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Additivity

» Additivity is a basic property of systems with short-range
interactions. It implies that energy E is a linear homogenous
function of entropy S, volume V and number of particles N

» Systems with power-law decaying interactions are non additive
if the power « is smaller or equal than the dimension d of the
embedding space. Examples are self-gravitating systems,
Coulomb and dipolar systems, two-dimensional fluids, etc.

» Non additive interactions lead to ensemble inequivalence,
which implies negative specific heat, temperature jumps,
broken ergodicity, etc.



The replica energy

A replicas of a system of N particles with energy E, entropy S
and volume V.

Ec=ANE, St =4S, Vi= AV, Np= AN

Thermodynamic relation (Hill, 2001)

dEt: TdSt— Pth+//LdNt+éodt/1/7

We call & the replica energy. It vanishes if each system is additive.
Proof: e/ﬁ — JV2 = fdﬁ while 51 — 52 = 51/5, V1 — V2 = Vl/f,
Ny — Np = Ni /€. Then dS; = dV;: = dN; = 0, implying

dE; = &d.#". But in an additive system the energy is a linear
homogeneous function of entropy, volume and number of particles,
i.e. E2 = E(Sz, V27 N2) = E(Sl/é, V1/§, Nl/f) =

E(S1, Vi, N1)/€ = E1 /€, and therefore dE; = 0, requiring & = 0.
Hence, & # 0 implies non additivity.



Thermodynamic relations: violation of Gibbs-Duhem
Integrating Hill's equation for fixed single system properties,

EdAV = TSdANV — PVAdAN 4+ uNdA + EDN

which yields
Et: TSt—PVt+MNt+éDJV

and, for the single system,
E=TS—-PV+uN+¢&.

Differentiating this relation and taking into account the first
principle (TdS equation)

d€ = —SdT + VdP — Ndp.

which shows that T, P and u can become independent only if
& # 0 (violation of Gibbs-Duhem). Moreover,

&=E—TS+PV —uN

which allows to compute & from S and the equation of state.



The unconstrained ensemble: probability distribution

Let pi(V, N) be the Gibbs-Boltzmann probability of a (discrete)

state
exp [—aN — BE;(V,N) — V]

p,(V,N): T

where the normalization is given by

T= > exp[-aN - BE(V,N)—~V].
i\V,N

The change in the average energy £ = v Ei(VN)pi(V,N)
due to an infinitesimal change of the probability is

dE = )" E(V,N)dpi(V,N)
i,\V,N



The unconstrained ensemble: entropy

Using the conservation of the probability 3, \, y dpi(V,N) =0
one gets

Ly

dE = —14 > pi(V,N)Inp;(V, N) 3

p iWV,N

=®

where N and V are the average number and volume. This is to be
compared with the thermodynamic relation

dE = TdS + udN — PdV,

which allows the identification of the intensive variables
keT =1/3, P=+~/8 and u = —a//$3, and the entropy

S=—kg > pi(V,N)Inpi(V,N)
i\V,N



The unconstrained ensemble: replica energy

Substituting the expression of the probability in the entropy, one
gets ) ) .
E=E—-T5+ PV —uN,

where
E(T,P,pu)=—kgTInT(T,P,pun),

is the replica energy or "subdivision potential” (Hill, 1963). One
also obtains by differentiation

d& = —SdT + VdP — Ndp.

which implies

08 08 - o0& _
<a7_> P, B _57 ’ <8P> T, B V7 (8/‘) T,P =N



Relation with other ensembles-I

The unconstrained partition function can be written as

T(T,P,pu) = Z Z(T,V,N) eN/(ksT)g=PV/(keT),
VN

where
Z(T,V,N) = Ze i(V.N)/(ke T)

is the canonical partition function. T can also be connected with
the grand-canonical ensemble

T(T> P>,U) = /dVE(T, V’lu)e_PV/(kBT),

where =(T, V, 1) is the grand canonical partition function.



Relation with other ensembles-I|

BTV, 1)

S(EV,N) —=—> BF(T,V,N)
V,N

/;\

>Bé"(TPu)

BG(T,P,N)

efﬁé"(T,P,’u,) — /dVeIB(Q(T7V7N)+Pv)

where C\/J\/ = (8E/8T)V,N, MT7\/ = (8N/8/L)T7\/, etc.



Long-range 1/r® interaction

We consider an ensemble of systems, each with Hamiltonian
HZ%W—FW(Ql ceqn)
= 2m N
with, e.g.,
W= Z !q,

The microcanonical volume is

P(E) 2dN
w:/thN!d r

qJ ‘ reg

with
p(E) = 3(E — H)



|deal gas plus long-range
Separate the contribution of the "ideal gas” from the one of
long-range

§—SN =5R) and E=ED 4+ ELR) = ED) 4 W,
hence the replica energy is given by
& =W-TSER L pRYy _ | (LRI N since TS = EN 4PNy, (DN

Mean-field potential

—1 n(x)®(x)dx wi X) = xli_Gn(X/)
W—2/ (x)®(x)d th ®(x) /d |X*X’?eg

where n(x) is the number density. Entropy
2+d
S=— / n(x) In [A‘-’,n(x)} d¥x + %N

where A7 = h/v/2rmT is the thermal wavelength



Replica energy: general formula
Chemical potential is constant to guarantee the absence of currents
= pio(x) + ®(x)
which implies
;Mh:T/d%n@wnP¢m@}+2W.
to(x) is determined in such a way that
n(x) = A7% exp {—[®(x) — u]/T}
All ideal gas contributions can be obtained explicitly from these
expression and as a consequence M(LR)N = —TSUR) L 2W, which

gives
&=-W+ PRy,



Replica energy: explicit expression for 1/r®

Virial theorem states in this case

dNT + aW = dPV.

