf{f}.$

Giant number fluctuations

Density fluctuations

Velocity fluctuations

Toner & Tu Hydrodynamic theory predicts universal longranged correlations

E.g.: equal time correlation functions of velocity and density fluctuations

Density structure factor $\delta
ho(x) =
ho(x) -
ho$

$$S(\mathbf{q},t) \equiv \langle \delta \hat{\rho}(\mathbf{q},t) \delta \hat{\rho}(-\mathbf{q},t) \rangle \sim \frac{1}{q^{\sigma}} \quad \text{for } q \to 0$$

Scaling exponents can be determined

By numerical simulation of microscopic models (HPC)

By RG under certain conjectures

$$\sigma = \frac{2}{5}(d+1)$$

 $\sigma = 1.33(2)$ d = 2

$$\sigma \sigma = 1.75(5)$$
 $d = 3$

Giant Number Fluctuations

• Fluctuations in average number of particles are anomalously large:

Experimental validation: qualitative and quantitative

Human mammary epithelial MCF-10A cells over-expressing RAB5A protein

RAB5A

1. Long range correlations in starlings flocks

2 points (connected) real space correlation function
$$C_s(r) = \left\langle \frac{\sum_{ij} \delta \mathbf{s}_i \cdot \delta \mathbf{s}_j \, \delta(r - r_{ij})}{\sum_{ij} \delta(r - r_{ij})} \right\rangle$$

$$\delta \mathbf{s}_i = \mathbf{s}_i - \frac{1}{N} \sum_i \mathbf{s}_i.$$

In finite systems we define a correlation length by

А

$$C(r=\xi)=0$$

Cavaga et al. PNAS **107** 11865 (2010)

2. In vitro cell migration experiment

Cell tissue Lab grown human mammary epithelial MCF-10A cells.

Seeded in well plates and cultured to obtain a large (~ 10^6 cells) hyperconfluent monolayer

Maliverno C et al Nat. Mater. 16, 587 (2017)

F. Giavazzi, FG et al. J. Phys D 50 384003 (2017).

F. Giavazzi, FG et al. J. Phys D 50 384003 (2017).

Beyond Bulk, unperturbed theory

- Flocks are finite
- Flocks are interacting with the rest of the world external stimuli

1. Problem: observed flocks correlations are **surprisingly** long ranged

Dynamic perturbations localized on the flock boundary

The origin of these anomalous correlations is not in the SPP, out-of-equilibrium nature of flocks...

..but in the interaction – through the boundary – with the external world

Dynamic perturbations localized on the flock boundary

The origin of these anomalous correlations is not in the SPP, out-of-equilibrium nature of flocks...

..but in the interaction – through the boundary – with the external world

An equilibrium set up:

Heisenberg model with a dynamical boundary magnetic field

$$\mathbf{s}_{i}^{t+1} = \Theta \left[\Theta [\mathbf{s}_{i}^{t} + \sum_{j \in \mathcal{N}_{i}} \mathbf{s}_{j}^{t} + \mathbf{g}(\mathbf{r}_{i}, \mathbf{h}^{t})] + \eta \boldsymbol{\zeta}_{i}^{t} \right] \qquad \Theta [\mathbf{v}] = \mathbf{v} / ||\mathbf{v}||$$

$$\mathbf{g}(\mathbf{r}_i, \mathbf{h}^t) = \mathbf{h}^t \text{ if } \mathbf{r}_i \in \mathcal{B} \text{ and } (\mathbf{h}^t \cdot \mathbf{r}_i) > 0$$
$$\mathbf{g}(\mathbf{r}_i, \mathbf{h}^t) = 0 \text{ otherwise}$$

Spherical domain in a cubic lattice

T<<1 (flocks are very ordered)

Fields only affects part of the boundary

An equilibrium set up:

