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Introduction: active matter

Active particles are able to extract and dissipate energy from their 
surroundings to produce systematic and coherent motion

§ Energy enters and	exits	the	system		à out	of	equilibrium

§ Energy is spent to	perform actions,	typically move	(self-propel)	
in	a	non-thermal	way

§ In	active	systems,	energy is injected and	dissipated in	the	bulk,	
not	from the	boundaries,	in	a	way that does not	explicitely
breaks	any simmety



Starlings flocks

Flocking active matter
spontaneous symmetry breaking to collective motion

Fish schooling

Wildbeasts

Cellular migration



The	Vicsek	universality	class:	a	paradigma	for	collective	motion

Which essential ingredients you find in the VM?

1. Conservation of  particles number

2. Dry systems (no hydro interactions)

3.    Particles are self  propelled, i.e. they move and 
exchange interacting neighbours

4.  A continuous symmetry can be spontaneously broken   
(to polar order) by aligning interactions

The system is far from equilibrium !!



• Off  lattice self  propelled particles that move with constant speed

• Local ferromagnetic (or polar) alignment with local neighbors (inside a metric range R0.)

• Environmental white noise

0v
The	Vicsek	model	(“moving	XY	spins”)																	Vicsek	et	al,	PRL	(1995)

Dynamically changing 
interaction matric

In d=2 one may write the VM as



Vicsek	phase	diagram

Collective 
motion



Spontaneous	symmetry	breaking	of	a	continuous	symmetry
+	non-equilibrium	effects	
In the symmetry-broken state, large wavelength velocity fluctuations 
are easily excited and decay slowly (Nambu-Goldstone modes) 

Velocity fluctuations

Density fluctuations

n Long ranged correlations

n Giant number fluctuations

Toner	and	Tu	field	theory



Toner	&	Tu	Hydrodynamic	theory	predicts	universal	long-
ranged	correlations

E.g.: equal time correlation functions of  velocity and density fluctuations

Density structure factor

Scaling exponents can be determined

By RG under certain conjectures

By numerical simulation of  
microscopic models (HPC)

s = 1.33(2)       d = 2

s s = 1.75(5)       d = 3



Giant Number Fluctuations 
• Fluctuations in average number of particles are anomalously large:



Experimental	validation:	qualitative	and	quantitative

Starling flocks

Human mammary epithelial MCF-10A 
cells over-expressing RAB5A protein



1. Long range correlations in starlings flocks

In finite systems we define a 
correlation length by

2 points (connected) real 
space correlation function

Continuous symmetry is spontaneously broken,     

implies correlations are scale free 

Cavaga et al. PNAS 107 11865 (2010)



~ 1 m
m

Cell	tissue		 Lab grown human mammary epithelial MCF-10A cells.

Seeded in well plates and cultured to obtain a large (~ 106 cells) hyperconfluent monolayer

2. In vitro cell migration experiment

RAB5A expression induces 
collective motion

Maliverno C et al  Nat. Mater. 16, 587 (2017) 



RAB5A	promotes	a	transition	to	flocking	
and	a	reawakening	of	motility

Control RAB5A

F. Giavazzi, FG et al. J. Phys D 50 384003 (2017).



Hydrodynamic range

F. Giavazzi, FG et al. J. Phys D 50 384003 (2017).

RAB5A over-expressed – collective motion



Beyond	Bulk,	unperturbed	theory	

§ Flocks	are	finite

§ Flocks	are	interacting	with	the	rest	of	the	world	– external	stimuli



1. Problem: observed flocks correlations are surprisingly long ranged

Real Flocks  c ~ 0

Vicsek flocks (d=3) c ~ 1.2

(d=2) c ~ 0.6 

d=2



..but in the interaction – through the boundary – with the external world

The origin of these anomalous correlations is not in the 
SPP, out-of-equilibrium nature of flocks… 

Dynamic perturbations localized on the flock boundary

h



..but in the interaction – through the boundary – with the external world

The origin of these anomalous correlations is not in the 
SPP, out-of-equilibrium nature of flocks… 

Dynamic perturbations localized on the flock boundary

h



Spherical domain 
in a cubic lattice

T<<1 (flocks are very ordered)

An equilibrium set up:

Heisenberg model with a dynamical boundary magnetic field

Fields only affects part of the 
boundary



Field ht performs a random walk on the 
spherical surface with typical inversion time

Spherical domain 
in a cubic lattice

T<<1 (flocks are very ordered)

An equilibrium set up:

Heisenberg model with a dynamical boundary magnetic field



Weak field Strong field

(Diffusive timescale)



Hints of a theory -- Heisenberg hamiltonian in spin-wave approximation

Velocity correlation functions are expressed as a superposition of eigenmodes 
(plane waves on cubic lattice) (eigenvalues weighted) of the Discrete Laplacian 
matrix A (closely related to local connectivity)

