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OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

The study of Acoustic Emission (AE) due to applied loads is a powerful technique for
deeply understanding the dynamics of the fracture processes and the behavior of
damage propagation in different kind of materials approaching failure.
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OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

The investigation in controlled laboratory tests allows obtaining valuable
information which could be very important in a health monitoring strategy of large
structures (buildings, bridges, highways, etc...).

Structural health monitoring (SHM)
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OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

In the last decades several studies have shown the potential of time series statistical
analysis in several fields, such as earthquakes dynamics, crumpled plastic sheets and
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OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

More recently the use of electrical and acoustic signals emission as fracture
precursors when geomaterials are subjected to mechanical stress can be found in

several papers.
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OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

In these contexts, Tsallis’ non-extensive generalized statistical mechanics has also
proved to be particularly effective in describing universal features of complex
systems emerging at criticality or at the edge of chaos.

P e

Highlights Recent  Accepted  Collections  Authors  Referees  Search Press  About N |ntr0d uction to

Nonextensive
Access by Uni Statistical Mechanics

APPROACHING A COMPLEX WORLD

Analysis of self-organized criticality in the Olami-Feder-Christensen
model and in real earthquakes Constantino Tsallis

F. Caruso, A. Pluchino, V. Latora, §

Phys. Rev. E 75, 055101(R) — Publill 2d e A [@VAY I 2 = VA | =\ A H = R = o

4 4
Highlights Recent  Accepted Collections  Authors Referees S “
WA

PHYSICAL REVI s

al, Non ar, bi
ey Experimental Validation of a Nonextensive Scaling Law in Confined
Granular Media

Gael Combe, Vincent Richefeu, Marta Stasiak, and Allbens P.F. Atman
Phys. Rev. Lett. 115, 238301 — Published 1 December 2015

Noise, synchrony, and correlations at the edge of chaos

Alessandro Pluchino, Andrea Rapisarda, and Constantino Tsallis C'T" J. Stat. Phys. 52’
Phys. Rev. E 87, 022910 - Published 19 February 2013 479 (1988)




OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

In these contexts, Tsallis’ non-extensive generalized statistical mechanics has also
proved to be particularly effective in describing universal features of complex
systems emerging at criticality or at the edge of chaos.

TYPICAL SIMPLE SYSTEMS:

Short-range space-time correlations

W(N)oe ™ (u>1)

Markovian processes (short memory), Additive noise

Strong chaos (positive maximal Lyapunov exponent), Ergodic, Riemannian geometry
Short-range many-body interactions, weakly quantum-entangled subsystems
Linear and homogeneous Fokker-Planck equations, Gausssians

- Boltzmann-Gibbs entropy (additive)

- Exponential dependences (Boltzmann-Gibbs weight, ...)

TYPICAL COMPLEX SYSTEMS: [0 6  J/(N)oc N” (p>0)

Long-range space-time correlations

Non-Markovian processes (long memory), Additive and multiplicative noises

Weak chaos (zero maximal Lyapunov exponent), Nonergodic, Multifractal geometry

Long-range many-body interactions, strongly quantum-entangled sybsystems

Nonlinear and/or inhomogeneous Fokker-Planck equations, g-Gaussian
- Entropy Sq (nonadditive)

- g-exponential dependences (asymptotic power-laws)




OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

In these contexts, Tsallis’ non-extensive generalized statistical mechanics has also
proved to be particularly effective in describing universal features of complex

systems emerging at criticality or at the edge of chaos.
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OVERVIEW

Acoustic Emission Analysis and Nonextensive Statistical Mechanics

In these contexts, Tsallis’ non-extensive generalized statistical mechanics has also
proved to be particularly effective in describing universal features of complex
systems emerging at criticality or at the edge of chaos.
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EXPERIMENTAL SETUP

In this study we perform a statistical investigation of AEs occurring in relatively small
cubic specimens of 150 mm side, made of concrete and basalt, and subjected to

compressive cyclic loadings.

CONCRETE is an artificial conglomerate consisting of a
mixture of binder (cement), water and fine and coarse
aggregates (sand and gravel) according to appropriate
ratios. It is characterized by having an excellent
compression behavior, resistance to water and
atmospheric agents, while it has low tensile and
flexural strength.

BASALT is an effusive rock of volcanic origin, resulting
from the escape of magma. The rapid reduction in
pressure and the cooling caused by contact with the
atmosphere gives this rock a very compact structure.
Basalt has excellent technical characteristics, high degree
of compactness with excellent resistance to mechanical
stresses and impacts, low gelling.




EXPERIMENTAL SETUP

The COMPRESSION TESTS on the cubic specimens were performed in a Laboratory of the
Department of Civil Engineering and Architecture of the University of Catania. Acoustic
emissions during the tests were measured through a "Piezotron Acoustic Emission
Sensor", protected against external noise and capable to measure emissions of surface
and longitudinal waves over a broad high frequency range, 50-400 kHz. The sensor was
mounted with a stud onto the surface of the specimen and a thin layer of silicone grease
was put between the coupling surfaces.