Heisenberg model with a dynamical boundary magnetic field

$$\mathbf{s}_{i}^{t+1} = \Theta \left[\Theta [\mathbf{s}_{i}^{t} + \sum_{j \in \mathcal{N}_{i}} \mathbf{s}_{j}^{t} + \mathbf{g}(\mathbf{r}_{i}, \mathbf{h}^{t})] + \eta \boldsymbol{\zeta}_{i}^{t} \right] \qquad \Theta [\mathbf{v}] = \mathbf{v} / ||\mathbf{v}||$$

$$\mathbf{g}(\mathbf{r}_i, \mathbf{h}^t) = \mathbf{h}^t \text{ if } \mathbf{r}_i \in \mathcal{B} \text{ and } (\mathbf{h}^t \cdot \mathbf{r}_i) > 0$$
$$\mathbf{g}(\mathbf{r}_i, \mathbf{h}^t) = 0 \text{ otherwise}$$

Spherical domain in a cubic lattice

T<<1 (flocks are very ordered)

Field **h**^{*t*} performs a random walk on the spherical surface with typical inversion time

$$\tau_h = R^{\alpha}$$

$au_h \sim R^2$ (Diffusive timescale)

Hints of a theory -- Heisenberg hamiltonian in spin-wave approximation

Velocity correlation functions are expressed as **a superposition of eigenmodes** (plane waves on cubic lattice) (eigenvalues weighted) of the Discrete Laplacian matrix A (closely related to local connectivity)

$$C_{ij}^{\rm eq} = \langle \boldsymbol{\pi}_i \cdot \boldsymbol{\pi}_j \rangle = \sum_{a>1} w_i^a w_j^a \frac{2}{\beta \lambda_a} \qquad \qquad A_{ij} = \delta_{ij} \sum_k n_{ik} - n_{ij}$$

Scale free behavior reflects in a gapless eigenspectrum of A

A **localized external field** (e.g. on the **boundary**) does not open a gap and does not create a mass

Dynamical field effect

Dynamical correlation function for t >> 1

$$C_{ij}(t) = C_{ij}^{eq} + 2\sum_{a,b} w_i^a w_j^b \int_0^t ds e^{-(\lambda_a + \lambda_b)(t-s)} \mathbf{m}_a^{\perp}(s) \cdot \mathbf{h}_b^{\perp}(s), \quad = C_{ij}^{EQ} + C_{ij}^{NEQ}$$
$$\mathbf{m}_a^{\perp}(t) = \mathbf{m}_a^{\perp}(0) e^{-\lambda_a t} + \int_0^t dt' e^{-\lambda_a(t-t')} \mathbf{h}_a^{\perp}(t').$$

Decay timescale for the contributions of each eigenmode *a* to the nonequilibrium term

$$au_a \sim 1/\lambda_a$$

$$\tau_h >> \tau_a = 1/\lambda_a$$

If the field **h** is slow changing, all nonequilibrium contribution decays fast and nothing changes, correlations are similar to equilibrium

$$\tau_h \leq \tau_a = 1/\lambda_a$$

If the field dynamics is fast enough, the field keeps exciting low modes contributions, which may change the correlations, provided that

Slowest mode timescale $1/\dot{\lambda}_a \sim R^2$

Numerical simulations in flocking models

2. Linear Response theory in Flocking systems

- Linear response in symmetry breaking systems is a classical problem in equilibrium statistical field-theory,
- Response to external threats and biological significance of group response mechanisms.
- Control of biological and synthetic flocks

e.g. Vicsek model in an external field

$$\mathbf{r}_{i}^{t+1} = \mathbf{r}_{i}^{t} + v_{m} \mathbf{v}_{i}^{t}$$
Global field induces
$$\mathbf{v}_{i}^{t+1} = (\mathcal{R}_{\eta} \circ \vartheta) \left(\sum_{j \in S_{i}} \mathbf{v}_{j}^{t} + \mathbf{h} \right)$$
Global field induces
symmetry breaking