Scale free behavior reflects in a gapless eigenspectrum of A

A localized external field (e.g. on the boundary) does not open a gap and does not 
create a mass
€ 

Δλ ~ 1 R2

€ 

λ1 = 0

λ2 ~ R
−2 →0 Massless, scale 

free correlations

Rotational 
symmetry



Heisenberg with strong 
dynamical field Flocks

Velocity fluctuations closely resemble lower order eigenmodes

Unperturbed 
flocking model

Dynamical field added in a 
Langevin Eq. representation

µ is a Lagrange multiplier 
to enforce 



Dynamical field effect

Dynamical correlation function for t >>1

Decay timescale for the contributions of each 
eigenmode a to the nonequilibrium term

τ h >> τ a =1 λ a
If the field h is slow changing, all nonequilibrium 
contribution decays fast and nothing changes, 
correlations are similar to equilibrium

τ h ≤ τ a =1 λ a
If the field dynamics is fast enough, the field 
keeps exciting low modes contributions, which 
may change the correlations, provided that

=Cij
EQ +Cij

NEQ

Slowest mode timescale



Numerical simulations in flocking models

h



§ Linear response in symmetry breaking systems is a 
classical problem in equilibrium statistical field-theory,

§ Response to external threats and biological significance of 
group response mechanisms.

§ Control of biological and synthetic flocks

2.	Linear	Response	theory		in	Flocking	systems

h

e.g.  Vicsek model in an external field

Global field induces 
symmetry breaking



Asymptotic response of the order parameter F when a 
constant infinitesimal field is applied in the bulk

Tensor susceptibilityχαβ =
∂φα
∂hβ

Transversal susceptibility

χ // =
Φ h( )−Φ 0( )

h
h→0$ →$$ ?

Longitudinal susceptibility

(d=3)

At equilibrium also the longitudinal component diverges



TT	phenomenological	hydrodynamics	with	external	field

(continuity eq.)

External field: fix a direction in space and 
drives the motion accordingly

Can be derived either by:

1. Phenomenological hydrodynamics

2. Direct coarse-graining: e.g. Kinetic approaches 
(Boltzmann-Ginzburg-Landau approach)

J.	Toner,	Y.	Tu,	Phys	Rev	Lett	75	4326	(1995);	,	Phys	Rev	E	58	4828	(1998).	



advective

continuity eq.

Some kind of material derivative (time + 
convective derivatives), but with extra 
terms since Galileian invariance is broken

TT	phenomenological	hydrodynamics	with	external	field



Diffusive, viscous terms

TT	phenomenological	hydrodynamics	with	external	field



Spontaneous
symmetry 
breaking
force

pressure

= −
∂V
∂ v

TT	phenomenological	hydrodynamics	with	external	field



order parameter

TT	phenomenological	hydrodynamics	with	external	field



No	fluctuations	(mean	field):

At mean field level, response is linear in h



Consider	fluctuations:

Slow	modes

Longitudinal fluctuations affect response



Longitudinal	fluctuations	are	enslaved	to	slow	modes:

Link	between	longitudinal	and	transversal	fluctuations

AKA:		Principle	of	conservation	of	modulus	in	equilibrium

Spatial average

A. Z. Patashinskii and V. L. Pokrovskii, Zh. Eksp. Teor. Fiz. 64 , 1445 (1973).

J. Toner, Phys. Rev. E 86 , 031918 (2012).

hv = h v0



Linear response is given by the correlation function C…

Order parameter depends on 
transversal fluctuations

… whose scaling can be determined by DRG techniques



At and above the upper critical dimension dc=4 the susceptibility is finite

Diverging longitudinal susceptibility in the thermodynamic limit

χ // =
δΦ h( )
h

~ h−ν
Early works overlooked this, e.g.

A. Czirok, H. E. Stanley, and T. Vicsek, 
J. Phys. A 30 , 1375 (1997).

•N.	Kyriakopoulos,	FG,	J.	Toner,	New	Journal	of	Physics,	18,	073039	(2016).

HPC:

RG conjecture



Numerical	simulatios	for	response	– VM	+	field

d=2 d=3

Linear, finite size 
regime scaling Large size regime 

scaling



Experiment:	Longitudinal	response	and	susceptibility

•A.	Morin,	D.	Bartolo,	Phys.	Rev.	X 8,	021037 (2018)

Theoretical	predictions	are	expected	to	hold	
as	long	as	the	external	field	affects	a	finite
fraction	of	particles.

Colloidal	Quincke	rollers	subjected	to	a	flow	
field	(in	green)	of	speed	h



Small q divergence is suppressed in Fourier

Intrinsic, field dependent length scale 

Exponential cut off ~ Lc in real space correlations

What about correlation functions ?

