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Additivity

I Additivity is a basic property of systems with short-range
interactions. It implies that energy E is a linear homogenous
function of entropy S , volume V and number of particles N

I Systems with power-law decaying interactions are non additive
if the power α is smaller or equal than the dimension d of the
embedding space. Examples are self-gravitating systems,
Coulomb and dipolar systems, two-dimensional fluids, etc.

I Non additive interactions lead to ensemble inequivalence,
which implies negative specific heat, temperature jumps,
broken ergodicity, etc.



The replica energy

N replicas of a system of N particles with energy E, entropy S
and volume V .
Et = N E , St = N S , Vt = N V , Nt = N N
Thermodynamic relation (Hill, 2001)

dEt = TdSt − PdVt + µdNt + E dN ,

We call E the replica energy. It vanishes if each system is additive.
Proof: N1 → N2 = ξN1 while S1 → S2 = S1/ξ, V1 → V2 = V1/ξ,
N1 → N2 = N1/ξ. Then dSt = dVt = dNt = 0, implying
dEt = E dN . But in an additive system the energy is a linear
homogeneous function of entropy, volume and number of particles,
i.e. E2 ≡ E (S2,V2,N2) = E (S1/ξ,V1/ξ,N1/ξ) =
E (S1,V1,N1)/ξ ≡ E1/ξ, and therefore dEt = 0, requiring E = 0.
Hence, E 6= 0 implies non additivity.



Thermodynamic relations: violation of Gibbs-Duhem
Integrating Hill’s equation for fixed single system properties,

EdN = TSdN − PV dN + µNdN + E dN

which yields
Et = TSt − PVt + µNt + E N

and, for the single system,

E = TS − PV + µN + E .

Differentiating this relation and taking into account the first
principle (TdS equation)

dE = −SdT + V dP − Ndµ.

which shows that T , P and µ can become independent only if
E 6= 0 (violation of Gibbs-Duhem). Moreover,

E = E − TS + PV − µN

which allows to compute E from S and the equation of state.



The unconstrained ensemble: probability distribution

Let pi (V ,N) be the Gibbs-Boltzmann probability of a (discrete)
state

pi (V ,N) =
exp [−αN − βEi (V ,N)− γV ]

Υ

where the normalization is given by

Υ =
∑
i ,V ,N

exp [−αN − βEi (V ,N)− γV ] .

The change in the average energy Ē =
∑

i ,V ,N Ei (V ,N)pi (V ,N)
due to an infinitesimal change of the probability is

dĒ =
∑
i ,V ,N

Ei (V ,N)dpi (V ,N)

.



The unconstrained ensemble: entropy

Using the conservation of the probability
∑

i ,V ,N dpi (V ,N) = 0
one gets

dĒ = − 1

β
d

∑
i ,V ,N

pi (V ,N) ln pi (V ,N)

− α

β
dN̄ − γ

β
dV̄

where N̄ and V̄ are the average number and volume. This is to be
compared with the thermodynamic relation

dĒ = TdS + µdN̄ − PdV̄ ,

which allows the identification of the intensive variables
kBT = 1/β, P = γ/β and µ = −α/β, and the entropy

S = −kB
∑
i ,V ,N

pi (V ,N) ln pi (V ,N)



The unconstrained ensemble: replica energy

Substituting the expression of the probability in the entropy, one
gets

E = Ē − TS + PV̄ − µN̄,
where

E (T ,P, µ) = −kBT ln Υ(T ,P, µ),

is the replica energy or ”subdivision potential” (Hill, 1963). One
also obtains by differentiation

dE = −SdT + V̄ dP − N̄dµ.

which implies(
∂E

∂T

)
P,µ

= −S , ,
(
∂E

∂P

)
T ,µ

= V̄ ,

(
∂E

∂µ

)
T ,P

= −N̄.



Relation with other ensembles-I

The unconstrained partition function can be written as

Υ(T ,P, µ) =
∑
V ,N

Z (T ,V ,N) eµN/(kBT )e−PV /(kBT ),

where
Z (T ,V ,N) =

∑
i

e−Ei (V ,N)/(kBT )

is the canonical partition function. Υ can also be connected with
the grand-canonical ensemble

Υ(T ,P, µ) =

∫
dVΞ(T ,V , µ)e−PV /(kBT ),

where Ξ(T ,V , µ) is the grand canonical partition function.



Relation with other ensembles-II

Υ = e−βE

e−βE (T ,P,µ) =

∫
dVe−β(Ω(T ,V ,µ)+PV )

where CV ,N = (∂E/∂T )V ,N , MT ,V = (∂N/∂µ)T ,V , etc.



Long-range 1/rα interaction

We consider an ensemble of systems, each with Hamiltonian

H =
N∑
j=1

|pj |2
2m

+ W (q1, . . . ,qN)

with, e.g.,

W =
N∑
i ,j

−G
|qi − qj |αreg

The microcanonical volume is

ω =

∫
ρ(E )

hdNN!
d2dNΓ

with
ρ(E ) = δ(E −H)



Ideal gas plus long-range
Separate the contribution of the ”ideal gas” from the one of
long-range

S − S (I ) = S (LR) and E = E (I ) + E (LR) = E (I ) + W ,

hence the replica energy is given by

E = W−TS (LR)+P(LR)V−µ(LR)N since TS (I ) = E (I )+P(I )V−µ(I )N

Mean-field potential

W =
1

2

∫
n(x)Φ(x)ddx with Φ(x) =

∫
dx′
−Gn(x′)

|x− x′|αreg
where n(x) is the number density. Entropy

S = −
∫

n(x) ln
[
λdTn(x)

]
ddx +

2 + d

2
N

where λT = h/
√

2πmT is the thermal wavelength



Replica energy: general formula

Chemical potential is constant to guarantee the absence of currents

µ = µ0(x) + Φ(x)

which implies

µN = T

∫
ddx n(x) ln

[
λdTn(x)

]
+ 2W .