EXPERIMENTAL SETUP

The analogic output RMS signal (linear voltage), obtained with 1.2 ms integration time
constant, was recorded by a data acquisition front end and post processed later.
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EXPERIMENTAL SETUP

The cyclic compression tests, with load control, have been performed on the cubic
specimens by using a 5000 kN hydraulic press connected to a data acquisition unit. The
software allows to set all the necessary test parameters, such as the values of the load
sequence, its speed of application and the peak sensitivity.
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COMPRESSION TESTS

CONCRETE SPECIMENS: the acoustic emissions started from high values of the
applied load and were concentrated at the load peaks. The failure for the considered

sample does occur after 2007 seconds at a load value of 1080 kN.
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COMPRESSION TESTS

CONCRETE SPECIMENS: the acoustic emissions started from high values of the
applied load and were concentrated at the load peaks. The failure for the considered

sample does occur after 2007 seconds at a load value of 1080 kN.
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COMPRESSION TESTS

CONCRETE SPECIMENS: the acoustic emissions started from high values of the
applied load and were concentrated at the load peaks. The failure for the considered
sample does occur after 2007 seconds at a load value of 1080 kN.

Observing the graph, it is
evident that, during each load
cycle, very few emissions are
recorded until the load value
corresponding to the previous
peak is exceeded.

This is a confirmation of the
well known Kaiser effect,
following from the fact that
the microcracks opened in the
material during the loading
phases do not propagate until
a load intensity greater than
the one previously
experienced is reached.
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BASALT

COMPRESSION TESTS

SPECIMENS: high intensity emissions started

immediately after the

application of the first loading and lasted throughout the tests. The failure for the

considered sample do occur after 9101 seconds at a load value of 3902 kN.
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INTER-EVENT TIME ANALYSIS

Let us investigate, now, the inter-event time series of the AE recordings during the
compression tests on some of the considered specimens. In particular, we perform our
analysis on two concrete specimens, namely C1 and C2, and on two basalt specimens,
B1 and B2 and we consider only the last three loadings, being the latter those with the
best statistics.
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INTER-EVENT TIME ANALYSIS

The inter-event time 6t(t) is defined as the time interval between two consecutive
recordings AE(n) and AE(n- 1). In other words:

6T(t) = taem — Taena)

where tamis the time at which the n-th AE event does occur and ta-ythe time of the
previous event.
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INTER-EVENT TIME ANALYSIS

The inter-event time 6t(t) is defined as the time interval between two consecutive
recordings AE(n) and AE(n- 1). In other words:

6T(t) = taem — Taena)

where tanis the time at which the n-th AE event does occur and tan-1the time of the

previous event.
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INTER-EVENT TIME ANALYSIS

The complementary cumulative distribution P (> 6t ) of the inter-event time series
reports, for each value of 6t in the interval [0,500], the fraction of inter-event times
greater than that value.
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INTER-EVENT TIME ANALYSIS

The complementary cumulative distribution P (> 6t ) of the inter-event time series
reports, for each value of &t in the interval [0,500], the fraction of inter-event times
greater than that value.
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INTER-EVENT TIME ANALYSIS

For all the specimens we find that, approaching the failure, while 1/B.tends to zero, the
entropic index q goes towards a value in between 1.8 and 2.0. On the other hand, the trend of
the linear fit is not the same for the two considered materials: in particular, approaching the
failure point, it is increasing for the concrete specimens and decreasing for the basalt ones.
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Being a composed material, CONCRETE breaks
very slowly when increasing the compression,
with fractures propagating along preferential
lines surrounding the aggregates. This
phenomenon could be responsible of the
long-range  correlations  quantified by

increasing values of q.
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INTER-EVENT TIME ANALYSIS

For all the specimens we find that, approaching the failure, while 1/B.tends to zero, the
entropic index q goes towards a value in between 1.8 and 2.0. On the other hand, the trend of
the linear fit is not the same for the two considered materials: in particular, approaching the
failure point, it is increasing for the concrete specimens and decreasing for the basalt ones.
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On the contrary, being a more compact and
homogeneous natural material, BASALT tends to
uniformly resist to stronger compressions until it
suddenly breaks in a kind of explosive way:
therefore the value of q decreases approaching

1/Ba=0.
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INTER-EVENT TIME ANALYSIS

It is interesting to compare these results with data extracted from an analogous study of
Stavrakas et al (2016). In fact, the linear fit of the g-exponential data for white cement
mortar shows a slope similar to that obtained in the present study for concrete specimens,
even if the asymptotic value of q for vanishing 1/B.stays quite below the interval 1.8-2.0.
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INTER-EVENT TIME ANALYSIS

This result can be due to the fact that both materials are composed by a mixture of binder
and aggregates which can drive the propagation of cracks along the preferential directions.
These statistical regularities seem to suggest the existence of different classes of materials
parametrized by q and 1/B.. In order to assess the universality of the observed results
further investigations would be useful...
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IN CONCLUSION

The present generalized statistical analysis provides an insight on the warning signs of
the incipient failure of building materials and could therefore be used in a health
monitoring strategy on existing structures such as buildings and bridges.
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