Hence, W
p(LR)y — 27V
d
. Thus, the replica energy becomes
@
E=—-(1—--=-)W
( d) ’

It vanishes for a = d, when the system becomes short-range. (The
expression cannot be used for a > d.)



The modified Thirring model

Hamiltonian

=2

D)

-yl

i= i>j

with potential

#(qi,q;) = —2v [0y, (qi)0v,(a;) + by, (ai)0v; (a;))]

Total potential energy

W (No, Ns) Zcb ai,q;) = —v (NG + bNf) ,

i>j

where Ny is the number of particles in V and Ny = N — N is the
number of particles in V; for a given configuration. Particles have
a volume o.



The Thirring model in the unconstrained ensemble

Canonical partition function

SNq d3N 3N —BW(Ng,N
2(T,V N):/dqdpe—mp,q):/d q e SW o)
’ ) h3NN! NI A\?_;_N ,

Unconstrained partition function
T(T, P, ) /dVZ/d D \3N AW (NoNy) el =3PV

Thirring's method

d3N (VO - N()J)No (V1 - N10')N1
/ N 2 N No! Nyl
No, Ny




Model's replica energy

T(T,P,u) = /dV Z e—,Bc?(T,P,M,v,NO,Nl)’
No, Ny

where

E(V. No, Ny) = W(NO’NI)—FPV—TZNk
K

N A u
T () 1

in the Stirling approximation. In the saddle point limit

~

& = inf é‘)(\/’ NOaNl)
{V7N07N1}



Consistency equations and replica energy

P S
V- Vy— Nyo
_ NoA3 T Noo
= —2whNo+TI L =
H v 0+ n<V0—NoU> Vo—Noo'
_ N3 TN
u = —2byN1—|—TIn<_ 17T _ )+_ 19 _
V- Vy— Nyo V- Vy— Nyo

that we have to solve in terms V, I\_Io, IVl as functions of T, P and
p. For 0 = 0 we obtain

. _ N
plN =T Niln <V’;)\3T> 2w
k

which gives B
&=-W+ PRV,

PRy — p — NT/V is the long-range contribution to the pressure.



Main results for c =0

>

Equilibrium configurations exist in the unconstrained ensemble
only for b < 0 (repulsive interactions).

For b =0 (Thirring’s model) no equilibrium states exist in the
unconstrained ensemble.

The unconstrained ensemble and the grand-canonical
ensemble are equivalent for b < 0.

In the grand-canonical ensemble equilibrium states exist also
for b > 0, and some of these states have negative isothermal
compressibility.

No phase transition is present in the grand-canonical
ensemble.

The grand-canonical ensemble is inequivalent to the canonical
ensemble. In this latter ensemble phase transitions of first
order and a critical point are present (in analogy with
Thirring's model).

Negative compressibility states appear in the canonical
ensemble also for b < 0



p-v and p-z planes: Grand canonical

0.20
v==06
0.15 i
(a) |
i
;
i
~ 0.10 ;
/ -
/"i o
0.05 e b= —0.5 -
e b=0.5 -
b=0 —
0.00 _
0.00 0.05 0.10 0.15 0.20
z
0.35
o b=—05
N b=05 -
“x. b=0 —
0.25 A
=9
0.15
0.05
0 2 4 8 10

z=exp((4 — 110))/T), o = TIn(TA3 /v V%), p=vVoP/T?



P-V and P-Z planes Unconstrained vs. canonical
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Dimensionless replica energy

We define
V -V vy vy N
v = Xp = — X] = — X = xg + x
Vo 0 T 1 T 0 +x1
Rescaled exclusion parameter a, reduced pressure p and chemical
potential £
To vV BT — b
= —_°p —
a VVO, p T2 ) é. -,- )
where

T>\3
=TI
nr = n<yvo>

Dimensionless replica energy ¢, = ch’/ T?

Pulv,x0,x1) = X0 [In (1 —oaxo> - 1] o [In <V —1aX1> - 1}

+p(v 4+ 1) + (x0 + x1)€ — X3 — bx}.




First order phase transition
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Rescaled replica energy as a function of xg for £ = 1.5 (black),
€ = 1.65 (blue) and £ = 1.8 (red), taking a = 0.23.



Phase diagram |
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Phase diagram (p, a,&) in the unconstrained ensemble for any
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Phase diagram I
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Inequivalence
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Cross section of the phase diagram for b = —3/16.



Conclusions

» Replica energy is the appropriate thermodynamic potential for
long-range interacting non additive systems.

» The unconstrained ensemble allows for equilibrium states if
interactions are long-range.

» Replica energy can be explicitly computed for some
remarkable cases: 1/r® interactions in the mean-field
approximation, generalized Thirring model, etc.

» The unconstrained ensemble can be inequivalent with other
ensembles as explicitly demonstrated for the generalized
Thirring’s model (grand-canonical, canonical, etc.)

» Phase transitions can take place also in the unconstrained
ensemble and demonstrate ensemble inequivalence.