Asymptotic response of the **order parameter** Φ when a constant infinitesimal field is applied in the bulk

$$\Phi = \frac{1}{N} \left| \sum_{i=1}^{N} \mathbf{v}_i \right|$$

Transversal susceptibility

$$\chi_{\perp} = \frac{\Phi(0)}{h} \sim \frac{1}{h}$$

 $\chi_{\perp}^{eq} \sim \frac{1}{h}$

Longitudinal susceptibility

$$\chi_{II} = \frac{\Phi(h) - \Phi(0)}{h} \xrightarrow{h \to 0} ?$$

At equilibrium also the longitudinal component diverges

$$\chi_{\parallel}^{eq} \sim \frac{1}{\sqrt{h}}$$
 (d=3)

$$\partial_t \rho + \nabla \cdot (\mathbf{v}\rho) = 0 \quad (\text{continuity eq.})$$
$$\partial_t \mathbf{v} + \mathbf{\Lambda} [\nabla \mathbf{v} \mathbf{v}] = U(\rho, |\mathbf{v}|)\mathbf{v} + \mathbf{D} [\nabla \nabla \mathbf{v}] + \mathbf{F}_{\mathbf{P}} + \mathbf{f} + \mathbf{h}$$

External field: fix a direction in space and drives the motion accordingly

Can be derived either by:

- 1. Phenomenological hydrodynamics
- 2. Direct coarse-graining: e.g. Kinetic approaches (Boltzmann-Ginzburg-Landau approach)

J. Toner, Y. Tu, Phys Rev Lett 75 4326 (1995); , Phys Rev E 58 4828 (1998).

$$\partial_t \rho + \nabla \cdot (\mathbf{v}\rho) = 0$$
continuity eq.
$$\partial_t \mathbf{v} + \mathbf{\Lambda} [\nabla \mathbf{v} \mathbf{v}] = U(\rho, |\mathbf{v}|) \mathbf{v} + \mathbf{D} [\nabla \nabla \mathbf{v}] + \mathbf{F}_{\mathbf{P}} + \mathbf{f} + \mathbf{h}$$
advective
$$\mathbf{\Lambda} [\nabla \mathbf{v} \mathbf{v}] = \lambda_1 (\mathbf{v} \cdot \nabla) \mathbf{v} + \lambda_2 (\nabla \cdot \mathbf{v}) \mathbf{v} + \lambda_3 \nabla (|\mathbf{v}|^2)$$

Some kind of material derivative (time + convective derivatives), but with extra terms since Galileian invariance is broken

 $\partial_t \rho + \nabla \cdot (\mathbf{v}\rho) = 0$ $\partial_t \mathbf{v} + \mathbf{\Lambda} [\nabla \mathbf{v} \mathbf{v}] = U(\rho, |\mathbf{v}|) \mathbf{v} + \mathbf{D} [\nabla \nabla \mathbf{v}] + \mathbf{F}_{\mathbf{P}} + \mathbf{f} + \mathbf{h}$ Diffusive, viscous terms $\mathbf{D} [\nabla \nabla \mathbf{v}] = D_1 \nabla (\nabla \cdot \mathbf{v}) + D_2 (\mathbf{v} \cdot \nabla)^2 \mathbf{v} + D_3 \nabla^2 \mathbf{v};$

 $\partial_t \rho + \nabla \cdot (\mathbf{v}\rho) = 0$

$$\partial_t \mathbf{v} + \mathbf{\Lambda} \left[\nabla \mathbf{v} \mathbf{v} \right] = U(\rho, |\mathbf{v}|) \mathbf{v} + \mathbf{D} \left[\nabla \nabla \mathbf{v} \right] + \mathbf{F}_{\mathbf{P}} + \mathbf{f} + \mathbf{h}$$

$$\langle f_i(\mathbf{r},t)f_j(\mathbf{r}',t')\rangle = \Delta\delta_{ij}\delta^d(\mathbf{r}-\mathbf{r}')\delta(t-t')$$

order parameter $\Phi(h) \equiv |\langle \mathbf{v}(\mathbf{r},t) \rangle|$

No fluctuations (mean field):

$$\rho(\mathbf{r},t) = \rho_0, \mathbf{v}(\mathbf{r},t) = \mathbf{v}_0(\mathbf{h}).$$

$$U(v_0(h), \rho_0) \approx -\frac{h}{v_0} \neq 0$$

$$\Phi(h) \equiv |\langle \mathbf{v}(\mathbf{r},t) \rangle| = v_0(0) + O(h)$$

At mean field level, response is linear in h

Consider fluctuations:

$$\begin{split} \rho(\mathbf{r},t) &= \rho_0 + \delta \rho(h;\mathbf{r},t) \\ \mathbf{v}(\mathbf{r},t) &= \mathbf{v}_0(h) + \delta v_{\parallel}(h;\mathbf{r},t) \,\mathbf{e}_{\parallel} + \mathbf{v}_{\perp}(h;\mathbf{r},t) \end{split}$$

$$\langle \delta
ho
angle = \langle {f v}_{ot}
angle = {f 0}$$

 $\Phi(h) = v_0(h) + \langle \delta v_{\parallel} \rangle = v_0(0) + \langle \delta v_{\parallel} \rangle + O(h)$