At leading order in q and h

[ Probably, under some RG conjecture ]



TT	equations	for	fluctuations

Slow	modes



Solve	linearized	dynamics	in	Fourier	

(both	space	and	time)

Retain	leading	orders	in	(small)	q	and	h

Nonlinear	effects	can	be	accounted	for	by	RG	arguments

Average	over	spatial	directions,	to	get	the	« isotropic »	structure	factor

Integrate	in	w to	get	equal	time	structure	factor

Linear	theory	SF



Numerical	results	(Vicsek	model,	d=2)



A	simple	(universal)	recipe	for	discriminating	

spontaneous	from	driven	collective	motion

1.	Hope	your	moving	system	is	large	enough

2.	Compute	the	structure	factor

3.	Check	low	q	behavior.	

Diverging (spontaneous)	or	constant (driven)

4.	Criteria	may	be	sufficient	but	not	necessary	for	establishing	directed	collective	motion

Driven, not spontaneous collective motion

(how to tell the difference with short timeseries)



h

Cellular	tissue	migrating	on	a	micrograted	substrate

+

Perspectives:	a	controlled	experiment

Perspectives:	into	the	wild?
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h

Driven, not spontaneous collective motion 

Particle still interact but also orient with an external field

e.g.  Vicsek model in an external field Global field induces 
symmetry breaking



Large	system	size	(thermodynamic	behavior)

d=2 d=3

1−ν



Data	collapse	tests	all	3	response	exponents

d=2 d=3



Numerical	results	(Vicsek	model,	d=2)

GNF	cutted	off	at	



Flocking -- Conclusions  …
§ Active matter: Fundametal class of non-equilibrium system. Biologically inspired

§ Some reasonable theoretical understanding especially for low density, dry 
systems. Hydrodynamic behavior based on symmetry and conservation laws

§ Relevant experiments exist (animal groups, motility assays, driven granular 
matter, cellular tissues, etc.)

… &  Perspectives
§ Biological relevance: can active matter help explain biologically relevant problems

§ Synthetic active matter: swarming nanoparticles (medical applications), biomimetic 
materials, funtionalized colloids

§Response to perturbations (linear and finite regimes) and control

§Genericity of mesoscale behavior in high density active matter/flocks 

§Thermodynamic approaches

§Finite systems, boundary effects, etc.

§Long range hydrodynamic interactions in active suspensions



Adding	a	cohesive	interaction
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Some field study evidence:
Tien JH, Levin SA, Rubenstein DI (2004)

G. Grégoire, H. Chaté & Y. Tu  Physica D 181, 157 (2003)
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Crystal

Standing
droplet

Gas

Moving
droplet

Mov.
Cry.

alignment

cohesion

Phase diagram

s



Center of mass reference frame



Border	fluctuations	in	d=3



ωeq
2 ~ σ S

N
ω f
2 ~ σ S

N 2 3

Border	fluctuations	in	d=3

Equilibrium droplet 
fluctuation frequency

Flocks
fluctuation frequency

Faster fluctuations in active flocks



Conclusions

First experimental measure of GNF and structure in biological 
active matter showing long range polar order

A simple mechanical model of soft self-propelled disks reproduces 
fairly well a wide range of scale, at the local, mesoscopic and 
hydrodynamic range.

At the experimental level, the flocking transition is accompanied by 
local fluidization. In simulations, this can be achieved by a large 
increase of self-propulsion speed. This suggests that an (indirect ?) 
effect of RAB5A expression is to reduce the mechanical feedbacks 
(contact inhibition of locomotion) that suppress cellular motility in 
the disordered control



Perspectives

1. Use larger FOVs, measure velocity fluctuations, 
2. Interaction of local stresses and elastic modes w. velocity fluctuations

3.  Boundary instability/unjamming induced by activity

Wound healing in-vitro experiments
L. Sepulveda et al. Plos Comp. Bio (2013)

finite flock model



Hydrodynamic	theory	predicts	universal	long-ranged	
properties

Due to symmetry breaking (i.e.: there is a 
preferential directions) correlations are anisotropic  

Velocity (connected) correlations



Anysotropic structure

Toner	&	Tu	Hydrodynamic	theory	predicts	universal	long-
ranged	correlations



A	better	model	at	short	scales:	Collisional	Vicsek	model	(CVM)

Szabo B, Szollosi GJ, Gonci B, Juranyi Z, Selmeczi D and Vicsek T 2006 Phys. Rev. E 74(6) 061908

Henkes S, Fily Y and Marchetti M C 2011 Phys. Rev. E 84(4) 040301

β = σ =1
Rescale time and space



A	better	model	at	short	scales:	Collisional	Vicsek	model	(CVM)

Szabo B, Szollosi GJ, Gonci B, Juranyi Z, Selmeczi D and Vicsek T 2006 Phys. Rev. E 74(6) 061908

Henkes S, Fily Y and Marchetti M C 2011 Phys. Rev. E 84(4) 040301

Realignment timescale

Self-propulsion speed

Packing fraction

Noise

Polydispersivity = 20%