µ0(x) is determined in such a way that

n(x) = λ−dT exp {−[Φ(x)− µ]/T}

All ideal gas contributions can be obtained explicitly from these
expression and as a consequence µ(LR)N = −TS (LR) + 2W , which
gives

E = −W + P(LR)V .



Replica energy: explicit expression for 1/rα

Virial theorem states in this case

dNT + αW = dPV .

Hence,

P(LR)V =
αW

d

. Thus, the replica energy becomes

E = −(1− α

d
)W ,

It vanishes for α = d , when the system becomes short-range. (The
expression cannot be used for α > d .)



The modified Thirring model

Hamiltonian

H(p,q) =
N∑
i=1

|pi |2
2m

+
N∑
i>j

φ(qi ,qj)

with potential

φ(qi ,qj) = −2ν [θV0(qi )θV0(qj) + bθV1(qi )θV1(qj)]

Total potential energy

Ŵ (N0,N1) ≡
N∑
i>j

φ(qi ,qj) = −ν
(
N2

0 + bN2
1

)
,

where N0 is the number of particles in V0 and N1 = N − N0 is the
number of particles in V1 for a given configuration. Particles have
a volume σ.



The Thirring model in the unconstrained ensemble

Canonical partition function

Z (T ,V ,N) =

∫
d3Nq d3Np

h3NN!
e−βH(p,q) =

∫
d3Nq

N!

e−βŴ (N0,N1)

λ3N
T

,

Unconstrained partition function

Υ(T ,P, µ) =

∫
dV
∑
N

∫
d3Nq

N!
λ−3N
T e−βŴ (N0,N1)eβµNe−βPV

Thirring’s method∫
d3Nq

N!
→
∑
N0,N1

δN,N0+N1

(V0 − N0σ)N0

N0!

(V1 − N1σ)N1

N1!



Model’s replica energy

Υ(T ,P, µ) =

∫
dV

∑
N0,N1

e−βÊ (T ,P,µ,V ,N0,N1),

where

Ê (V ,N0,N1) = Ŵ (N0,N1) + PV − T
∑
k

Nk

+T
∑
k

Nk

[
ln

(
Nkλ

3
T

Vk − Nkσ

)
− 1− µ

T

]
in the Stirling approximation. In the saddle point limit

E = inf
{V ,N0,N1}

Ê (V ,N0,N1)



Consistency equations and replica energy

P =
TN̄1

V̄ − V0 − N1σ

µ = −2νN̄0 + T ln

(
N̄0λ

3
T

V0 − N0σ

)
+

TN̄0σ

V0 − N̄0σ

µ = −2bνN̄1 + T ln

(
N̄1λ

3
T

V̄ − V0 − N̄1σ

)
+

TN̄1σ

V̄ − V0 − N̄1σ

that we have to solve in terms V̄ , N̄0, N̄1 as functions of T , P and
µ. For σ = 0 we obtain

µN̄ = T
∑
k

N̄k ln

(
N̄k

Vk
λ3
T

)
+ 2W

which gives
E = −W + P(LR)V̄ ,

P(LR) = P − N̄T/V̄ is the long-range contribution to the pressure.



Main results for σ = 0
I Equilibrium configurations exist in the unconstrained ensemble

only for b < 0 (repulsive interactions).
I For b = 0 (Thirring’s model) no equilibrium states exist in the

unconstrained ensemble.
I The unconstrained ensemble and the grand-canonical

ensemble are equivalent for b < 0.
I In the grand-canonical ensemble equilibrium states exist also

for b ≥ 0, and some of these states have negative isothermal
compressibility.

I No phase transition is present in the grand-canonical
ensemble.

I The grand-canonical ensemble is inequivalent to the canonical
ensemble. In this latter ensemble phase transitions of first
order and a critical point are present (in analogy with
Thirring’s model).

I Negative compressibility states appear in the canonical
ensemble also for b < 0



p-v and p-z planes: Grand canonical
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P-V and P-Z planes Unconstrained vs. canonical
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Dimensionless replica energy
We define

v =
V − V0

V0
, x0 =

νN0

T
, x1 =

νN1

T
x = x0 + x1

Rescaled exclusion parameter a, reduced pressure p and chemical
potential ξ

a =
Tσ

νV0
, p =

νV0

T 2
P, ξ =

µT − µ
T

,

where

µT = T ln

(
Tλ3

T

νV0

)
,

Dimensionless replica energy ϕ̂u = νÊ /T 2

ϕ̂u(v , x0, x1) = x0

[
ln

(
x0

1− ax0

)
− 1

]
+ x1

[
ln

(
x1

v − ax1

)
− 1

]
+p(v + 1) + (x0 + x1)ξ − x2

0 − bx2
1 .



First order phase transition
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Phase diagram I

Phase diagram (p, a, ξ) in the unconstrained ensemble for any
coupling b < 0



Phase diagram II

Phase diagram (p, a, x̄) with b = −3/16.



Inequivalence
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Conclusions

I Replica energy is the appropriate thermodynamic potential for
long-range interacting non additive systems.

I The unconstrained ensemble allows for equilibrium states if
interactions are long-range.

I Replica energy can be explicitly computed for some
remarkable cases: 1/rα interactions in the mean-field
approximation, generalized Thirring model, etc.

I The unconstrained ensemble can be inequivalent with other
ensembles as explicitly demonstrated for the generalized
Thirring’s model (grand-canonical, canonical, etc.)

I Phase transitions can take place also in the unconstrained
ensemble and demonstrate ensemble inequivalence.