Longitudinal fluctuations affect response

Longitudinal fluctuations are enslaved to slow modes:

J. Toner, Phys. Rev. E 86 , 031918 (2012).
$$\partial_t \delta \rho = [\partial_t \delta \rho]_{h=0}$$

 $\partial_t \mathbf{v}_\perp = [\partial_t \mathbf{v}_\perp]_{h=0} - h_v \mathbf{v}_\perp$
 $\mathbf{v}_\perp = [\partial_t \mathbf{v}_\perp]_{h=0} - h_v \mathbf{v}_\perp$
 $\mathbf{v}_\perp = h/v_0$

A. Z. Patashinskii and V. L. Pokrovskii, Zh. Eksp. Teor. Fiz. 64, 1445 (1973).

Order parameter depends on transversal fluctuations

$$\Phi(h) \approx v_0(0) - \frac{\langle |\mathbf{v}_{\perp}(h)|^2 \rangle}{2v_0(0)} + O(h)$$

Linear response is given by the correlation function C...

$$\delta\Phi(h) \equiv \Phi(h) - \Phi(0) \approx \frac{\langle |\mathbf{v}_{\perp}(0)|^2 \rangle - \langle |\mathbf{v}_{\perp}(h)|^2 \rangle}{2\nu_0(0)} + O(h).$$

$$\langle |\mathbf{v}_{\perp}(0)|^2 \rangle - \langle |\mathbf{v}_{\perp}(h)|^2 \rangle \equiv C(L_{\perp}, L_{\parallel}, \{\mu_i^0\}, h_v)$$

 \mathbf{v}_{\perp}

... whose scaling can be determined by DRG techniques

$$\begin{split} \delta \Phi &= h^{1-\nu} f\left(Lh^{\frac{1}{z}}\right) \propto \begin{cases} h^{1-\nu}, & h \gg L^{-z} \\ hL^{\gamma}, & h \ll L^{-z} \end{cases} \\ \nu &= 1 + 2\alpha/z \\ \gamma &= \nu z \end{cases} \quad \begin{array}{l} \alpha(d=2) \approx -0.3 & z(d=2) \approx 1.33 \\ \alpha(d=3) \approx -0.6 & z(d=3) \approx 1.75 \end{cases} \\ \hline \text{RG conjecture} \quad \nu &= \frac{4-d}{d+1}, & z = \frac{2(d+1)}{5}, & \gamma = \frac{2(4-d)}{5} \end{cases} \end{split}$$

Diverging longitudinal susceptibility in the thermodynamic limit

$$\chi_{\prime\prime} = \frac{\delta \Phi(h)}{h} \sim h^{-\nu}$$

Early works overlooked this, e.g.

A. Czirok, H. E. Stanley, and T. Vicsek, J. Phys. A 30 , 1375 (1997).

At and above the upper critical dimension d_c =4 the susceptibility is finite

•N. Kyriakopoulos, FG, J. Toner, New Journal of Physics, 18, 073039 (2016).

Numerical simulatios for response – VM + field

Experiment: Longitudinal response and susceptibility

•A. Morin, D. Bartolo, Phys. Rev. X 8, 021037 (2018)

What about correlation functions ?

 $L_c(h) \sim h^{-1/z}$ Intrinsic, field dependent length scale

 $r \sim L_c(h)$ Exponential cut off ~ L_c in real space correlations

 $q \ll \Lambda(h) \sim \frac{1}{L_c(h)}$

 $S_{\rho}(q) \sim \frac{1}{\langle \bar{b} \rangle q^z + h}$

Small q divergence is suppressed in Fourier

At leading order in q and h

 $z = \frac{6}{5} \ (d = 2)$ $z = \frac{8}{5} \ (d = 3)$ $z = 2 \ (d \ge 4)$

[Probably, under some RG conjecture]

TT equations for fluctuations

$$\begin{split} \rho(\mathbf{r},t) = \rho_0 + \delta \rho(h;\mathbf{r},t) & \text{Slow modes} \\ \mathbf{v}(\mathbf{r},t) = \mathbf{v}_0(h) + \delta v_{\parallel}(h;\mathbf{r},t) \,\mathbf{e}_{\parallel} + \mathbf{v}_{\perp}(h;\mathbf{r},t) \end{split}$$

$$\begin{aligned} \partial_t \delta \rho &= -\rho_0 \nabla_{\!\!\perp} \cdot \mathbf{v}_{\!\!\perp} - w_1 \nabla_{\!\!\perp} \cdot (\mathbf{v}_{\!\!\perp} \delta \rho) - v_2 \partial_{\!\!\parallel} \delta \rho + D_{\rho_{\!\!\parallel}} \partial_{\!\!\parallel}^2 \delta \rho + D_{\rho_{\!\!\perp}} \nabla_{\!\!\perp}^2 \delta \rho \\ &+ D_{\rho v} \partial_{\!\!\parallel} (\nabla_{\!\!\perp} \cdot \mathbf{v}_{\!\!\perp}) + \rho_0 \mu_2 \partial_t \partial_{\!\!\parallel} \delta \rho - \mu_1 \partial_{\!\!\parallel} (\delta \rho^2) + \mu_5 \partial_{\!\!\parallel} (|\mathbf{v}_{\!\!\perp}|^2), \end{aligned}$$

$$\partial_{t} \mathbf{v}_{\perp} = -\lambda_{1}^{0} \nu_{0} \partial_{\parallel} \mathbf{v}_{\perp} - \lambda_{1}^{0} (\mathbf{v}_{\perp} \cdot \mathbf{\nabla}_{\perp}) \mathbf{v}_{\perp} - g_{1} \delta \rho \partial_{\parallel} \mathbf{v}_{\perp} - g_{2} \mathbf{v}_{\perp} \partial_{\parallel} \delta \rho - \frac{c_{0}^{2}}{\rho_{0}} \mathbf{\nabla}_{\perp} \delta \rho$$
$$- g_{3} \mathbf{\nabla}_{\perp} (\delta \rho^{2}) + D_{B} \mathbf{\nabla}_{\perp} (\mathbf{\nabla}_{\perp} \cdot \mathbf{v}_{\perp}) + D_{3} \mathbf{\nabla}_{\perp}^{2} \mathbf{v}_{\perp} + D_{\parallel} \partial_{\parallel}^{2} \mathbf{v}_{\perp} + g_{t} \partial_{t} \mathbf{\nabla}_{\perp} \delta \rho$$
$$+ g_{\parallel} \partial_{\parallel} \mathbf{\nabla}_{\perp} \delta \rho + \mathbf{f}_{\perp} - h_{\nu} \mathbf{v}_{\perp}$$
$$h_{\nu} \equiv \frac{h}{\nu_{0}(0)}$$

Solve linearized dynamics in Fourier (both space and time)

Retain leading orders in (small) q and h

Integrate in $\boldsymbol{\omega}$ to get equal time structure factor

$$S_{\rho}(\mathbf{q}) = \langle \delta \hat{\rho}(\mathbf{q}) \delta \hat{\rho}(-\mathbf{q}) \rangle \approx \frac{\Delta \rho_0^2 v_0}{2c_0^2} \frac{1}{b(\theta_q)q^2 + h} \qquad \text{Linear theory SF}$$

Nonlinear effects can be accounted for by RG arguments

 $q^2 \to q^z$

Average over spatial directions, to get the « isotropic » structure factor

$$S_{\rho}(q) \sim \frac{1}{\langle \bar{b} \rangle q^z + h}$$

Numerical results (Vicsek model, d=2)

$$S_{\rho}(q) \sim \frac{1}{\langle \bar{b} \rangle q^z + h}$$

Density Structure factor

Driven, not spontaneous collective motion

(how to tell the difference with short timeseries)

A simple (universal) recipe for discriminating spontaneous from driven collective motion

- 1. Hope your moving system is large enough
- 2. Compute the structure factor
- 3. Check low *q* behavior.

Diverging (spontaneous) or *constant* (driven)

$$S_{\rho}(\mathbf{q}) = \frac{1}{N} \left\langle \left| \sum_{j=1}^{N} e^{-i\mathbf{q} \cdot \mathbf{r}_{j}} \right|^{2} \right\rangle$$

- $S_{\rho}(q \ll 1) \qquad q > \frac{1}{L}$
- 4. Criteria may be sufficient but not necessary for establishing directed collective motion

Perspectives: a controlled experiment

Cellular tissue migrating on a micrograted substrate

Perspectives: into the wild?

Thank you for your attention!

francesco.ginelli@gmail.com

H. Chate (Paris, Fr)

A. Cavagna (Rome)

I. Giardina (Rome)

R. Cerbino (Milan)

F. Giavazzi (Milan)

G. Scita (Milan)

J. Toner (Oregon, US)

Collaborations:

(former) Aberdeen group:

PhD students:

N. Kyriakopoulos (former)

M. Carlu

M. Faggian

C. Zancok

Post-doc

S. Ngo (former):

Financial support:

Large system size (thermodynamic behavior)

Data collapse tests all 3 response exponents

Numerical results (Vicsek model, d=2)

Flocking -- Conclusions ...

- Active matter: Fundametal class of non-equilibrium system. Biologically inspired
- Some reasonable theoretical understanding especially for low density, dry systems. Hydrodynamic behavior based on symmetry and conservation laws
- Relevant experiments exist (animal groups, motility assays, driven granular matter, cellular tissues, etc.)

... & Perspectives

- Biological relevance: can active matter help explain biologically relevant problems
- Synthetic active matter: swarming nanoparticles (medical applications), biomimetic materials, funtionalized colloids

Response to perturbations (linear and finite regimes) and control

- Genericity of mesoscale behavior in high density active matter/flocks
- Thermodynamic approaches
- Finite systems, boundary effects, etc.
- Long range hydrodynamic interactions in active suspensions

Adding a cohesive interaction

$$\mathbf{s}_{i}^{t+1} = \Theta \left[\alpha \sum_{k \in V_{i}} \mathbf{s}_{k}^{t} + \beta \sum_{k \in V_{i}} f_{ik} \mathbf{e}_{ik}^{t} + \eta \ m_{i}^{t} \ \vec{\xi}_{i}^{t} \right]$$

Orientation + *attraction-repulsion* + *noise*

$$\begin{vmatrix} \vec{\xi}_i^t \\ \vec{\xi}_i^t \end{vmatrix} = 1 \quad \left\langle \vec{\xi}_i^t \cdot \vec{\xi}_j^{t'} \right\rangle \sim \delta_{ij} \delta_{tt'}$$

 $V_j \quad \text{are Voronoi neigbours}$
 $\Theta[\mathbf{v}] = \frac{\mathbf{v}}{\|\mathbf{v}\|}$

G. Grégoire, H. Chaté & Y. Tu Physica D 181, 157 (2003)

Border fluctuations in d=3

Border fluctuations in d=3

Equilibrium droplet fluctuation frequency

$$\omega_{eq}^2 \sim \frac{\sigma_s}{N}$$

Flocks fluctuation frequency

Faster fluctuations in active flocks

Conclusions

First **experimental measure of GNF and structure** in biological active matter showing long range polar order

A simple mechanical model of soft self-propelled disks reproduces fairly well a wide range of scale, at the local, mesoscopic and hydrodynamic range.

At the experimental level, the flocking transition is accompanied by local fluidization. In simulations, this can be achieved by a large increase of self-propulsion speed. This suggests that an (indirect ?) effect of RAB5A expression is to reduce the mechanical feedbacks (contact inhibition of locomotion) that suppress cellular motility in the disordered control

Perspectives

- 1. Use larger FOVs, measure velocity fluctuations,
- 2. Interaction of local stresses and elastic modes w. velocity fluctuations
- 3. Boundary instability/unjamming induced by activity

Wound healing in-vitro experiments L. Sepulveda et al. Plos Comp. Bio (2013)

finite flock model

Hydrodynamic theory predicts universal long-ranged properties

Due to symmetry breaking (i.e.: there is a preferential directions) correlations are anisotropic Velocity (connected) correlations

$$S(\mathbf{q}) \sim \begin{cases} q_{\perp}^{1-d-\zeta-2\chi}, & C_v(\vec{R}) = \langle \delta \vec{v}(\vec{r}+\vec{R},t) \cdot \delta \vec{v}(\vec{r},t) \rangle = |R_{\perp}|^{2\chi} f_v \\ q_{\parallel}^{-2} q_{\perp}^{3-d-\zeta-2\chi}, & q_{\perp}^{*} \gg q_{\parallel} \gg q_{\perp} \\ q_{\parallel}^{-3+(1-d-2\chi)/\zeta} q_{\perp}^2, & q_{\perp}^{\zeta} \ll q_{\parallel} \end{cases}$$

$$C_v(\vec{R}) = \langle \delta \vec{v}(\vec{r} + \vec{R}, t) \cdot \delta \vec{v}(\vec{r}, t) \rangle = |R_\perp|^{2\chi} f_v \left(\frac{|R_\parallel|/l_0}{(|R_\perp|/l_0)^{\xi}} \right)$$

Toner & Tu Hydrodynamic theory predicts universal longranged correlations

Anysotropic structure

A better model at short scales: Collisional Vicsek model (CVM)

$$\dot{\mathbf{r}}_{i} = v_{0}\hat{\mathbf{n}}(\theta_{i}) + \beta \sum_{j}^{N_{0}} \mathbf{F}_{ij}$$
$$\dot{\theta}_{i} = \frac{1}{\tau}(\theta_{i} - \psi_{i}) + \xi_{i}$$

$$\mathbf{v_i} \equiv \dot{\mathbf{r}}_i = v_i \left(\cos\psi_i, \sin\psi_i\right)$$

$$\mathbf{F}_{ij} = \begin{cases} 0 & \text{if } r_{ij} \equiv |\mathbf{r}_i - \mathbf{r}_j| \ge (\sigma_i + \sigma_j) \\ [r_{ij} - (\sigma_i + \sigma_j)] \hat{\mathbf{r}}_{ij} & \text{if } r_{ij} < (\sigma_i + \sigma_j) \end{cases}$$

$$\begin{array}{l} \langle \xi_i \rangle = 0 \\ \langle \xi_i(t) \xi_j(t') \rangle = \eta^2 \delta_{ij} \delta(t - t') \, . \end{array}$$

Rescale time and space $\beta = \langle \sigma \rangle = 1$

Szabo B, Szollosi GJ, Gonci B, Juranyi Z, Selmeczi D and Vicsek T 2006 Phys. Rev. E 74(6) 061908 Henkes S, Fily Y and Marchetti M C 2011 Phys. Rev. E 84(4) 040301

A better model at short scales: Collisional Vicsek model (CVM)

$$\dot{\mathbf{r}}_{i} = v_{0}\hat{\mathbf{n}}(\theta_{i}) + \beta \sum_{j}^{N_{0}} \mathbf{F}_{ij}$$
$$\dot{\theta}_{i} = \frac{1}{\tau}(\theta_{i} - \psi_{i}) + \xi_{i}$$

$$\mathbf{v_i} \equiv \dot{\mathbf{r}}_i = v_i \left(\cos\psi_i, \sin\psi_i\right),$$

Realignment timescale au

Noise $\eta = 0.45$.

Self-propulsion speed v_0

Polydispersivity = 20%

Packing fraction $\phi = \rho \pi \langle \sigma_i^2 \rangle = 1.2$

Szabo B, Szollosi GJ, Gonci B, Juranyi Z, Selmeczi D and Vicsek T 2006 Phys. Rev. E 74(6) 061908 Henkes S, Fily Y and Marchetti M C 2011 Phys. Rev. E 84(4) 040301